1
|
Wang Y, Wu Z, Cai M, Qin Q, Moteletsana RD, Chen L, Wang D, Gu W, Chen X, Wang M, Liu Y. Performance and mechanism of a novel aerobic phosphorus release/anoxic phosphorus uptake process for simultaneous nitrogen and phosphorus removal. BIORESOURCE TECHNOLOGY 2025; 432:132626. [PMID: 40383310 DOI: 10.1016/j.biortech.2025.132626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
To investigate the feasibility of a novel Nitritation and Denitrification for Simultaneous Nitrogen and Phosphorus Removal system, a 133-day experiment was conducted. The results showed that combining aerobic phosphorus release capacity with denitrification phosphorus uptake capacity was feasible to achieve N and P removal. The removal efficiencies of TN and TP in ND-SNPR system were 98.16 ± 1.75 % and 81.70 ± 8.03 %. In addition, the phosphorus removal pathway of the system was identified as biological phosphorus removal. It is worth noting that the aerobic phosphorus release phenomenon of the ND-SNPR system occurred simultaneously with the short-range nitrification reaction and PHA storage. Thauera played the main role in the removal of nitrogen and phosphorus in the system. The relative abundance of Ploy-P hydrolases, dominated by ppx and relA, increased significantly with the intensification of the aerobic phosphorus release performance. This study provides a new idea for N and P removal and a reference for shortening the path of N and P removal as well as the phenomenon of aerobic phosphorus release.
Collapse
Affiliation(s)
- Yihan Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.
| | - Zhenjun Wu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.
| | - Ming Cai
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450001, China
| | - Qingwen Qin
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Rethabile Debra Moteletsana
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Lijie Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, China
| | - Wengui Gu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, China
| | - Xin Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Menghan Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| | - Yutong Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China
| |
Collapse
|
2
|
Yang T, Gong X, Xu A, Wang B, Huang Z, Wang C, Gao D. Integrated evaluation for advanced removal of nitrate using novel solid carbon biochar/corncob/PHBV composite: Insight into electron transfer and metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138549. [PMID: 40359745 DOI: 10.1016/j.jhazmat.2025.138549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
This study developed a novel Biochar/Corncob/PHBV (BCP) composite material, integrating the electron transfer capability of biochar, the cost-effectiveness of corncob, and the sustained carbon release performance of PHBV. The BCP system achieved a maximum nitrate removal efficiency of 97.3 %, significantly outperforming the single PHBV system (91.05 %), while effectively reducing nitrous oxide and other greenhouse gas emissions. It also demonstrated stable carbon release and enhanced electron transfer capabilities, contributing to a more sustainable denitrification process. The physical and chemical characterization of BCP confirmed that its superior performance is attributed to the uniformly distributed functional groups (e.g., CO and -COOH) on the surface and its porous structure, which facilitated electron transfer and microbial adhesion. Metagenomic and microbial analyses further revealed that BCP enriched functional genera such as Cellulomonas and Chryseobacterium and significantly increased the abundance of key functional genes related to nitrate reduction (e.g., NaR and NiR), enhancing organic matter decomposition and microbial nitrogen transformation. Beyond improving nitrate removal efficiency compared to PHBV, the BCP material offers practical engineering value by addressing carbon source limitations in long-term wastewater treatment applications. Its enhanced electron transfer and microbial enrichment suggest strong potential for application in constructed wetlands, biofilters, and other decentralized wastewater treatment systems. The study demonstrates that the BCP composite is not only a viable alternative to traditional PHBV but also a cost-effective and environmentally friendly material with broad applicability in nitrogen pollution control.
Collapse
Affiliation(s)
- Tianfu Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Boyuan Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zheng Huang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chuchu Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
3
|
Li P, Luo Y, Ming F, Zheng J, Pan Z, Wang R, He Y, Zhou M, Xiong X, Zhang C, Lei Y, Wang Z, Zhou H, Chen Y, Tan Z, Li X. Aeration strategies for microalgae in wastewater treatment: Enhancing pollutant removal and community dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124629. [PMID: 40020362 DOI: 10.1016/j.jenvman.2025.124629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
External aeration significantly influences microalgae consortium performance in municipal wastewater treatment. This study evaluated two Chlorella strains and mixed cultures under daytime, nighttime, and continuous aeration modes at 50 and 200 mL/min. Distinct aeration preferences were observed among microalgal strains, necessitating tailored strategies for mixed microalgae. Aeration mode had a greater impact on microalgae consortium performance than aeration intensity. Intermittent aeration enriches functionally differentiated microorganisms and reduces random contributions to microbial assembly. High intermittent aeration (DA_200 and NA_200) achieved the highest pigment accumulation in Chlorella pyrenoidosa (20.49 mg/L), while the mixed culture under CA_200 averaged only 5.36 mg/L. Nighttime mode promoted pigment accumulation in microalgae and enriched heterotrophic bacteria, enhancing organic pollutant degradation. Daytime mode favored the enrichment of simultaneous nitrification-denitrification bacteria, improving nitrogen removal efficiency. Meanwhile, continuous mode reduced microalgal growth by promoting complete nitrification and reducing nitrogen availability. Optimizing aeration strategies enhances microalgae consortium performance and wastewater treatment solutions.
Collapse
Affiliation(s)
- Pan Li
- Mianyang Teacher's College, Mianyang, 621000, China
| | - Yajun Luo
- Mianyang Teacher's College, Mianyang, 621000, China; Yibin University, Yibin, 644000, China
| | - Fei Ming
- Mianyang Teacher's College, Mianyang, 621000, China
| | - Jingxian Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhicheng Pan
- Haitian Water Group Co., LTD., Chengdu, 610203, China
| | - Rui Wang
- China MCC5 Group Corp. LTD., Chengdu, 610000, Sichuan, China
| | - Yanqing He
- Mianyang Teacher's College, Mianyang, 621000, China
| | - Miao Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xin Xiong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Chi Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yu Lei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhaoqi Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
4
|
Fan XY, Zhang ZX, Li N, Li X. Molecular ecological insights into the synergistic response mechanism of nitrogen transformation, electron flow and antibiotic resistance genes in aerobic activated sludge systems driven by sulfamethoxazole and/or trimethoprim stresses. WATER RESEARCH 2025; 270:122853. [PMID: 39616686 DOI: 10.1016/j.watres.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025]
Abstract
The prevalence of antibiotics poses a serious challenge to biological nitrogen removal in wastewater. In this study, the effects of sulfamethoxazole and/or trimethoprim (15 mg/L∼30 mg/L) on treatment performance, nitrogen transformation and antibiotic resistance genes (ARGs) were investigated in aerobic activated sludge systems to elucidate the metabolic mechanism under high antibiotic stress. 15 mg/L single antibiotic stress improved total nitrogen removal performance due to the persistence of nitrifiers and enrichment of denitrifiers, with an optimum removal efficiency of 96.5 %. Up-regulation of all denitrifying genes, coupled with enhanced electron transfer of Complex II and III, contributed to the emergence of aerobic denitrification. The increased expression of antioxidant genes also alleviated intracellular pressure. Whereas combined antibiotic stress induced the significant down-regulation of denitrifying bacteria and genes (nirKS and nosZ), and suppressed the electron supply for denitrification by restraining genes related to Complex Ⅰ and energy supply by tricarboxylic acid cycle, driving the collapse of activated sludge system, with ammonia and total nitrogen removal efficiencies dropping to below 40 % and 20 %, respectively. The dominant genera in system changed from TM7a to Thiothrix and Sphaerotilus with increasing antibiotic concentration and type. Moreover, antibiotic stress promoted a slight enrichment of ARGs, especially those encoding efflux mechanisms. Cooperative relationships (> 93 %) dominated among ARGs, and Klebsiella was identified as the crucial host. ARGs regulating antibiotic efflux were more likely to be co-expressed with functional genes. These results may provide a theoretical basis for establishing promising strategies to mitigate antibiotic-caused process deterioration.
