1
|
Harrison JC, Morgan GV, Kuppravalli A, Novak N, Farrell M, Bircher S, Garner E, Ashbolt NJ, Pruden A, Muenich RL, Boyer TH, Williams C, Ahmed W, Maal-Bared R, Hamilton KA. Determinants of antimicrobial resistance in biosolids: A systematic review, database, and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177455. [PMID: 39577596 DOI: 10.1016/j.scitotenv.2024.177455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Biosolids can provide a nutrient rich soil amendment, particularly for poor soils and semi-arid or drought-prone areas. However, there are concerns that sludge and biosolids could be a source of propagation and exposure to AMR determinants such as antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). To inform risk assessment efforts, a systematic literature review was performed to build a comprehensive spreadsheet database of ARB and ARG concentrations in biosolids (and some sludges specified as intended for land application), along with 69 other quantitative and qualitative meta-data fields from 68 published studies describing sampling information and processing methods that can be used for modeling purposes. Mean ARG concentrations per gram in positive samples of biosolids ranged from -5.7 log10(gene copies [gc]/g) to 12.92 log10(gc/g) (with these range values reported per dry weight), and aqueous concentrations ranged from 0.9 log10(gc/L) to 14.6 log10(gc/L). Mean ARB concentrations per gram of biosolids ranged from 2.02 log10 (colony forming units [CFU]/g) to 9.00 log10 (CFU/g) (dry weight), and aqueous concentrations ranged from 3.23 log10 (CFU/L) to 12.0 log10 (CFU/L). ARG log removal values (LRVs) during sewage sludge stabilization were calculated from a meta-analysis of mean concentrations before and after stabilization from 31 studies, ranging from -2.05 to 5.52 logs. The classes of resistance most relevant for a risk assessment corresponded to sulfonamide (sul1 and sul2), tetracycline (tetZ, tetX, tetA and tetG), beta-lactam (blaTEM), macrolide (ermB and ermF), aminoglycoside (strA and aac(6')-Ib-cr), and integron-associated (intI1). The resistance classes most relevant for ARB risk assessment included sulfonamides (sulfamethoxazole and sulfamethazine), cephalosporin (cephalothin and cefoxitin), penicillin (ampicillin), and ciprofloxin (ciprofloxacin). Considerations for exposure assessment are discussed to highlight risk assessment needs relating to antimicrobial resistance (AMR) associated with biosolids application. This study aids in prioritization of resources for reducing the spread of AMR within a One Health framework.
Collapse
Affiliation(s)
- Joanna Ciol Harrison
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Grace V Morgan
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Aditya Kuppravalli
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | | | - Michael Farrell
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Sienna Bircher
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Nicholas J Ashbolt
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food and Environments (CRC SAAFE), Mawson Lakes, SA 5095, Australia
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rebecca L Muenich
- Biological and Agricultural Engineering, University of Arkansas, 790 W. Dickson St., Fayetteville, AR 72701, USA
| | - Treavor H Boyer
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Clinton Williams
- US Department of Agriculture Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
2
|
Li X, Cai S, Xu M. Nanoscale zero-valent iron alleviated horizontal transfer of antibiotic resistance genes in soil: The important role of extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135902. [PMID: 39303615 DOI: 10.1016/j.jhazmat.2024.135902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Extracellular polymeric substances (EPS) are tightly related to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), but often neglected in soil. In this study, nanoscale zero-valent iron (nZVI) was utilized for attenuation of ARGs in contaminated soil, with an emphasis on its effects on EPS secretion and HGT. Results showed during soil microbe cultivation exposed to tetracycline, more EPS was secreted and significant increase of tet was observed due to facilitated HGT. Notably, copies of EPS-tet accounted for 71.39 % of the total tet, implying vital effects of EPS on ARGs proliferation. When co-exposed to nZVI, EPS secretion was decreased by 38.36-71.46 %, for that nZVI could alleviate the microbial oxidative stress exerted by tetracycline resulting in downregulation of genes expression related to the c-di-GMP signaling system. Meanwhile, the abundance of EPS-tet was obviously reduced from 7.04 to 5.12-6.47 log unit, directly causing decrease of total tet from 7.19 to 5.68-6.69 log unit. For the reduced tet, it was mainly due to decreased EPS secretion induced by nZVI resulting in inhibition of HGT especially transformation of the EPS-tet. This work gives an inspiration for attenuation of ARGs dissemination in soil through an EPS regulation strategy.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shujie Cai
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.
| |
Collapse
|
3
|
Ezzariai A, Jimenez J, Barret M, Riboul D, Lacroix MZ, Fels LE, Kouisni L, Bousquet-Melou A, Pinelli E, Hafidi M, Patureau D. Potentialities of semi-continuous anaerobic digestion for mitigating antibiotics in sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66067-66078. [PMID: 39613995 DOI: 10.1007/s11356-024-35664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
The behavior and removal of roxithromycin (ROX), oxytetracycline (OTC), chlortetracycline (CTC), and enrofloxacin (ENR) were investigated during the steady state of sludge anaerobic digestion (AD) in semi-continuous mode (37 °C). Sludge was spiked at realistic concentrations (50 μg/L of each antibiotic) and then used to feed the bioreactor for 80 days. Antibiotics were extracted from the substrate and digested sludge samples by accelerated solvent extraction (ASE). Accurate determination of antibiotics was obtained by the standard addition method (SAM) associated with the liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of antibiotics at a concentration of 2.5 μg/g TS had no inhibitory effects on methane (CH4) production, total and volatile solids (TS and VS) removal as well as chemical oxygen demand (COD) removal. During the steady-state, antibiotics were removed significantly by 50, 100, and 59% respectively for the ROX, OTC, and CTC. Furthermore, ENR removal was not statistically significant and was estimated at 36%. This study highlighted that AD process could partially remove parent compounds, but ROX, CTC, and ENR persisted in the digested sludge. Hence, AD could be considered as a sludge treatment for mitigating, but not suppressing, the release of antibiotics through sludge application.
Collapse
Affiliation(s)
- Amine Ezzariai
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France.
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco.
| | - Julie Jimenez
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - David Riboul
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | | | - Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMagE), Labelled Research Unit CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | | | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - Mohamed Hafidi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMagE), Labelled Research Unit CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Dominique Patureau
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France
| |
Collapse
|
4
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
5
|
Pourrostami Niavol K, Bordoloi A, Suri R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41745-41774. [PMID: 38853230 PMCID: PMC11219439 DOI: 10.1007/s11356-024-33844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
6
|
Tang L, Pan Z, Li X, Li J, Meng J. Antibiotics resistance removal from piggery wastewater by an integrated anaerobic-aerobic biofilm reactor: Efficiency and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167031. [PMID: 37714352 DOI: 10.1016/j.scitotenv.2023.167031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Antibiotic resistance residual in piggery wastewater poses serious threat to environment and human health. Biological treatment process is commonly installed to remove nutrient from piggery wastewater and also effective in removing antibiotics to varying degrees. But the specific pathways and mechanisms involved in the removal of antibiotic resistance are not yet well-understood. An integrated anaerobic-aerobic biofilm reactor (IAOBR) has been demonstrated efficient in removing conventional nutrients. It is here shown that the IAOBR effectively removed 79.0% of Sulfonamides, 55.7% of Tetracyclines and 53.6% of Quinones. Antibiotic resistance bacteria (ARB) were simultaneously inactivated by ~0.5 logs. Antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were decreased by 0.51 logs and 0.42 logs, respectively. The antibiotics were mainly removed through aerobic compartments of the IAOBR. The mass loss of antibiotics in the reactor was achieved by biodegradation and adsorption, accounting for 52.1% and 47.9%, respectively. An obvious accumulation of ARGs was observed in the activated sludge. The potential host of ARGs was analyzed via microbial community and network. Partial least squares-structural equation model and correlation analysis revealed that the enrichment of ARGs was positively affected by MGEs, followed by bacterial community and ARBs, but the effect of antibiotics on ARGs was negative. Outcomes of this study provide valuable insights into the mechanisms of antibiotic resistance removal in biological treatment processes.
Collapse
Affiliation(s)
- Lianggang Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhen Pan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Hu M, Liu X, Liu S, Ya T, Zhang M, Zhang T, Gao X, Wang X. Responses of microbial interactions and functional genes to sulfamethoxazole in anammox consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119408. [PMID: 37879180 DOI: 10.1016/j.jenvman.2023.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Sulfamethoxazole (SMX) has been widely detected in various environments and its potential environmental risks have caused great concerns. However, the impact mechanism of SMX on microbial interactions among anammox consortia remain unknown. A long-term exposure experiments (140 d) was carried out to systematically examine the influence of SMX (0-1000 μg/L) on the anammox system, especially microbial network dynamics and variations of key metabolic genes. Results showed that anammox system could adapt to SMX below 500 μg/L and maintain a high nitrogen removal efficiency (NRE) of 85.35 ± 2.42%, while 1000 μg/L SMX significantly decreased the abundance of functional microbes and deteriorated denitrification performance with NRE dropped to 36.92 ± 15.01%. Co-occurrence network analysis indicated that 1000 μg/L SMX decreased the interactions between Proteobacteria and Chloroflexi and limited AnAOB from playing an important role as central nodes in the subnetwork of Planctomycetes. Metagenomics analysis found that genes associated with nitrogen removal (i.e., hdh, hzs, nirS, and hao) showed lower expression level after addition of SMX, while SMX-related ARGs (sul1 and sul2) increased by 1.22 and 2.68 times. This study provided us a relatively comprehensive perspective in response of microbial interactions and metabolic activity to various SMX concentrations.
Collapse
Affiliation(s)
- Meina Hu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaojing Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shidi Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Fuzhou Planning Design Research Institute, Fuzhou, 350108, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoping Gao
- Fuzhou Planning Design Research Institute, Fuzhou, 350108, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Zhou H, Xu X, Wangjin Y, Ye M, Wu T, Wang Z, Cui J. Degradation of sulfamethoxazole and antibiotic resistance genes from surface water in the photocatalyst-loading bionic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165045. [PMID: 37355126 DOI: 10.1016/j.scitotenv.2023.165045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
The behavior and removal of sulfamethoxazole (SMX) and 3 typical corresponding antibiotic resistance genes (ARGs) including sul1, sul2, sul3, and 16S rDNA in surface water were investigated in the photocatalyst-loading bionic ecosystems (PCBEs). Synthesized composite photocatalyst g-C3N4/TiO2 showing higher catalytic activity than Fe/g-C3N4/TiO2 was selected in the PCBEs. Five PCBEs, i.e., A-the control (without bionic grass or photocatalyst), B-bionic grass loaded with 4.12 g/m2 g-C3N4/TiO2, C-bionic grass loaded with 8.25 g/m2 g-C3N4/TiO2, D-bionic grass loaded with 12.37 g/m2 g-C3N4/TiO2, and E-bionic grass loaded with 16.5 g/m2 g-C3N4/TiO2 were constructed and operated in a medium-scale running cyclical flume. SMX could be photolyzed efficiently by g-C3N4/TiO2 with an optimal unit load on the bionic grass of 12.37 g/m2. 3-amino-5-methylisooxazole and p-aminobenzene sulfonamide were selected as main intermediates through the analyses of SMX degradation mechanisms and pathways, and detected in the aqueous phase and bionic grass. The intermediates were higher in the underwater part of the bionic grass than the above-water part. The overall removal of SMX ranged from 31.7 % to 82.3 % in 5 PCBEs, and the removal of sul1and sul2 were 0.2 %- 62.9 % in the aqueous phase and 8.4 %-63.2 % in the sediment. PCBE D might be the best construction when SMX and ARGs' removal was considered comprehensively. Moreover, the microbial structures showed Proteobacteria as the most dominant bacterial species had a relative abundance of 22.2 %-26.6 % and 33.4 %-68.2 % in the aquatic phase and sediment respectively, illustrating that the removal of the antibiotic and ARGs was bound up with the variations of dominant bacteria in the ecosystems. The findings illustrated that ecosystems with bionic grass and photocatalysts could be a promising technology for the removal of typical antibiotics and ARGs from surface water.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xinxuan Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yadan Wangjin