Collapse
Affiliation(s)
- Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China
| | - Zhong-Xing Zhang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; China Architecture Design and Research Group, Beijing 100044, PR China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
5
|
Lv J, Li X, Zhao L, Zhang S, Wang G, Wang X, Wang Y, Chen X, Yin C, Mao Z. Lactobacillus reuteri metabolites alleviate apple replant disease (ARD) by driving beneficial bacteria to reshape the core root microbiome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109345. [PMID: 39615192 DOI: 10.1016/j.plaphy.2024.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025]
Abstract
Previous studies have shown that the bacterial fertilizer Lactobacillus reuteri (LBR) significantly alleviates apple replant disease (ARD), but the mechanism behind its effectiveness remains unclear. This study investigated the effects of key LBR metabolites on the rhizosphere microbial community. The biocontrol function of extracellular polysaccharides (EPS) was examined and shown to be further enhanced after optimizing the fermentation conditions. The optimized fermentation conditions were found to generate intermediates involved in various plant metabolic pathways, leading to plant growth promotion, increased abundance of beneficial bacteria like Bacillus and Pseudomonas in the rhizosphere soil, and decreased abundance of pathogenic fungi. Through the isolation and identification of rhizosphere microorganisms, a strain of Pseudomonas monteilii with chemotaxis to EPS was isolated, which had growth promotion ability and effectively improved plant resistance and relieves ARD. To further understand the mechanism underlying the inhibitory effect on soil pathogens of microbial aggregations and development in the rhizosphere driven by beneficial bacteria metabolites. These findings offer valuable technical insights for utilizing biocontrol bacteria metabolites in ARD management.
Collapse
Affiliation(s)
- Jinhui Lv
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Xiaoxuan Li
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Lei Zhao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Susu Zhang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong, 250000, PR China
| | - Gongshuai Wang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong, 250000, PR China
| | - Xiaoqi Wang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xuesen Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China.
| | - Zhiquan Mao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
6
|
Hao Q, Lyu X, Qin D, Du N, Wu S, Bai S, Chen Z, Wang P, Zhao X. Synergistic mechanisms of denitrification in FeS 2-based constructed wetlands: Effects of organic carbon availability under day-night alterations. BIORESOURCE TECHNOLOGY 2024; 406:131066. [PMID: 38969240 DOI: 10.1016/j.biortech.2024.131066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
In constructed wetlands (CWs), carbon source availability profoundly affected microbial metabolic activities engaged in both iron cycle and nitrogen metabolism. However, research gaps existed in understanding the biotransformation of nitrogen and iron in response to fluctuations in organic carbon content under day-night alterations. Results demonstrated increased removal efficiency of NO3--N (95.7 %) and NH4+-N (75.70 %) under light conditions, attributed to increased total organic carbon (TOC). This enhancement promoted the relative abundance of bacteria involved in nitrogen and iron processes, establishing a more stable microbial network. Elevated TOC content also upregulated genes for iron metabolism and glycolysis, facilitating denitrification. Spearman correlation analysis supported the synergistic mechanisms between FeS2-based autotrophic denitrification and TOC-mediated heterotrophic denitrification under light conditions. The significant impact of carbon sources on microbial activities underscores the critical role of organic carbon availability in enhancing nitrogen removal efficiency, providing valuable insights for optimizing FeS2-based CWs design and operation strategies.
Collapse
Affiliation(s)
- Qirui Hao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Lyu
- Beijing Aquatic Technology Extension Station, Beijing 100021, China
| | - Dongli Qin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ningning Du
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Song Wu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shuyan Bai
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Zhang X, Feng C, Wei D, Liu X, Luo W. Optimization of "sulfur-iron-nitrogen" cycle in constructed wetlands by adjusting siderite/sulfur (Fe/S) ratio. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121336. [PMID: 38850915 DOI: 10.1016/j.jenvman.2024.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Sulfur-siderite autotrophic denitrification (SSAD) has been proved to solve the key problem of low nitrogen removal efficiency caused by the shortage of carbon source in constructed wetlands (CWs). In this study, five vertical flow constructed wetlands (VFCWs) were constructed with different Fe/S ratios (0/0, 0/1, 1/1, 2/1 and 1/2) to optimizing SSAD process, labeled S.0, S.1, S.2, S.3 and S.4. The results showed that the best NO3--N and TN removal rates were achieved with a Fe/S ratio of 2:1 (S.3), which were 96.26 ± 1.40% and 93.63 ± 3.12%, respectively. The abundance of denitrification genes (nirS, nirK and nosZ) in S.3 was significantly increased. Illumina high-throughput sequencing analysis indicated that the abundance and diversity of microorganisms involved in the "Sulfur-Iron-Nitrogen" cycle were enriched in S.3. The current study provided that the "Sulfur-Iron-Nitrogen" cycle in CWs was optimized by adjusting Fe/S ratio, and more types of denitrifying bacteria could be enriched, thereby enhancing nitrogen removal.
Collapse
Affiliation(s)
- Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Dong Wei
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Xinlin Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Wancheng Luo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
8
|
Wang Z, Chen C, Xiong M, Tan J, Wu K, Liu H, Xing DF, Wang A, Ren N, Zhao L. Microbial interactions facilitating efficient methane driven denitrification via in-situ utilization of short chain fatty acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172901. [PMID: 38697549 DOI: 10.1016/j.scitotenv.2024.172901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
High nitrate pollution in agriculture and industry poses a challenge to emerging methane oxidation coupled denitrification. In this study, an efficient nitrate removal efficiency of 100 % was achieved at an influent loading rate of 400 mg-N/L·d, accompanied by the production of short chain fatty acids (SCFAs) with a maximum value of 80.9 mg/L. Batch tests confirmed that methane was initially converted to acetate, which then served as a carbon source for denitrification. Microbial community characterization revealed the dominance of heterotrophic denitrifiers, including Simplicispira (22.8 %), Stappia (4.9 %), and the high‑nitrogen-tolerant heterotrophic denitrifier Diaphorobacter (19.0 %), at the nitrate removal rate of 400 mg-N/L·d. Notably, the low abundance of methanotrophs ranging from 0.24 % to 3.75 % across all operational stages does not fully align with the abundance of pmoA genes, suggesting the presence of other functional microorganisms capable of methane oxidation and SCFAs production. These findings could facilitate highly efficient denitrification driven by methane and contributed to the development of denitrification using methane as an electron donor.
Collapse
Affiliation(s)
- Zihan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Minli Xiong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingyan Tan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kaikai Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liu
- School of Biopharmaceuticals, Heilongjiang Agricultural Engineering Vocational College, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Yang J, Ouyang L, Chen S, Zhang C, Zheng J, He S. Amendments affect the community assembly and co-occurrence network of microorganisms in Cd and Pb tailings of the Eucalyptus camaldulensis rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172365. [PMID: 38641118 DOI: 10.1016/j.scitotenv.2024.172365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.
Collapse
Affiliation(s)
- Jiaqi Yang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China.
| | - Shaoxiong Chen
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Cheng Zhang
- Experimental Forest Farm of Qingyuan County,Qingyuan 323800, China
| | - Jiaqi Zheng
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Shae He
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| |
Collapse
|
10
|
Ni Q, Chen Y, Lu L, Liu M. C4-HSL-mediated quorum sensing regulates nitrogen removal in activated sludge process at Low temperatures. ENVIRONMENTAL RESEARCH 2024; 244:117928. [PMID: 38128597 DOI: 10.1016/j.envres.2023.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The activated sludge process faces challenges in achieving adequate nitrification ability under low-temperature conditions. Therefore, we investigated the effects of different concentrations of exogenous N-butyryl-homoserine lactone (C4-HSL) on nitrogen removal in lab-scale sequencing batch reactors (SBRs) at 10 °C. The results revealed that both 10 and 100 μg/L of C4-HSL could improve NH4+-N removal efficiency by 26% and reduce the effluent TN concentration to below 15 mg/L. Analysis of extracellular polymeric substances (EPS) revealed that adding C4-HSL (especially 100 μg/L) reduced the protein-like substance content while increasing the humic and fulvic acid-like substance content in EPS. Protein-like substances could serve as carbon sources for denitrifiers, thus promoting denitrification. Moreover, exogenous C4-HSL increased the abundance of bacteria and genes associated with nitrification and denitrification. Further analysis of quorum sensing (QS) of microorganisms indicated that exogenous C4-HSL (especially 100 μg/L) promoted regulation, transportation, and decomposition functions in the QS process. Furthermore, CS, sdh, fum, and mdh gene expressions involved in the tricarboxylic acid (TCA) cycle were enhanced by 100 μg/L C4-HSL. Exogenous C4-HSL promoted microbial communication, microbial energy metabolism, and nitrogen metabolism, thereby improving the nitrogen removal efficiency of activated sludge systems at low temperatures. This study provides a feasible strategy for enhancing denitrogenation performance at low temperatures through exogenous C4-HSL.
Collapse
Affiliation(s)
- Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lanxin Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Xia Z, Ng HY, Xu D, Bae S. Lumen air pressure regulated multifunctional microbiotas in membrane-aerated biofilm reactors for simultaneous nitrogen removal and antibiotic elimination from aquaculture wastewater. WATER RESEARCH 2024; 251:121102. [PMID: 38198973 DOI: 10.1016/j.watres.2024.121102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
In this study, two membrane-aerated biofilm reactors (MABRs) were constructed: one solely utilizing biofilm and another hybrid MABR (HMABR) incorporating both suspended-sludge and biofilm to treat low C/N aquaculture wastewater under varying lumen air pressure (LAP). Both HMABR and MABR demonstrated superior nitrogen removal than conventional aeration reactors. Reducing LAP from 10 kPa to 2 kPa could enhance denitrification processes without severely compromising nitrification, resulting in an increase in total inorganic nitrogen (TIN) removal from 50.2±3.1 % to 71.6±1.0 %. The HMABR exhibited better denitrification efficacy than MABR, underscoring its potential for advanced nitrogen removal applications. A decline in LAP led to decreased extracellular polymeric substance (EPS) production, which could potentially augment reactor performance by minimizing mass transfer resistance while maintaining microbial matrix stability and function. Gene-centric metagenomics analysis revealed decreasing LAP impacted nitrogen metabolic potentials and electron flow pathways. The enrichment of napAB at higher LAP and the presence of complete ammonia oxidation (Comammox) Nitrospira at lower LAP indicated aerobic denitrification and Comammox processes in nitrogen removal. Multifunctional microbial communities developed under LAP regulation, diversifying the mechanisms for simultaneous nitrification-denitrification. Increased denitrifying gene pool (narGHI, nirK, norB) and enzymatic activity at a low LAP can amplify denitrification by promoting denitrifying genes and electron flow towards denitrifying enzymes. Sulfamethoxazole (SMX) was simultaneously removed with efficiency up to 80.2 ± 3.7 %, mainly via biodegradation, while antibiotic resistome and mobilome were propagated. Collectively, these findings could improve our understanding of nitrogen and antibiotic removal mechanisms under LAP regulation, offering valuable insights for the effective design and operation of MABR systems in aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Zhengang Xia
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - How Yong Ng
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| | - Dong Xu
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
12
|
Li L, Xiong S, Wang Q, Xue C, Xiao P, Qian G. Enhancement strategies of aerobic denitrification for efficient nitrogen removal from low carbon-to-nitrogen ratio shale oil wastewater. BIORESOURCE TECHNOLOGY 2023; 387:129663. [PMID: 37573980 DOI: 10.1016/j.biortech.2023.129663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The strategy of high reflux ratio and long solids retention time was adopted to realize efficient nitrogen removal from real shale oil wastewater. This was undertaken with a low chemical oxygen demand to total nitrogen (COD/TN) ratio by strengthening aerobic denitrification in an anoxic/aerobic membrane bioreactor (A/O-MBR). The TN removal load climbed from 22 to 25 g N/(kg MLSS·d) as the COD/TN ratio declined from 8 to 3. The abundance of heterotrophic nitrifying and aerobic denitrifying (HNAD) bacteria increased by 13.8 times to 42.5%, displacing anoxic denitrifying bacteria as the predominant bacteria. The abundance of genes involved in denitrification (napAB, narGHI, norBC, nosZ) increased, however the genes related to assimilatory nitrate reduction (nirA, narB, nasC) decreased. The capacity of the dominant HNAD bacteria in an A/O-MBR to efficiently utilize a carbon source is the key to efficient nitrogen removal from shale oil wastewater with a low COD/TN ratio.
Collapse
Affiliation(s)
- Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Shaojun Xiong
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; Centre for Regional Oceans, and Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Qichun Wang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Chenyao Xue
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ping Xiao
- Fushun Mining Group Co., Ltd., Fushun 113000, China
| | - Guangsheng Qian
- Centre for Regional Oceans, and Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
13
|
Chen X, Lin H, Dong Y, Li B, Liu C, Zhang L, Lu Y, Jin Q. Enhanced simultaneous removal of sulfamethoxazole and zinc (II) in the biochar-immobilized bioreactor: Performance, microbial structures and gene functions. CHEMOSPHERE 2023; 338:139466. [PMID: 37442390 DOI: 10.1016/j.chemosphere.2023.139466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Biochar-immobilized functional bacteria Bacillus SDB4 was applied for sulfamethoxazole (SMX) and zinc (Zn2+) simultaneous removal in the bioreactor. Under the optimal operating conditions of HRT of 10 h, pH of 7.0, SMX concentration of 10 mg L-1 and Zn2+ concentration of 50 mg L-1, the removal efficiencies of SMX and Zn2+ by the immobilized reactor (IR) were 97.42% and 96.14%, respectively, 20.39% and 30.15% higher than those by free bioreactor (FR). SEM-EDS and FTIR results revealed that the functional groups and light metals on the carrier promoted the biosorption and biotransformation of SMX and Zn2+ in IR. Moreover, the improvement of SMX and Zn2+ removal might be related to the abundance enhancement of functional bacteria and genes. Bacillus SDB4 responsible for SMX and Zn2+ removal was the main strain in IR and FR. Biochar increased the relative abundance of Bacillus from 32.12% in FR to 38.73% in IR and improved the abundances of functional genes (such as carbohydrate metabolism, replication and repair and membrane transport) by 1.82%-11.04%. The correlations among the physicochemical properties, microbial communities, functional genes and SMX-Zn2+ co-contaminant removal proposed new insights into the mechanisms of biochar enhanced microbial removal of antibiotics and heavy metals in biochar-immobilized bioreactors.
Collapse
Affiliation(s)
- Xi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Jin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Patil PK, Nagaraju VT, Baskaran V, Avunje S, Rameshbabu R, Ghate SD, Solanki HG. Development of microbial enrichments for simultaneous removal of sulfur and nitrogenous metabolites in saline water aquaculture. J Appl Microbiol 2023; 134:lxad173. [PMID: 37541958 DOI: 10.1093/jambio/lxad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
AIM The aim of the study was to develop microbial enrichments from the nitrifying microbial consortia and the environment for simultaneous removal of ammonia, nitrate, and sulfide in aquaculture systems at varied salinities. METHODS AND RESULTS Sulfur and nitrogen metabolites are the major factors affecting the farmed aquatic animal species and deteriorate the receiving environments causing ecological damage. The present study reports the development of microbial enrichments from the nitrifying microbial consortia and the environment. The enrichments used thiosulfate or thiocyanate as an energy source and simultaneously removed sulfur, ammonia, and nitrite in spiked medium (125 mg/l ammonia; 145 mg/l nitrite). Further, the microbes in the enrichments could grow up to 30 g/l salinity. Metagenomic studies revealed limited microbial diversity suggesting the enrichment of highly specialized taxa, and co-occurrence network analysis showed the formation of three micro-niches with multiple interactions at different taxonomic levels. CONCLUSIONS The ability of the enrichments to grow in both organic and inorganic medium and simultaneous removal of sulfide, ammonia, and nitrite under varied salinities suggests their potential application in sulfur, nitrogen, and organic matter-rich aquaculture pond environments and other industrial effluents.
Collapse
Affiliation(s)
- Prasanna Kumar Patil
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Vinay Tharabenahalli Nagaraju
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Viswanathan Baskaran
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Satheesha Avunje
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Rajesh Rameshbabu
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE (Deemed to be University), Mangalore-575022, India
| | - Haresh G Solanki
- College of Fisheries, Kamdhenu University, Gandhinagar-382010, India
| |
Collapse
|
15
|
Ju CJ, Niyazi S, Cao WY, Wang Q, Chen RP, Yu L. Characteristics and comparisons of the aerobic and anaerobic denitrification of a Klebsiella oxytoca strain: Performance, electron transfer pathway, and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117787. [PMID: 36965422 DOI: 10.1016/j.jenvman.2023.117787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
The performance and electron (e-) transfer mechanisms of anaerobic and aerobic denitrification by strain Klebsiella were investigated in this study. The RT-PCR results demonstrated that the membrane bound nitrate reductase gene (narG) and Cu-nitrite reductase gene (nirK) were responsible for both aerobic and anerobic denitrification. The extreme low gene relative abundance of nirK might be responsible for the severe accumulation of NO2--N (nitrogen in the form of NO2- ion) under anaerobic condition. Moreover, the nitrite reductase (Nir) activity was 0.31 μg NO2--N min-1 mg-1 protein under anaerobic conditions, which was lower than that under aerobic conditions (0.38 μg NO2--N min-1 mg-1 protein). By using respiration chain inhibitors, the e- transfer pathways of anaerobic and aerobic denitrification of Klebsiella strain were constructed. Fe-S protein and Complex III were the core components under anaerobic conditions, while Coenzyme Q (CoQ), Complexes I and III played a key role in aerobic denitrification. Nitrogen assimilation was found to be the main way to generate NH4+-N (nitrogen in the form of NH4+ ion) during anaerobic denitrification, and also served as the primary nitrogen removal way under aerobic condition. The results of this study may help to improve the understanding of the core components of strain Klebsiella during aerobic and anaerobic denitrifications, and may suggest potential applications of the strain for nitrogen-containing wastewater.