- School of Communication and Information Engineering, Shanghai Technical Institute of Electronics Information, Shanghai, China
| | - Mixuan Ye
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianyu Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zuxin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinyu Cui
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
9
|
Hosseini M, Ahmed Hamad M, Mohseni G, Salamy S, Dehghan Tarzjani S, Taati Moghadam M. Prediction of tsunami of resistance to some antibiotics is not far-fetched which used during COVID-19 pandemic. J Clin Lab Anal 2023; 37:e24959. [PMID: 37650531 PMCID: PMC10561589 DOI: 10.1002/jcla.24959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023] Open
Abstract
One of the most tragic events in recent history was the COVID-19 outbreak, which has caused thousands of deaths. A variety of drugs were prescribed to improve the condition of patients, including antiparasitic, antiviral, antibiotics, and anti-inflammatory medicines. It must be understood, however, that COVID-19 is like a tip of an iceberg on the ocean, and the consequences of overuse of antibiotics are like the body of a mountain under water whose greatness has not yet been determined for humanity, and additional study is needed to understand them. History of the war between microbes and antimicrobial agents has shown that microbes are intelligent organisms that win over antimicrobial agents over time through many acquired or inherent mechanisms. The key terms containing "COVID-19," "Severe acute respiratory syndrome coronavirus-2," "SARS-CoV2," "Antibiotic Resistance," "Coronavirus," "Pandemic," "Antibiotics," and "Antimicrobial Resistance" were used for searching in PubMed, Scopus, and Google Scholar databases. The COVID-19 pandemic has resulted in an increased prescription of antibiotics. Infections caused by secondary or co-bacterial infections or beneficial bacteria in the body can be increased as a result of this amount of antibiotic prescription and exposure to antibiotics. Antibiotic resistance will likely pose a major problem in the future, especially for last resort antibiotics. In order to address the antibiotic resistance crisis, it is imperative that researchers, farmers, veterinarians, physicians, public and policymakers, pharmacists, other health and environmental professionals, and others collaborate during and beyond this pandemic.
Collapse
Affiliation(s)
- Mandana Hosseini
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mohammed Ahmed Hamad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Golazin Mohseni
- Department of Microbiology, Tonekabon Branch, Azad University, Tonekabon, Iran
| | - Shakiba Salamy
- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Shabnam Dehghan Tarzjani
- Department of Cellular and Molecular Biology, Tehran Center Branch, Islamic Azad University, Tehran, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
10
|
Fang L, Chen C, Li S, Ye P, Shi Y, Sharma G, Sarkar B, Shaheen SM, Lee SS, Xiao R, Chen X. A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115175. [PMID: 37379666 DOI: 10.1016/j.ecoenv.2023.115175] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The occurrence of antibiotics in agricultural soils has raised concerns due to their potential risks to ecosystems and human health. However, a comprehensive understanding of antibiotic accumulation, distribution, and potential risks to terrestrial ecosystems on a global scale is still limited. Therefore, in this study, we evaluated the accumulation of antibiotics and their potential risks to soil microorganisms and plants, and highlighted the driving factors of antibiotic accumulation in agricultural soils based on 134 peer-reviewed studies (between 2000 and 2022). The results indicated that 56 types of antibiotics were detected at least once in agricultural soils with concentrations ranging from undetectable to over 7000 µg/kg. Doxycycline, tylosin, sulfamethoxazole, and enrofloxacin, belonging to the tetracyclines, macrolides, sulfonamides, and fluoroquinolones, respectively, were the most accumulated antibiotics in agricultural soil. The accumulation of TCs, SAs, and FQs was found to pose greater risks to soil microorganisms (average at 29.3%, 15.4%, and 21.8%) and plants (42.4%, 26.0%, and 38.7%) than other antibiotics. East China was identified as a hot spot for antibiotic contamination due to high levels of antibiotic concentration and ecological risk to soil microorganisms and plants. Antibiotic accumulation was found to be higher in vegetable fields (245.5 µg/kg) and orchards (212.4 µg/kg) compared to croplands (137.2 µg/kg). Furthermore, direct land application of manure resulted in a greater accumulation of TCs, SAs, and FQs accumulation in soils than compost fertilization. The level of antibiotics decreased with increasing soil pH and organic matter content, attributed to decreasing adsorption and enhancing degradation of antibiotics. In conclusion, this study highlights the need for further research on the impacts of antibiotics on soil ecological function in agricultural fields and their interaction mechanisms. Additionally, a whole-chain approach, consisting of antibiotic consumption reduction, manure management strategies, and remediation technology for soil contaminated with antibiotics, is needed to eliminate the potential environmental risks of antibiotics for sustainable and green agriculture.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - ShiYang Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pingping Ye
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sabry M Shaheen
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
11
|
Wang J, Xu S, Zhao K, Song G, Zhao S, Liu R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162772. [PMID: 36933744 DOI: 10.1016/j.scitotenv.2023.162772] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Li X, Lu H, Yang K, Zhu L. Attenuation of tetracyclines and related resistance genes in soil when exposed to nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130867. [PMID: 36758429 DOI: 10.1016/j.jhazmat.2023.130867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics pollution in soil poses increasing threats to human health due to stimulated proliferation and transmission of antibiotic resistance genes (ARGs). Nanoscale zero-valent iron (NZVI) is a promising material for the remediation of antibiotics, but how NZVI affects the diversity, abundance, and horizontal gene transfer potentials of ARGs remains unclear. Herein, the biotic and abiotic effects of NZVI at different concentrations on tetracyclines (TCs) and the associated ARGs were investigated. Results showed NZVI could effectively accelerate the degradation of TCs, which increased from 51.38% (without NZVI) to 57.96%- 71.66% (1-10 g NZVI/kg) in 20 days. Biotic degradation contributed to 66.10%- 76.30% of the total TCs removal. NZVI induced TCs biodegradation was probably due to alleviated toxicity of TCs on cells and increased microbial biomass and enzyme activities. Additionally, TCs-related ARGs were attenuated with decreased horizontal gene transfer potentials of intI1 and ISCR1, but opposite effects were observed for non TC-related ARGs, especially during excess exposure to NZVI. This study illustrated the possibility of remediating of antibiotic contaminated soil by NZVI and meanwhile reducing the potential risks of ARGs.