Collapse
Affiliation(s)
- Cheng-Jia Ju
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Shareen Niyazi
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen-Yin Cao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
16
|
Wang Q, Zhao Y, Chen Z, Zhang C, Jia X, Zhao M, Tong Y, Liu Y. Nitrate Bioreduction under Cr(VI) Stress: Crossroads of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449976 DOI: 10.1021/acs.est.2c09624] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
This study explored the response of NO3--N bioreduction to Cr(VI) stress, including reduction efficiency and the pathways involved (denitrification and dissimilatory nitrate reduction to ammonium (DNRA)). Different response patterns of NO3--N conversion were proposed under Cr(VI) suppress (0, 0.5, 5, 15, 30, 50, and 80 mg/L) by evaluating Cr(VI) dose dependence, toxicity accumulation, bioelectron behavior, and microbial community structure. Cr(VI) concentrations of >30 mg/L rapidly inhibited NO3--N removal and immediately induced DNRA. However, denitrification completely dominated the NO3--N reduction pathway at Cr(VI) concentrations of <15 mg/L. Therefore, 30 and 80 mg/L Cr(VI) (R4 and R6) were selected to explore the selection of the different NO3--N removal pathways. The pathway of NO3--N reduction at 30 mg/L Cr(VI) exhibited continuous adaptation, wherein the coexistence of denitrification (51.7%) and DNRA (13.6%) was achieved by regulating the distribution of denitrifiers (37.6%) and DNRA bacteria (32.8%). Comparatively, DNRA gradually replaced denitrification at 80 mg/L Cr(VI). The intracellular Cr(III) accumulation in R6 was 6.60-fold greater than in R4, causing more severe oxidant injury and cell death. The activated NO3--N reduction pathway depended on the value of nitrite reductase activity/nitrate reductase activity, with 0.84-1.08 associated with DNRA activation and 1.48-1.57 with DNRA predominance. Although Cr(VI) increased microbial community richness and improved community structure stability, the inhibition or death of nitrogen-reducing microorganisms caused by Cr(VI) decreased NO3--N reduction efficiency.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhihui Chen
- China Water Resources Bei Fang Investigation, Design & Research CO.LTD, Tianjin 300222, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
17
|
Daâssi D, Almaghrabi FQ. Petroleum-Degrading Fungal Isolates for the Treatment of Soil Microcosms. Microorganisms 2023; 11:1351. [PMID: 37317325 DOI: 10.3390/microorganisms11051351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
The main purpose of this study was to degrade total petroleum hydrocarbons (TPHs) from contaminated soil in batch microcosm reactors. Native soil fungi isolated from the same petroleum-polluted soil and ligninolytic fungal strains were screened and applied in the treatment of soil-contaminated microcosms in aerobic conditions. The bioaugmentation processes were carried out using selected hydrocarbonoclastic fungal strains in mono or co-cultures. Results demonstrated the petroleum-degrading potential of six fungal isolates, namely KBR1 and KBR8 (indigenous) and KBR1-1, KB4, KB2 and LB3 (exogenous). Based on the molecular and phylogenetic analysis, KBR1 and KB8 were identified as Aspergillus niger [MW699896] and tubingensis [MW699895], while KBR1-1, KB4, KB2 and LB3 were affiliated with the genera Syncephalastrum sp. [MZ817958], Paecilomyces formosus [MW699897], Fusarium chlamydosporum [MZ817957] and Coniochaeta sp. [MW699893], respectively. The highest rate of TPH degradation was recorded in soil microcosm treatments (SMT) after 60 days by inoculation with Paecilomyces formosus 97 ± 2.54%, followed by bioaugmentation with the native strain Aspergillus niger (92 ± 1.83%) and then by the fungal consortium (84 ± 2.21%). The statistical analysis of the results showed significant differences.
Collapse
Affiliation(s)
- Dalel Daâssi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, P.O. Box 34, Jeddah 21959, Saudi Arabia
| | - Fatimah Qabil Almaghrabi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, P.O. Box 34, Jeddah 21959, Saudi Arabia
| |
Collapse
|
18
|
Chen Z, Zuo Q, Liu C, Li L, Deliz Quiñones KY, He Q. Insights into solid phase denitrification in wastewater tertiary treatment: the role of solid carbon source in carbon biodegradation and heterotrophic denitrification. BIORESOURCE TECHNOLOGY 2023; 376:128838. [PMID: 36898568 DOI: 10.1016/j.biortech.2023.128838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The practical application of solid phase denitrification (SPD) was hindered by either poor water quality from natural plant-like materials or high cost of pure synthetic biodegradable polymers. In this study, by combining polycaprolactone (PCL) with new natural materials (peanut shell, sugarcane bagasse), two novel economical solid carbon sources (SCSs) named as PCL/PS and PCL/SB were developed. Pure PCL and PCL/TPS (PCL with thermal plastic starch) were supplied as controls. During the 162-day operation, especially in the shortest HRT (2 h), higher NO3--N removal was achieved by PCL/PS (87.60%±0.06%) and PCL/SB (87.93%±0.05%) compared to PCL (83.28%±0.07%) and PCL/TPS (81.83%±0.05%). The predicted abundance of functional enzymes revealed the potential metabolism pathways of major components of SCSs. The natural components entered the glycolytic cycle by enzymatical generation of intermediates, while biopolymers being converted into small molecule products under specific enzyme activities (i.e., carboxylesterase, aldehyde dehydrogenase), together providing electrons and energy for denitrification.
Collapse
Affiliation(s)
- Ziwei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Qingyang Zuo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| | - Lin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Katherine Y Deliz Quiñones
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
19
|
Wen X, Liang D, Hu Y, Zhu X, Wang G, Xie J. Performance and mechanism of simultaneous nitrification and denitrification in zeolite spheres internal loop airlift reactor. BIORESOURCE TECHNOLOGY 2023; 380:129073. [PMID: 37088431 DOI: 10.1016/j.biortech.2023.129073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
An internal loop airlift reactor was constructed with zeolite spheres as biofilm carriers (ZS-ALR), and the performance and mechanism of nitrogen removal were investigated. The results indicated that the TN, NH4+-N and TOC removal efficiencies of ZS-ALR reached 96.12%, 100% and 94.54% under appropriate conditions (HRT of 6-8 h, aeration rates of 80-120 mL/min, C/N ratios of 4-6), and the highest TN removal rate constant was 0.01156 min-1. Further investigating the influence of ammonia-N concentrations on nitrogen removal and biofilm stability revealed that catabolism was important in TN removal, and the prominent genera for nitrogen removal included Sphaerotilus (42.20%), Flavobacterium (17.47%) and Fusibacter (6.14%). Meanwhile, the abundance of amoA, napA, narG and nosZ genes was markedly influenced by ammonia-N concentrations. The nitrogen removal of ZS-ALR was mainly through ammonia-N adsorption by zeolite spheres and simultaneous nitrification and denitrification by biofilm.
Collapse
Affiliation(s)
- Xiaojing Wen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Xiaoqiang Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
20
|
Gao M, Dang H, Zou X, Yu N, Guo H, Yao Y, Liu Y. Deciphering the role of granular activated carbon (GAC) in anammox: Effects on microbial succession and communication. WATER RESEARCH 2023; 233:119753. [PMID: 36841162 DOI: 10.1016/j.watres.2023.119753] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) offered an energy-efficient option for nitrogen removal from wastewater. Granular activated carbon (GAC) addition has been reported that improved biomass immobilization, but the role of GAC in anammox reactors has not been sufficiently revealed. In this study, it was observed that GAC addition in an upflow anaerobic sludge blanket (UASB) reactor led to the significantly shortened anammox enrichment time (shortened by 45 days) than the reactor without GAC addition. The nitrogen removal rate was 0.83 kg N/m3/day versus 0.76 kg N/m3/day in GAC and non-GAC reactors, respectively after 255 days' operation. Acyl-homoserine lactone (AHL) quorum sensing signal molecule C8-HSL had comparable concentrations in both anammox reactors, whereas the signal molecule C12-HSL was more pervasive in the reactor containing GAC than the reactor without GAC. Microbial analysis revealed distinct anammox development in both reactors, with Candidatus Brocadia predominant in the reactor that did not contain GAC, and Candidatus Kuenenia predominant in the reactor that contained GAC. Denitrification bacteria likely supported anammox metabolism in both reactors. The analyses of microbial functions suggested that AHL-dependent quorum sensing was enhanced with the addition of GAC, and that GAC possibly augmented the extracellular electron transfer (EET)-dependent anammox reaction.
Collapse
Affiliation(s)
- Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongyu Dang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
21
|
Zhang H, Niu L, Ma B, Huang T, Liu T, Liu X, Liu X, Shi Y, Liu H, Li H, Yang W. Novel insights into aerobic denitrifying bacterial communities augmented denitrification capacity and mechanisms in lake waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161011. [PMID: 36549517 DOI: 10.1016/j.scitotenv.2022.161011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Scanty attention has been paid to augmenting the denitrification performance of polluted lake water by adding mix-cultured aerobic denitrifying bacterial communities (Mix-CADBCs). In this study, to solve the serious problem of nitrogen pollution in lake water bodies, aerobic denitrifying bacteria were added to lake water to enhance the nitrogen and carbon removal ability. Three Mix-CADBCs were isolated from lake water and they could remove >94 % of total nitrogen and dissolved organic carbon, respectively. The balance of nitrogen analysis shown that >70 % of the initial nitrogen was converted to gaseous nitrogen, and <11 % of the initial nitrogen was converted into microbial biomass. The batch experiments indicated that three Mix-CADBCs could perform denitrification under various conditions. According to the results of nirS-type sequencing, the Hydrogenophaga sp., Prosthecomicrobium sp., and Pseudomonas sp. were dominated genera of three Mix-CADBCs. The analysis of network indicated Pseudomonas I.Bh25.14 and Vogsella LIG4 were correlated with the removal of total nitrogen (TN) and dissolved organic carbon in the Mix-CADBCs. Compared with lake raw water, the addition of three Mix-CADBCs could promote the denitrification capacity (the removal efficiencies of TN > 78.72 %), microbial growth (optical density increased by 0.015-0.138 and the total cell count increased by 2 times), and organic degradation ability (the removal efficiency chemical oxygen demand >38 %) of lake water. In general, the findings of this study demonstrated that Mix-CADBCs could provide a new perspective for biological treatment lake water body.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Liu X, Zhang Q, Yang X, Wu D, Li Y, Di H. Isolation and characteristics of two heterotrophic nitrifying and aerobic denitrifying bacteria, Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6. ENVIRONMENTAL RESEARCH 2023; 220:115240. [PMID: 36621544 DOI: 10.1016/j.envres.2023.115240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In order to solve nitrogen pollution in environmental water, two heterotrophic nitrifying and aerobic denitrifying strains isolated from acid paddy soil were identified as Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6 respectively. Strain HNDS-1 and strain HNDS-6 exhibited amazing ability to nitrogen removal. When (NH4)2SO4, KNO3, NaNO2 were used as nitrogen resource respectively, the NH4+-N, NO3--N, NO2--N removal efficiencies of strain HNDS-1 were 93.31%, 89.47%, and 100% respectively, while those of strain HNDS-6 were 82.39%, 96.92%, and 100%. And both of them could remove mixed nitrogen effectively in low C/N (C/N = 5). Strain HNDS-1 could remove 76.86% NH4+-N and 75.13% NO3--N. And strain HNDS-6 can remove 65.07% NH4+-N and 78.21% NO3--N. A putative ammonia monooxygenase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein and nitric oxide reductase of strain HNDS-1, while hydroxylamine reductase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein, and nitric oxide reductase of strain HNDS-6 were identified by genomic analysis. DNA-SIP analysis showed that genes Nxr, narG, nirK, norB, nosZ were involved in nitrogen removal pathway, which indicates that the denitrification pathway of strain HNDS-1 and strain HNDS-6 was NO3-→NO2-→NO→N2O→N2 during NH4+-N removal process. And the nitrification pathway of strain HNDS-1 and strain HNDS-6 was NO2-→NO3-, but the nitrification pathway of NH4+→ NO2- needs further studies.
Collapse
Affiliation(s)
- Xiaoting Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaoyu Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Dan Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
23
|
Kong Z, Wang H, Yan G, Yan Q, Kim JR. Limited dissolved oxygen facilitated nitrogen removal at biocathode during the hydrogenotrophic denitrification process using bioelectrochemical system. BIORESOURCE TECHNOLOGY 2023; 372:128662. [PMID: 36693505 DOI: 10.1016/j.biortech.2023.128662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Effects of limited dissolved oxygen (DO) on hydrogenotrophic denitrification at biocathode was investigated using bioelectrochemical system. It was found that total nitrogen removal increased by 5.9%, as DO reached about 0.24 mg/L with the cathodic chamber unplugged (group R_Exposure). With the presence of limited DO, not only the nitrogen metabolic pathway was influenced, but the composition of microbial communities of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were enriched accordingly. After metagenomic analysis, enriched genes in R_Exposure were found to be associated with nearly each of nitrogen removal steps as denitrification, nitrification, DNRA, nitrate assimilation and even nitrogen fixation. Moreover, genes encoding both Complexes III and IV constituted the electron transfer chain were significantly enriched, indicating that more electrons would be orientated to the reduction of NO2--N, NO-N and oxygen. Therefore, enhanced nitrogen removal could be attained through the co-respiration of nitrate and oxygen by means of NH4+-N oxidation.
Collapse
Affiliation(s)
- Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guoliang Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing 100083, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| |
Collapse
|
24
|
Bian X, Wu Y, Li J, Yin M, Li D, Pei H, Chang S, Guo W. Effect of dissolved oxygen on high C/N wastewater treatment in moving bed biofilm reactors based on heterotrophic nitrification and aerobic denitrification: Nitrogen removal performance and potential mechanisms. BIORESOURCE TECHNOLOGY 2022; 365:128147. [PMID: 36265789 DOI: 10.1016/j.biortech.2022.128147] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In this study, it was investigated the nitrogen removal (NR) performance and potential mechanism for high C/N wastewater treatment under different dissolved oxygen (DO) concentrations. The results showed that DO concentration significantly affected the removal efficiency of total nitrogen (TN). When the initial DO increased from 0.5 to 1.5 mg/L, TN removal efficiency significantly increased from 65 % to 85 %. However, a further DO increase did not promote TN removal, and the NR was only 80 % with an initial DO concentration of 3.5 mg/L. The effect of DO concentration on NR was influenced by the combined action of functional bacteria and electron flow. Excessive DO concentration did not positively affect NR efficiency but promoted electron utilization and respiratory proliferation. When the DO concentration was 1.5 mg/L, more electrons generated by sodium acetate metabolism were transferred to the aerobic denitrification process, compared to when the DO concentration was 3.5 mg/L.
Collapse
Affiliation(s)
- Xueying Bian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Muchen Yin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Hanbo Pei
- China Light Industry International Engineering Co., Ltd., Beijing 100026, China
| | - Song Chang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
25
|
Li Y, Ling J, Xue J, Huang J, Zhou X, Wang F, Hou W, Zhao J, Xu Y. Acute stress of the typical disinfectant glutaraldehyde-didecyldimethylammonium bromide (GD) on sludge microecology in livestock wastewater treatment plants: Effect and its mechanisms. WATER RESEARCH 2022; 227:119342. [PMID: 36399842 DOI: 10.1016/j.watres.2022.119342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Glutaraldehyde and didecyldimethylammonium bromide (GD) is a disinfectant widely used to prevent African swine fever (ASF) in livestock farms. However, the effect of residual GD on the activated sludge microbial ecology of receiving wastewater treatment plants (WWTPs) remains largely unknown. In this study, seven simulated systems were established to research the effects of GD on WWTPs and reveal the underlying mechanisms of microecological responses to GD at different concentrations. Both the nitrogen and carbon removal rates decreased with increasing GD concentrations, and nitrogen metabolism was inhibited more obviously, but the inhibition weakened with increasing stress duration. Microorganisms activated their SoxRS systems to promote ATP synthesis and electron transfer to support the hydrolysis and efflux of GD by producing a small number of ROS when exposed to GD at less than 1 mg/L. The overproduction of ROS led to a decrease of antioxidant and nitrogen removal enzyme activities, and upregulation of the porin gene increased the risk of GD entering the intracellular space upon exposure to GD at concentrations higher than 1 mg/L. Some denitrifiers survived via resistance and their basic capabilities of sugar metabolism and nitrogen assimilation. Notably, low concentrations of disinfectants could promote vertical and horizontal transfer of multiple resistance genes, especially aminoglycosides, among microorganisms, which might increase not only the adaptation capability of denitrifiers but also the risk to ecological systems. Therefore, the risks of disinfectants targeting ASF on ecology and health as well as the effects of disinfectant residuals from the COVID-19 epidemic should receive more attention.