Collapse
Affiliation(s)
- Xu Li
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Huijie Lu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Nnorom MA, Saroj D, Avery L, Hough R, Guo B. A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130628. [PMID: 36586329 DOI: 10.1016/j.jhazmat.2022.130628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT.
Collapse
Affiliation(s)
- Mac-Anthony Nnorom
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Lisa Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
14
|
He ZW, Zou ZS, Ren YX, Tang CC, Zhou AJ, Liu W, Wang L, Li Z, Wang A. Roles of zero-valent iron in anaerobic digestion: Mechanisms, advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158420. [PMID: 36049687 DOI: 10.1016/j.scitotenv.2022.158420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
With the rapid growth of population and urbanization, more and more bio-wastes have been produced. Considering organics contained in bio-wastes, to recover resource from bio-wastes is of great significance, which can not only achieve the resource recycle, but also protect the environment. Anaerobic digestion (AD) has been proved as one of the most promising strategies to recover bio-energy from bio-wastes, as well as to realize the reduction of bio-wastes. However, the conventional interspecies electron transfer is sensitive to environmental shocks, such as high ammonia, organic pollutants, metal ions, etc., which lead to instability or failure of AD. The recent findings have proved that the introduction of zero-valent iron (ZVI) in AD system can significantly enhance methane production from bio-wastes. This review systematically highlighted the recent advances on the roles of ZVI in AD, including underlying mechanisms of ZVI on AD, performance enhancement of AD contributed by ZVI, and impact factors of AD regulated by ZVI. Furthermore, current limitations and outlooks have been analyzed and concluded. The roles of ZVI on underlying mechanisms in AD include regulating reaction conditions, electron transfer mode and function of microbial communities. The addition of ZVI in AD can not only enhance bio-energy recovery and toxic contaminants removal from bio-wastes, but also have the potential to buffer adverse effect caused by inhibitors. Moreover, the electron transfer modes induced by ZVI include both interspecies hydrogen transfer and direct interspecies electron transfer pathways. How to comprehensively evaluate the effects of ZVI on AD and further improve the roles of ZVI in AD is urgently needed for practical application of ZVI in AD. This review aims to provide some references for the introduction of ZVI in AD for enhancing bio-energy recovery from bio-wastes.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zheng-Shuo Zou
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
15
|
Li Y, Zhong W, Ning Z, Feng J, Niu J, Li Z. Effect of biochar on antibiotic resistance genes in the anaerobic digestion system of antibiotic mycelial dreg. BIORESOURCE TECHNOLOGY 2022; 364:128052. [PMID: 36191748 DOI: 10.1016/j.biortech.2022.128052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
To address the problem of antibiotic mycelial dreg (AMD) treatment and removal of antibiotic resistance genes (ARGs), this study adopted anaerobic digestion (AD) technology, and added biochar (BC) and biochar loaded with nanosized zero-valent iron (nZVI-BC) to promote the AD of AMD and enhance the removal of ARGs. Results showed that nZVI-BC was better than BC in promoting AD due to the hydrogen evolution corrosion and the synergistic effect of nZVI and BC. In addition, BC and nZVI-BC can enhance the oxidative stress response and reduce ammonia stress phenomenon, which significantly reduces the abundance of aadA, ant(2″)-Ⅰ, qacEdelta1 and sul1. In conclusion, the enhance effect of nZVI-BC is greater than BC. The removal efficiency rates of nZVI-BC on the above-mentioned four ARGs were improved by 33%, 9%, 24% and 11%.
Collapse
Affiliation(s)
- Yue Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Jing Feng
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Agricultural Planning and Engineering, Beijing 100125, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Zaixing Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| |
Collapse
|
16
|
Wu Q, Zou D, Zheng X, Liu F, Li L, Xiao Z. Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157384. [PMID: 35843318 DOI: 10.1016/j.scitotenv.2022.157384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
As a common biological engineering technology, anaerobic digestion can stabilize sewage sludge and convert the carbon compounds into renewable energy (i.e., methane). However, anaerobic digestion of sewage sludge is severely affected by antibiotics. This review summarizes the effects of different antibiotics on anaerobic digestion of sewage sludge, including production of methane and volatile fatty acids (VFAs), and discusses the impact of antibiotics on biotransformation processes (solubilization, hydrolysis, acidification, acetogenesis and methanogenesis). Moreover, the effects of different antibiotics on microbial community structure (bacteria and archaea) were determined. Most of the research results showed that antibiotics at environmentally relevant concentrations can reduce biogas production mainly by inhibiting methanogenic processes, that is, methanogenic archaea activity, while a few antibiotics can improve biogas production. Moreover, the combination of multiple environmental concentrations of antibiotics inhibited the efficiency of methane production from sludge anaerobic digestion. In addition, some lab-scale pretreatment methods (e.g., ozone, ultrasonic combined ozone, zero-valent iron, Fe3+ and magnetite) can promote the performance of anaerobic digestion of sewage sludge inhibited by antibiotics.