Collapse
Affiliation(s)
- Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiayin Ling
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Jinghao Xue
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junwei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Waner Hou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbin Zhao
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Han F, Li Z, Li Q, Liu Z, Han Y, Li Q, Zhou W. Cooperation of heterotrophic bacteria enables stronger resilience of halophilic assimilation biosystem than nitrification system under long-term stagnation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157806. [PMID: 35932852 DOI: 10.1016/j.scitotenv.2022.157806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Long-term stagnation of biosystems (with no or very little wastewater) owing to seasonal downtime or failure maintenance brings great challenges to the performance recovery after system restart. In particular, the reduction of microbial activity and change of dissolved organic matter (DOM) affect the effluent quality and subsequent treatment procedures. Monitoring the dynamics and resilience of biosystems after long-term stagnation is important to formulate targeted countermeasures for system stability. However, the influence of long-term stagnation on autotrophic nitrification (AN) and heterotrophic assimilation (HA) biosystems has not been systematically explored. Here, we used halophilic AN and HA systems to study the stability and resilience of two nitrogen removal consortia after long-term stagnation. The results showed that 97.5 % and 93 % of ammonium and 47.0 % and 90.1 % of total nitrogen were removed using the halophilic AN and HA systems, respectively, in the stable period. After four weeks of stagnation, the HA system showed stronger resilience than AN system, in terms of faster recovery of treatment performance, and less fluctuations in sludge settleability and extracellular polymeric substances. In addition, after the stagnation period, the DOM of AN system was rich in low-molecular refractory humic acid, whereas that of HA system was rich in high-molecular proteins. The stagnation period led to the replacement of the dominant heterotrophic functional microorganisms, Paracoccus and Halomonas, with Muricauda and Marinobacterium in the HA system. The microbial network results revealed that the cooperation of heterotrophic bacteria enables stronger resilience of the HA system from prolonged stagnation than the AN system. In addition, the nitrogen removal efficiency, protein to polysaccharide ratio of EPS and fluorescence intensity of DOM were significantly correlated with the microbial community composition. These results suggest that AN system has greater risks in terms of treatment performance and sludge stability than the system after long-term stagnation.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Zhe Li
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China
| | - Qinyang Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Zhe Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Yufei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
27
|
Li Z, Zhang Y, Hang Z, Lu M, Wang H, Gao X, Zhang R. A novel approach to estimate and control denitrification performance in activated sludge systems with respirogram technology. J Environ Sci (China) 2022; 121:112-121. [PMID: 35654502 DOI: 10.1016/j.jes.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/15/2023]
Abstract
Respirogram technology has been widely applied for aerobic process, however, the response of respirogram to anoxic denitrification is still unclear. To reveal such response may help to design a new method for the evaluation of the performance of denitrification. The size distribution of flocs measured at different denitrification moments demonstrated a clear expansion of flocs triggered by denitrification, during which higher specific endogenous and quasi-endogenous respiration rates (SOURe and SOURq) were also observed. Furthermore, SOURq increases exponentially with the specific denitrification rate (SDNR), suggesting that there should be a maximum SDNR in conventional activated sludge systems. Based on these findings, an index Rq/t, defined as the ratio of quasi-endogenous (OURq) to maximum respiration rate (OURt), is proposed to estimate the denitrification capacity that higher Rq/t indicates higher denitrification potential, which can be readily obtained without complex measurement or analysis, and it offers a novel and promising respirogram-based approach for denitrification estimation and control by taking measures to extend anoxic time to maintain its value at a high level within a certain range.
Collapse
Affiliation(s)
- Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yali Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyu Hang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiguang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xingdong Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruina Zhang
- Shanghai Environmental & Sanitary Engineering Design Institute Co. Ltd., Shanghai 200232, China
| |
Collapse
|
28
|
Puigserver D, Herrero J, Carmona JM. Nitrate removal by combining chemical and biostimulation approaches using micro-zero valent iron and lactic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156841. [PMID: 35750160 DOI: 10.1016/j.scitotenv.2022.156841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of nitrate is the most significant type of pollution affecting groundwater globally, being a major contributor to the poor condition of water bodies. This pollution is related to livestock-agricultural and urban activities, and the nitrate presence in drinking water has a clear impact on human health. For example, it causes the blue child syndrome. Moreover, the high nitrate content in aquifers and surface waters significantly affects aquatic ecosystems since it is responsible for the eutrophication of surface water bodies. A treatability test was performed in the laboratory to study the decrease of nitrate in the capture zone of water supply wells. For this purpose, two boreholes were drilled from which groundwater and sediments were collected to conduct the test. The goal was to demonstrate that nitrate in groundwater can be decreased much more efficiently using combined abiotic and biotic methods with micro-zero valent iron and biostimulation with lactic acid, respectively, than when both strategies are used separately. The broader implications of this goal derive from the fact that the separate use of these reagents decreases the efficiency of nitrate removal. Thus, while nitrate is removed using micro-valent iron, high concentrations of harmful ammonium are also generated. Furthermore, biostimulation alone leads to overgrowth of other microorganisms that do not result in denitrification, therefore complete denitrification requires more time to occur. In contrast, the combined strategy couples abiotic denitrification of nitrate with biostimulation of microorganisms capable of biotically transforming the abiotically generated harmful ammonium. The treatability test shows that the remediation strategy combining in situ chemical reduction using micro-zero valent iron and biostimulation with lactic acid could be a viable strategy for the creation of a reactive zone around supply wells located in regions where groundwater and porewater in low permeability layers are affected by diffuse nitrate contamination.
Collapse
Affiliation(s)
- Diana Puigserver
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - Jofre Herrero
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - José M Carmona
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| |
Collapse
|
29
|
Yan L, Zheng Y, Chen W, Liu S, Yin M, Jiang J, Yang M. Step feed mode synergistic mixed carbon source to improve sequencing batch reactor simultaneous nitrification and denitrification efficiency of domestic wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 358:127440. [PMID: 35680088 DOI: 10.1016/j.biortech.2022.127440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The limited efficiency of nitrogen removal has traditionally hindered wide application of simultaneous nitrification and denitrification (SND) technology. Here, the nitrogen removal characteristics of a sequencing batch reactor were studied by adopting a strategy of a step-feeding mode, synergistic regional oxygen limitation, and a mixed carbon source. The changes of the microbial population succession and nitrogen metabolism functional genes were analyzed. This strategy provided a favorable level of dissolved oxygen and continuous carbon sources for driving the denitrification process. The total nitrogen removal efficiency and SND rate reached 92.60% and 96.49%, respectively, by regulating the ratio of sodium acetate to starch in the step feed to 5:1. This procedure increased the relative abundance of denitrifying functional genes and induced the growth of a variety of traditional denitrifying bacteria and aerobic denitrifying bacteria participating in the process of nitrogen removal. Overall, this work offers a new strategy for achieving efficient SND.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Wanting Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
30
|
Liu L, Lu Y, Yuan J, Zhu H, Huang S, Yang B, Xiong J, Feng Z. Effects of chloramphenicol on denitrification in single-chamber microbial fuel cell: comprehensive performance and bacterial community structure. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Zhang M, Han F, Liu Z, Han Y, Li Y, Zhou W. Ammonium-assimilating microbiome: A halophilic biosystem rationally optimized by carbon to nitrogen ratios with stable nitrogen conversion and microbial structure. BIORESOURCE TECHNOLOGY 2022; 350:126911. [PMID: 35231594 DOI: 10.1016/j.biortech.2022.126911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The contradiction between theoretical metabolism of ammonium assimilation and experiential understanding of conventional biosystems makes the rational optimization of the ammonium-assimilating microbiome through carbon to nitrogen (C/N) ratios perplexing. The effect of different C/N ratios on ammonium-assimilating biosystems was investigated in saline wastewater treatment. C/N ratios significantly hindered the nutrient removal efficiency, but ammonium-assimilating biosystems maintained functional stability in nitrogen conversions and microbial communities. With sufficient biomass, higher than 86% ammonium and 73% phosphorus were removed when C/N ratios were higher than 25. Ammonium assimilation dominated the nitrogen metabolism in all biosystems even under relatively low C/N ratios, evidenced by the extremely low abundances of nitrification functional genes. Different C/N ratios did not significantly change the bacterial community structure of ammonium-assimilating biosystems. It is anticipated that the ammonium-assimilating biosystem with advantages of clear metabolic pathway and easy optimization can be applied to nutrient removal and recovery in saline environments.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Fei Han
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Zhe Liu
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Yufei Han
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Yuke Li
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, 250061 Jinan, China.