Collapse
Affiliation(s)
- Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China.
| |
Collapse
|
17
|
Li J, Li J, Zhang Y, Lu H. The responses of marine anammox bacteria-based microbiome to multi-antibiotic stress in mariculture wastewater treatment. WATER RESEARCH 2022; 224:119050. [PMID: 36084441 DOI: 10.1016/j.watres.2022.119050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Saline mariculture wastewater containing multi-antibiotics poses a challenge to anaerobic ammonia oxidation (anammox) process. Herein, the halophilic marine anammox bacteria (MAB)-based microbiome was used for treating mariculture wastewater (35‰ salinity) under multi-antibiotics (enrofloxacin + oxytetracycline + sulfamethoxazole, EOS) stress. And the main focus of this study lies in the response of MAB-based microbiome against multi-antibiotics stress. It is found that MAB-based microbiome shows stable community structure and contributes high nitrogen removal efficiency (>90%) even under high stress of EOS (up to 4 mg·L-1). The relative abundance of main functional genus Candidatus Scalindua, responsible for anammox, had little change while controlling the influent EOS concentration within 4 mg·L-1, whereas, significantly decreased to 2.23% at EOS concentration of as high as 24 mg·L-1. As an alternative, antibiotic resistance bacteria (ARB) species Rheinheimera dominated the microbial community of MAB-based biological reactor under extremely high EOS stress (e.g. 24 mg·L-1 in influent). The response mechanism of MAB-based microbiome consists of extracellular and intracellular defenses with dependence of EOS concentration. For example, while EOS within 4 mg·L-1 in this study, most of the antibiotics were retained by extracellular polymeric substances (EPS) via adsorption; If increasing the EOS concentration to 8 and even 24 mg·L-1, part of antibiotics could intrude into the cells and cause the intracellular accumulation of antibiotic resistance genes (ARGs) (total abundance up to 2.44 × 10-1 copies/16S rRNA) for EOS response. These new understandings will facilitate the practical implementation of MAB-based bioprocess for saline nitrogen- and antibiotics-laden wastewater treatment.
Collapse
Affiliation(s)
- Jialu Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yulong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Qiao Z, Xu S, Zhang W, Shi S, Zhang W, Liu H. Potassium ferrate pretreatment promotes short chain fatty acids yield and antibiotics reduction in acidogenic fermentation of sewage sludge. J Environ Sci (China) 2022; 120:41-52. [PMID: 35623771 DOI: 10.1016/j.jes.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 06/15/2023]
Abstract
During the acidogenic fermentation converting waste activated sludge (WAS) into short-chain fatty acids (SCFA), hydrolysis of complex organic polymers is a limiting step and the transformation of harmful substances (such as antibiotics) during acidogenic fermentation is unknown. In this study, potassium ferrate (K2FeO4) oxidation was used as a pretreatment strategy for WAS acidogenic fermentation to increase the hydrolysis of sludge and destruct the harmful antibiotics. Pretreatment with K2FeO4 can effectively increase the SCFA production during acidogenic fermentation and change the distribution of SCFA components. With the dosage of 0.2 g/g TS, the maximum SCFA yield was 4823 mg COD/L, which is 28.3 times that of the control group; acetic acid accounts for more than 90% of the total SCFA. The higher dosage (0.5 g/g TS) can further increase the proportion of acetic acid, but inhibit the overall performance of SCFA production. Apart from the promotion of hydrolysis and acidogenesis, K2FeO4 pretreatment can also simultaneously oxidizes and degrades part of the antibiotics in the sludge. When the dosage is 0.5 g/g TS, the degradation efficacy of antibiotics is the most significant, and the contents of ofloxacin, azithromycin, and tetracycline in the sludge are reduced by 69%, 42%, and 50%, respectively. In addition, K2FeO4 pretreatment can also promote the release of antibiotics from sludge flocs, which is conducive to the simultaneous degradation of antibiotics in the subsequent biological treatment process.
Collapse
Affiliation(s)
- Zihao Qiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wanqiu Zhang
- Centillion Resource Recycling (Wuxi) Co. Ltd., Wuxi 214000, China
| | - Shuyin Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
19
|
Liu W, Xia R, Ding X, Cui W, Li T, Li G, Luo W. Impacts of nano-zero-valent iron on antibiotic removal by anaerobic membrane bioreactor for swine wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Deng Y, Zhang K, Zou J, Li X, Wang Z, Hu C. Electron shuttles enhanced the removal of antibiotics and antibiotic resistance genes in anaerobic systems: A review. Front Microbiol 2022; 13:1004589. [PMID: 36160234 PMCID: PMC9490129 DOI: 10.3389/fmicb.2022.1004589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The environmental and epidemiological problems caused by antibiotics and antibiotic resistance genes have attracted a lot of attention. The use of electron shuttles based on enhanced extracellular electron transfer for anaerobic biological treatment to remove widespread antibiotics and antibiotic resistance genes efficiently from wastewater or organic solid waste is a promising technology. This paper reviewed the development of electron shuttles, described the mechanism of action of different electron shuttles and the application of enhanced anaerobic biotreatment with electron shuttles for the removal of antibiotics and related genes. Finally, we discussed the current issues and possible future directions of electron shuttle technology.
Collapse
|
21
|
Zhou H, Zhao Z, Xu X, Ye M, Cao Z. Enzymatic integrated in-situ advanced anaerobic digestion of sewage sludge for the removal of antibiotics and antibiotic resistance genes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:383-393. [PMID: 35926402 DOI: 10.1016/j.wasman.2022.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in sewage sludge can cause high ecotoxicological risks in the environment and public health concerns. The aims of this study were to establish enzymatic integrated in-situ advanced anaerobic digestion (AAD) by adding cellulase and papain as well as the two enzymes combined with zero valent iron (ZVI) directly into the anaerobic digesters to explore the removal of antibiotics and ARGs under the mesophilic condition (35 °C). The methane production potential during in-situ AAD was effectively improved. Papain and cellulase at 30 mg/gTSS were most effective in improving antibiotic removal. The removal of sulfamerazine (SMZ) and sulfadiazine (SMR) could reach 89.10 % and 71.75 %. Combined enzymes with ZVI also enhanced the removal of all target antibiotics, especially roxithromycin (ROX), SMZ and SMR most significantly. Except for sul1, tetA and tetB, the removal of ARGs by papain reached 6.33 %-82.15 %. The addition of cellulase effectively improved tetA removal. The combination of biological enzymes further enhanced the removal of qnrS and ermX. The tetG, tetB, sul3, ermX, ermT, qnrS, and aac(6')-IB-CR by combined enzymes with ZVI could even not be detected after digestion. Addition of papain, cellulase, and ZVI caused variations in the dominant bacteria. All target antibiotics presented significant positive correlations with the genera norank_f__Bacteroidetes_vadinHA17, norank_f__norank_o__SJA-15, norank_f__norank_o__Aminicenantales. Redundancy analysis showed archaea Methanosaeta and Candidatus_ Methanoacidiosum genera greatly contributed to antibiotics removal with the combination of enzymes and ZVI. Co-occurrence network analysis indicated the removal of ARGs was mainly based on the changes of existence of host bacteria.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ziming Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxuan Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mixuan Ye
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhengcao Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
22
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
23
|
Haffiez N, Chung TH, Zakaria BS, Shahidi M, Mezbahuddin S, Hai FI, Dhar BR. A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. BIORESOURCE TECHNOLOGY 2022; 354:127189. [PMID: 35439559 DOI: 10.1016/j.biortech.2022.127189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The overuse and inappropriate disposal of antibiotics raised severe public health risks worldwide. Specifically, the incomplete antibiotics metabolism in human and animal bodies contributes to the significant release of antibiotics into the natural ecosystems and the proliferation of antibiotic-resistant bacteria carrying antibiotic-resistant genes. Moreover, the organic feedstocks used for anaerobic digestion are often highly-rich in residual antibiotics and antibiotic-resistant genes. Hence, understanding their fate during anaerobic digestion has become a significant research focus recently. Previous studies demonstrated that various process parameters could considerably influence the propagation of the antibiotic-resistant genes during anaerobic digestion and their transmission via land application of digestate. This review article scrutinizes the influences of process parameters on antibiotic-resistant genes propagation in anaerobic digestion and the inherent fundamentals behind their effects. Based on the literature review, critical research gaps and challenges are summarized to guide the prospects for future studies.
Collapse
Affiliation(s)
- Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tae Hyun Chung
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Manjila Shahidi
- 4S Analytics & Modelling Ltd., Edmonton, AB, T6W 3V6, Canada
| | | | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
24
|
Andriamanohiarisoamanana FJ, Ihara I, Yoshida G, Umetsu K. Comparative effects of ferric hydroxide and (semi) conductive iron oxides on the anaerobic digestion of oxytetracycline-contaminated dairy manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114731. [PMID: 35189556 DOI: 10.1016/j.jenvman.2022.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Additives, such as iron oxides, have been used in anaerobic digestion (AD) to promote direct interspecies electron transfer and to boost methane yield. However, the function of additives in the AD of antibiotic-contaminated organic wastes remained unclear. In this study, the effects of ferric hydroxide and (semi) conductive iron oxides, namely hematite and magnetite, on the AD of oxytetracycline (OTC)-contaminated dairy manure were investigated. Each iron oxide was assigned to a set of experiment where 0.25 g/L of OTC was added to 1 L batch digesters, while the concentration of iron oxide was varied from 0.08 to 0.34 g/L. Generally, magnetite was the most effective iron oxide to enhance methane yield in OTC-free dairy manure followed by ferric hydroxide and hematite. However, when the manure was contaminated with OTC, higher methane yield was observed in ferric hydroxide followed by hematite, while the lowest was with magnetite. In all digesters, the highest methane yield was observed with ferric hydroxide at 0.08 g/L, which was 1.43-fold of that with OTC and without iron oxides. The kinetic studies of methane yield demonstrated that the addition of iron oxides in the AD of OTC-contaminated dairy manure did not shorten the lag phase period despite the increase of methane yield. Thus, the increase of methane yield with ferric hydroxide was attributed to the possible formation of Fe-OTC complex, which attenuated the inhibition of OTC. A strategy to recover OTC residue in the AD was proposed using magnetite, a ferromagnetic particle, and high gradient magnetic separator.
Collapse
Affiliation(s)
| | - Ikko Ihara
- Graduate School of Agriculture Science, Kobe University, Kobe, 657-8501, Japan.
| | - Gen Yoshida
- Graduate School of Agriculture Science, Kobe University, Kobe, 657-8501, Japan
| | - Kazutaka Umetsu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
25
|
Liu Z, Sun X, Sun Z. Degradation mechanism of montmorillonite-enhanced antibiotic wastewater: performance, antibiotic resistance genes, microbial communities, and functional metabolism. BIORESOURCE TECHNOLOGY 2022; 352:127098. [PMID: 35367605 DOI: 10.1016/j.biortech.2022.127098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The effective degradation of Sulfamethoxazole (SMX) is of great importance to alleviate environmental pollution. In this study, the degradation capacity of an ordinary sequencing batch activated sludge system (SBR) and montmorillonite (MMT) system was compared for their ability to degrade different concentrations of SMX. Compared with SBR system, the MMT system exhibited higher stability and degradation capacity. The changes in the composition of tightly bound extracellular polymeric substances (TB-EPS) were likely key to the observed stability of the system. High concentrations of SMX inhibited the degradation performance of SBR. MMT-supplemented reduced the generation of antibiotic resistance genes (ARGs). Thauera is a gene that is able to degrade SMX, and its abundance in MMT system reached 7.84%. As potential hosts of ARGs, the proportions of Paenarthrobacter and Caldilineacea were significantly correlated with sulfonamide resistance genes (sul1 and sul2). Overall, MMT-supplemented system was found to be a favorable method of treating antibiotic.