| |
Collapse
|
32
|
Zhang C, Liu S, Hussain S, Li L, Baiome BA, Xiao S, Cao H. Fe(II) Addition Drives Soil Bacterial Co-Ocurrence Patterns and Functions Mediated by Anaerobic and Chemoautotrophic Taxa. Microorganisms 2022; 10:microorganisms10030547. [PMID: 35336122 PMCID: PMC8950066 DOI: 10.3390/microorganisms10030547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Iron is among the most abundant elements in the soil of paddy fields, and its valence state and partitioning can be transformed by flooding and drainage alternations. However, little is known about the function of soil microbes that interact with Fe(II). In this study, sandy and loamy soils originating from rice fields were treated with Fe(II) at low and high concentrations. The findings demonstrate that additional Fe(II) has various effects on the soil’s microbial community structure and metabolic pathways. We conclude that Fe(II) at high concentrations reduced bacterial abundance and diversity in two textured paddy soils, yet the abundance in loamy soils was higher than it was in sandy soil. Additionally, in environments with high Fe(II) levels, the relative abundance of both anaerobic and chemoautotrophic bacteria increased. The Fe(II) concentration was positively correlated with total reduced substances but negatively correlated with redox potential and pH. Co-occurrence networks revealed that Fe(II) significantly promoted interactions with the most anaerobic and chemoautotrophic bacteria. In addition, adding Fe(II) greatly increased the number of more complex bacterial networks, and an increase in the number of mutually beneficial taxa occurred. We found that Fe(II) promoted the methane pathway, the Calvin cycle, and nitrate reduction to small but significant extents. These pathways involve the growth and interrelation of autotrophic and anaerobic bacteria. These results suggest that changes in the bacterial community structure occur in many dry–wet alternating environments.
Collapse
Affiliation(s)
- Chenyang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
| | - Senlin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
- Wellington Research Group, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Sarfraz Hussain
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
| | - Lifeng Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
| | - Baiome Abdelmaguid Baiome
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
| | - Shuiqing Xiao
- School of Intercultural Studies, Jiangxi Normal University, Nanchang 330022, China;
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
- Correspondence: ; Tel./Fax: +86-025-8439-6753
| |
Collapse
|
33
|
Zhang K, Li M, Yan Z, Li M, Kang E, Yan L, Zhang X, Li Y, Wang J, Yang A, Niu Y, Kang X. Changes in precipitation regime lead to acceleration of the N cycle and dramatic N 2O emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152140. [PMID: 34864035 DOI: 10.1016/j.scitotenv.2021.152140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Alpine meadows on the Qinghai-Tibetan Plateau are sensitive to climate change. The precipitation regime in this region has undergone major changes, "repackaging" precipitation from more frequent, smaller events to less frequent, larger events. Nitrous oxide (N2O) is an important indicator of responses to global change in alpine meadow ecosystems. However, little information is available describing the mechanisms driving the response of N2O emissions to changes in the precipitation regime. In this study, a manipulative field experiment was conducted to investigate N2O flux, soil properties, enzyme activity, and gene abundance in response to severe and moderate changes in precipitation regime over two years. Severe changes in precipitation regime led to a 12.6-fold increase in N2O fluxes (0.0068 ± 0.0018 mg m-2 h-1) from Zoige alpine meadows relative to natural conditions (0.0005 ± 0.0029 mg m-2 h-1). In addition, severe changes in precipitation regime significantly suppressed the activities of leucine amino peptidase (LAP) and peroxidase (PEO), affected ecoenzymatic stoichiometry, and increased the abundances of gdhA, narI and nirK genes, which significantly promoted organic nitrogen (N) decomposition, denitrification, and anammox processes. The increase in abundance of these genes could be ascribed to changes in the abundance of several dominant bacterial taxa (i.e., Actinobacteria and Proteobacteria) as a result of the altered precipitation regime. Decreases in nitrate and soil moisture caused by severe changes in precipitation may exacerbate N limitation and water deficit, lead to a suppression of soil enzyme activity, and change the structure of microorganism community. The N cycle of the alpine meadow ecosystem may accelerate by increasing the abundance of key N functional genes. This would, in turn, lead to increased N2O emission. This study provided insights into how precipitation regimes changes affect N cycling, and may also improve prediction of N2O fluxes in response to changes in precipitation regime.
Collapse
Affiliation(s)
- Kerou Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongqing Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Meng Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Enze Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Liang Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaodong Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yong Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Jinzhi Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Ao Yang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yuechuan Niu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China.
| |
Collapse
|
34
|
Liu X, Sun R, Hu S, Zhong Y, Wu Y. Aromatic compounds releases aroused by sediment resuspension alter nitrate transformation rates and pathways during aerobic-anoxic transition. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127365. [PMID: 34879562 DOI: 10.1016/j.jhazmat.2021.127365] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Aromatic compounds (ACs) releases aroused by sediment resuspension would certainly change the concentrations of suspended sediment (SPS) and organic carbon, which may alter nitrate-N transformation during aerobic-anoxic transition. To prove this, three typical ACs (aniline, nitrobenzene, and methylbenzene) with different octanol-water partition coefficients (Kow) were selected to investigate the effects of ACs releases aroused by sediment resuspension on nitrate-N transformation during aerobic-anoxic transition. ACs releases aroused by sediment resuspension accelerated nitrate-N transformation and enhanced the potential for dissimilatory nitrate reduction to ammonium (DNRA), compared to that without sediment resuspension. With sediment resuspension, methylbenzene releases affected nitrate-N transformation rates and pathways more significantly than aniline and nitrobenzene releases. Microbial analysis indicated that sediment resuspension created complicated microbial co-occurrence networks and changed the associations among bacteria; dominant bacteria abundance varied with different ACs releases. Further analysis revealed that ACs distributed in SPS, which increased with logKow, indirectly affected nitrate-N transformation rates and pathways via altering dominant bacteria abundance and electron transport system activity (ETSA). Especially, ETSA, which was positively associated with ACs distributed in SPS, affected nitrate-N transformation most directly. Overall, ACs release fate played important roles in nitrate-N transformation, causing ammonia-N retention and alterations in nitrogen cycle during aerobic-anoxic transition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ran Sun
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sihai Hu
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yangquanwei Zhong
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yaoguo Wu
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|
35
|
Changes in Wastewater Treatment Performance and the Microbial Community during the Bioaugmentation of a Denitrifying Pseudomonas Strain in the Low Carbon–Nitrogen Ratio Sequencing Batch Reactor. WATER 2022. [DOI: 10.3390/w14040540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The low carbon–nitrogen ratio (C/N) of influent wastewater results in the insufficient carbon source for the process of denitrification in urban wastewater treatment plants (WWTPs). A denitrifying bacterial strain, Pseudomonas sp. JMSTP, was isolated and demonstrated effective denitrification ability under a low C/N ratio of 1.5–4 (w/w) in anoxic conditions. Sequencing batch reactor (SBR) studies were conducted to test the bioaugmentation of JMSTP on total nitrogen (TN) removal under the influent COD/N ratio of 3/1. After the second bioaugmentation, the TN of effluent in the bioaugmented SBR was significantly lower than that in the control SBR. Redundancy analysis results showed that there was a positive correlation between Pseudomonas sp. abundance and TN removal in the bioaugmented SBR. Microbial community analysis showed that, especially after the second bioaugmentation, the abundance of Pseudomonas sp. decreased rapidly, but it was still much higher than that in the control SBR. Correlation network analysis showed that after the addition, Pseudomonas sp. had no significant co-occurrence relationship with other native bacteria, owing to the quick increase and decrease. Our results suggest that JMSTP shows the potential to enhance TN removal through bioaugmentation. Since the effect of bioaugmentation gradually diminishes, further research is still needed to investigate its long-lasting applications.
Collapse
|
36
|
Hu Y, Liu T, Chen N, Feng C. Changes in microbial community diversity, composition, and functions upon nitrate and Cr(VI) contaminated groundwater. CHEMOSPHERE 2022; 288:132476. [PMID: 34634272 DOI: 10.1016/j.chemosphere.2021.132476] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/12/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
With the increasing occurrences of nitrate and Cr(VI) pollution globally, microbially driven pollutant reduction and its interaction effects were of growing interest. Despite the increasing number of experimental reports on the simultaneous reduction of nitrate and Cr(VI), a broad picture of the keystone species and metabolic differences in this process remained elusive. This study explored the changing of microorganisms with the introduction of Cr(VI)/NO3- through analyzing 242 samples from the NCBI database. The correlation between microbial abundance and environmental factors showed that, the types of energy substances and pollutants species in the environment had an impact on the diversity of microorganisms and community structure. The genus of Zoogloea, Candidatus Accumulibacter, and Candidatus Kapabacteria sp. 59-99 had the ability of denitrification, while genus of Alcaligenes, Kerstersia, Petrimonas, and Leucobacter showed effectively Cr(VI) resistance and reducing ability. Azoarcus, Pseudomonas, and Thauera were recognized as important candidates in the simultaneous reduction of nitrate and Cr(VI). Metagenomic predictions of these microorganisms using PICRUSt2 further highlighted the enrichment of Cr(VI)and nitrate reduction-related genes (such as chrA and norC). Special attention should therefore be paid to these bacteria in subsequent studies to evaluate their performance and mechanisms involved in simultaneous denitrification and chromium removal. The microbial co-occurrence network analysis conducted on this basis emphasized a strong association between community collaboration and pollution removal. Collectively, either site surveys or laboratory experiments, subsequent studies should focus on these microbial populations and the interspecific collaborations as they strongly influence the occurrence of simultaneous nitrate and Cr(VI) reduction.