Collapse
Affiliation(s)
- Zhibin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiuping Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
26
|
Ahmad HA, Ahmad S, Cui Q, Wang Z, Wei H, Chen X, Ni SQ, Ismail S, Awad HM, Tawfik A. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151926. [PMID: 34838908 DOI: 10.1016/j.scitotenv.2021.151926] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Emerging pollutants (EPs) create a worldwide concern owing to their low concentration and severe toxicity to the receptors. The prominent emerging pollutants categories as pharmaceutical and personal care product, plasticizer, surfactants, and persistent organic pollutants. Typically, EPs are widely disseminated in the aquatic ecosystem and capable of perturbing the physiology of water bodies as well as humans. The primary sources of EPs in the environment include anthropogenic release, atmospheric deposition, untreated or substandard treated wastewater, and extreme weather events. Intensive research has been done covering the environmental distribution, ecological disturbance, fate, and removal of EPs in the past decades. However, a systematic review on the distribution of EPs in the engineered and natural aquatic environment and the degradation of different EPs by using anaerobic sludge, aerobic bacteria, and isolated strains are limited. This review article aims to highlight the importance, application, and future perceptions of using different microbes to degrade EPs. Overall, this review article illustrates the superiority of using non-cultivable and cultivable microbes to degrade the EPs as an eco-friendly approach. Practically, the outcomes of this review paper will build up the knowledge base solutions to remove EPs from the wastewater.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518052, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Qingjie Cui
- Department of Mechanical and Environmental Protection, Shandong Electric Power Engineering Consulting Institute Ltd. (SDEPCI), Jinan, Shandong 250013, China
| | - Zhibin Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Haiwei Wei
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xue Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518052, China.
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Environmental Engineering Department, Zagazig University, Zagazig 44519, Egypt
| | - Hanem M Awad
- National Research Centre, Tanning Materials & Proteins Department, Dokki, Giza 12622, Egypt
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
| |
Collapse
|
27
|
Rizvi SG, Ahammad SZ. COVID-19 and antimicrobial resistance: A cross-study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150873. [PMID: 34634340 PMCID: PMC8500695 DOI: 10.1016/j.scitotenv.2021.150873] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 05/03/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as a severe concern due to the escalating instances of resistant human pathogens encountered by health workers. Consequently, there is a shortage of antibiotics to treat Multidrug Resistance (MDR) and Extensively Drug Resistance (XDR) patients. The primary cause of AMR is the vast array of anthropogenic disturbances in natural microfauna brought about by the extensive use of antibiotics. Coronavirus Disease of 2019 (COVID-19) has crashed antibiotic stewardship and single-handedly increased the global usage of antibiotics, Personal Protective Equipment (PPE), and biocide, causing a ripple effect in the existing global AMR problem. This surge in antibiotic usage has escalated the residual antibiotics reaching Wastewater Treatment Plants (WWTPs) from pharmaceutical companies, health care centers, and domestic settings. Ultimately the natural water bodies receiving their effluents will have higher concentrations of emerging contaminants as the WWTPs cannot remove the Pharmaceuticals and Personal Care Products (PPCPs) completely. Furthermore, increased biocides usage will increase AMR by co-resistance, and increasing plastics will turn into microplastics and get converted to plastisphere, which will further enhance its propagation. Therefore, it is crucial to curb antibiotic usage, implement antibiotic stewardship dynamically; and, ameliorate the present condition of WWTPs to remove residual PPCPs efficiently. The need of the hour is to address the grave threat of AMR, which is loitering silently; if not the mankind will endure more affliction hereafter.
Collapse
Affiliation(s)
| | - Shaikh Ziauddin Ahammad
- Block I, Room # 135, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
28
|
Qiu X, Zhou G, Wang H. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126883. [PMID: 34416685 DOI: 10.1016/j.jhazmat.2021.126883] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Livestock manure has been identified as a significant hotspot for antibiotic resistance genes (ARGs). However, the impact of nanoscale zero-valent iron (nZVI) on the fate of ARGs during livestock manure composting remains poorly understood. Here, we investigated the evolution of ARGs in chicken manure compost exposed to 100 and 600 mg kg-1 nZVI. The results showed that nZVI addition reduced the concentration of some antibiotics such as doxycycline and sulfamethoxazole. Furthermore, nZVI addition decreased the abundances of most ARGs at the end of composting, but nZVI dosage did not have any significant effect. The abundances of the dominant ARGs (sul1 and sul2) were significantly correlated to the class 1 integron-integrase gene (intI1). A network analysis revealed that the genera Bacteroides, Bacillus, Corynebacterium, Thiopseudomonas and Pseudomonas were the main potential hosts for multiple ARGs, and the decreased abundance of these bacteria contributed to the removal of ARGs. Structural equation models demonstrated that the reduction in intI1 played a predominant role in ARG removal. The nZVI also had direct effects on the intI1 abundance. These findings suggest that the addition of nZVI is a promising strategy to minimize ARG release in chicken manure compost.