Collapse
Affiliation(s)
- Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
37
|
Cheng Y, Li JY, Ren X, Li Y, Kou YY, Chon K, Hwang MH, Ko MH. High efficiency of simultaneous nitrification, denitrification, and organics removal in the real-scale treatment of high C/N ratio food-processing wastewater using micro-aerobic reactors. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Wang M, An Y, Huang J, Sun X, Yang A, Zhou Z. Elucidating the intensifying effect of introducing influent to an anaerobic side-stream reactor on sludge reduction of the coupled membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 342:125931. [PMID: 34560436 DOI: 10.1016/j.biortech.2021.125931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Three anoxic/oxic membrane bioreactors (AO-MBRs) coupled with the anaerobic side-stream reactor (ASSR) with different influent flow distribution ratios (IFDRs) were assessed to elucidate how IFDR in the ASSR affected pollutants removal, sludge reduction, membrane fouling, and potential co-occurrence network of microorganisms. When the IFDR in the ASSR was increased from 0% (ASSR0-MBR), to 25% (ASSR25-MBR) and 75% (ASSR75-MBR), chemical oxygen demand removal was enhanced and nutrient removal was comparable. Compared to ASSR0-MBR, ASSR25- and ASSR75-MBR further improved the sludge reduction by 7.6% and 10.9%, respectively. ASSR25-MBR followed cake-complete model due to the weak membrane surface scouring and high concentration of extracellular polymeric substances, while ASSR0- and ASSR75-MBR fitted cake-standard model. The increased IFDR in the ASSR boosted the relative abundance of hydrolytic and slow-growing bacteria. The co-occurrence networks of sludge reduction, nutrient removal and membrane fouling propensity indicated that the symbiotic relationships were dominant.
Collapse
Affiliation(s)
- Mengyu Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Jing Huang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiao Sun
- Shanghai Fudan Water Engineering Technology Co., Ltd, Shanghai 200433, China
| | - Aming Yang
- Shanghai Fudan Water Engineering Technology Co., Ltd, Shanghai 200433, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
39
|
Yuan H, Yuan J, You Y, Zhang B, Wu Y, Huang S, Zhang Y. Simultaneous ammonium and sulfate biotransformation driven by aeration: Nitrogen/sulfur metabolism and metagenome-based microbial ecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148650. [PMID: 34198081 DOI: 10.1016/j.scitotenv.2021.148650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to clarify the effect of oxygen respiration on biotransformation of alternative electron acceptors (e.g., nitrate and sulfate) underlying the simultaneous removal of ammonium and sulfate in a single aerated sequencing batch reactor. Complete nitrification was achieved in feast condition, while denitrification was carried out in both feast and famine conditions when aeration intensity (AI) was higher than 0.22 L/(L·min). Reactors R1 [0.56 L/(L·min)], R2 [0.22 L/(L·min)], and R3 [0.08 L/(L·min)] achieved 72.39% sulfate removal efficiency in feast condition, but H2S release occurred in R3. Following exogenous substrate depletion, sulfate concentration increased again and exceeded the influent value in R1, indicating that sulfate transformation was affected by oxygen intrusion. Metagenomic analysis showed that a higher AI promoted sulfate reduction by switching from dissimilatory to assimilatory pathway. Lower AI-acclimated microorganisms (R3) produced H2S and ammonium, while higher AI-acclimated microorganisms (R1) accumulated nitrite, which confirmed that biotransformation of N and S was strongly regulated by redox imbalance driven by aeration. This implied that respiration control, a microbial self-regulation mechanism, was linked to the dynamic imbalance between electron donors and electron acceptors. Aerobic nitrate (sulfate) reduction, as one of the effects of respiration control, could be used as an alternative strategy to compensate for dynamic imbalance, when supported by efficient endogenous metabolism. Moderate aeration induced microorganisms to change their energy conservation and survival strategy through respiration control and inter-genus protection of respiratory activity among keystone taxa (including Azoarcus in R1, Thauera in R2, and Thiobacillus, Ottowia, and Geoalkalibacter in R3) to form an optimal niche in response to oxygen intrusion and achieve benign biotransformation of C, N, and S without toxic intermediate accumulation. This study clarified the biotransformation mechanism of ammonium and sulfate driven by aeration and provided theoretical guidance for optimizing existing aeration-based techniques.
Collapse
Affiliation(s)
- Haiguang Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Jianqi Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yingying You
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Biaojun Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yixiao Wu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, PR China.
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| |
Collapse
|
40
|
Liu X, Hu S, Sun R, Wu Y, Qiao Z, Wang S, Zhang Z, Cui C. Dissolved oxygen disturbs nitrate transformation by modifying microbial community, co-occurrence networks, and functional genes during aerobic-anoxic transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148245. [PMID: 34380284 DOI: 10.1016/j.scitotenv.2021.148245] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 05/23/2023]
Abstract
No consensus has been achieved among researchers on the effect of dissolved oxygen (DO) on nitrate (NO3--N) transformation and the microbial community, especially during aerobic-anoxic transition. To supplement this knowledge, NO3--N transformation, microbial communities, co-occurrence networks, and functional genes were investigated during aerobic-anoxic transition via microcosm simulation. NO3--N transformation rate in the early stage (DO ≥2 mg/L) was always significantly higher than that in the later stage (DO <2 mg/L) during aerobic-anoxic transition, and NO2--N accumulation was more significant during the anoxic stage, consistent with the result obtained under constant DO conditions. These NO3--N transformation characteristics were not affected by other environmental factors, indicating the important role of DO in NO3--N transformation during aerobic-anoxic transition. Changes in DO provoked significant alterations in microbial diversity and abundance of functional bacteria dominated by Massilia, Bacillus, and Pseudomonas, leading to the variation in NO3--N transformation. Co-occurrence network analysis revealed that NO3--N transformation was performed by the interactions between functional bacteria including symbiotic and competitive relationship. In the presence of oxygen, these interactions accelerated the NO3--N transformation rate, and bacterial metabolization proceeded via increasingly varied pathways including aerobic and anoxic respiration, which was demonstrated through predicted genes. The higher relative abundance of genes narG, narH, and napA suggested the occurrence of coupled aerobic-anoxic denitrification in the early stage. NO3--N transformation rate decreased accompanied by a significant NO2--N accumulation with the weakening of coupled aerobic-anoxic denitrification during aerobic-anoxic transition. Structural equation modeling further demonstrated the relationship between DO and NO3--N transformation. DO affects NO3--N transformation by modifying microbial community, bacterial co-occurrence, and functional genes during aerobic-anoxic transition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zixia Qiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sichang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zehong Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chuwen Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
41
|
Saraiva JP, Worrich A, Karakoç C, Kallies R, Chatzinotas A, Centler F, Nunes da Rocha U. Mining Synergistic Microbial Interactions: A Roadmap on How to Integrate Multi-Omics Data. Microorganisms 2021; 9:microorganisms9040840. [PMID: 33920040 PMCID: PMC8070991 DOI: 10.3390/microorganisms9040840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Mining interspecies interactions remain a challenge due to the complex nature of microbial communities and the need for computational power to handle big data. Our meta-analysis indicates that genetic potential alone does not resolve all issues involving mining of microbial interactions. Nevertheless, it can be used as the starting point to infer synergistic interspecies interactions and to limit the search space (i.e., number of species and metabolic reactions) to a manageable size. A reduced search space decreases the number of additional experiments necessary to validate the inferred putative interactions. As validation experiments, we examine how multi-omics and state of the art imaging techniques may further improve our understanding of species interactions’ role in ecosystem processes. Finally, we analyze pros and cons from the current methods to infer microbial interactions from genetic potential and propose a new theoretical framework based on: (i) genomic information of key members of a community; (ii) information of ecosystem processes involved with a specific hypothesis or research question; (iii) the ability to identify putative species’ contributions to ecosystem processes of interest; and, (iv) validation of putative microbial interactions through integration of other data sources.
Collapse
Affiliation(s)
- Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Rene Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- Correspondence:
| |
Collapse
|