Collapse
Affiliation(s)
- Xiuwen Qiu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangxi Province Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, China; College of Resource and Environmental Sciences, Jiujiang University, Jiujiang 332005, China
| | - Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huijuan Wang
- Jiangxi Province Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, China; College of Resource and Environmental Sciences, Jiujiang University, Jiujiang 332005, China
| |
Collapse
|
29
|
Zhang Z, Li X, Liu H, Zamyadi A, Guo W, Wen H, Gao L, Nghiem LD, Wang Q. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. BIORESOURCE TECHNOLOGY 2022; 344:126197. [PMID: 34710608 DOI: 10.1016/j.biortech.2021.126197] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Sludge from wastewater treatment plants can act as a repository and crucial environmental provider of antibiotic resistance genes (ARGs). Over the past few years, people's knowledge regarding the occurrence and removal of ARGs in sludge has broadened remarkably with advancements in molecular biological techniques. Anaerobic and aerobic digestion were found to effectively achieve sludge reduction and ARGs removal. This review summarized advanced detection and removal techniques of ARGs, in the last decade, in the sludge digestion field. The fate of ARGs due to different sludge digestion strategies (i.e., anaerobic and aerobic digestion under mesophilic or thermophilic conditions, and in combination with relevant pretreatment technologies (e.g., thermal hydrolysis pretreatment, microwave pretreatment and alkaline pretreatment) and additives (e.g., ferric chloride and zero-valent iron) were systematically summarized and compared in this review. To date, this is the first review that provides a comprehensive assessment of the state-of-the-art technologies and future recommendations.
Collapse
Affiliation(s)
- Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Melbourne & Adelaide SA 5001, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haiting Wen
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
30
|
Kong X, Niu J, Zhang W, Liu J, Yuan J, Li H, Yue X. Mini art review for zero valent iron application in anaerobic digestion and technical bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148415. [PMID: 34412392 DOI: 10.1016/j.scitotenv.2021.148415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI) has been used extensively to control environmental pollution owing to its strong reducibility and low cost. Herein, we evaluate the impact of ZVI (iron scrap and ZVI powder with different scales) on anaerobic digestion (AD) reactor performance improvement and syntrophic relationship stimulation among various microbial groups in the methanogenesis process. In recent studies, ZVI addition significantly enhanced methane and volatile fatty acid (VFA) yields and alleviated excessive acidification, ammonia accumulation, and odorous gas production. Further, we reviewed the changes in enzyme activity and microbial metabolism after the addition of ZVI throughout the reaction process. Certain innovative technologies, such as bioelectrochemical system assistance and combined usage of conductive materials, may improve AD performance compared to the use of ZVI alone, the mechanism of which has been discussed from various viewpoints. Furthermore, the primary technical bottlenecks, such as poor mass transfer efficiency in dry AD and high ZVI dosage, have been illustrated, and syntrophic methanogenesis regulated by ZVI addition can be further studied by conducting theoretical research.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China; School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Wenjing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| |
Collapse
|
31
|
Chen Y, Zhao J, Hu L, Tian J, Liu Y. Degradation of sulfamerazine by a novel Cu xO@C composite derived from Cu-MOFs under air aeration. CHEMOSPHERE 2021; 280:130678. [PMID: 33971422 DOI: 10.1016/j.chemosphere.2021.130678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Most metal-organic frameworks (MOFs) are synthesized from carboxylate and metal precursors by hydrothermal process, which will consume a large amount of solvent and carboxylate. To address this issue, a new strategy for Cu-based MOFs was developed, in which the Cu-based MOFs was obtained by using abundant natural polymer (tannic acid) as one of the precursors and using high-energy ball milling to achieve a self-assembly of tannic acid and copper sulfate. Based on this strategy, a novel Cu-based MOFs derivative (CuxO@C composite) was synthesized by high-temperature sintering of Cu-based MOFs and used for sulfamerazine (SMR) removal via O2 activation. The BET specific surface area and average pore size of CuxO@C composite were 110.34 m2 g-1 and 21.06 nm, respectively, which made CuxO@C composite had the maximum adsorption capacity (Qmax) for SMR of 104.65 mg g-1 and favored the subsequent degradation of SMR. The results from XRD and XPS indicated that CuxO@C composite contained a lot of Cu0 and Cu2O with the sizes of 76.6 nm and 9.8 nm, respectively, which led to its high performance of O2 activation. The removal efficiency of SMR and 90.2% TOC achieved 100% and 90.2%, respectively in the CuxO@C/air system at initial pH of 4.0, air flow rate of 100 mL min-1, CuxO@C dosage of 1 g L-1 and reaction time of 30 min. Reactive species, including H2O2, OH and O2- radicals were detected in the CuxO@C/air system, and OH and O2- were mainly responsible for the degradation of SMR.
Collapse
Affiliation(s)
- Yong Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Junfeng Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Lu Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu, 610066, China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu, 610066, China.
| |
Collapse
|
32
|
Barrena R, Vargas-García MDC, Capell G, Barańska M, Puntes V, Moral-Vico J, Sánchez A, Font X. Sustained effect of zero-valent iron nanoparticles under semi-continuous anaerobic digestion of sewage sludge: Evolution of nanoparticles and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145969. [PMID: 33676214 DOI: 10.1016/j.scitotenv.2021.145969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The effects of adding zero-valent iron nanoparticles (nZVI) on the physicochemical, biological and biochemical responses of a semi-continuous anaerobic digestion of sewage sludge have been assessed. Two sets of consecutive experiments of 103 and 116 days, respectively, were carried out in triplicate. nZVI were magnetically retained in the reactors, and the effect of punctual doses (from 0.27 to 4.33 g L-1) over time was studied. Among the different parameters monitored, only methane content in the biogas was significantly higher when nZVI was added. However, this effect was progressively lost after the addition, and in 5-7 days, the methane content returned to initial values. The increase in the oxidation state of nanoparticles seems to be related to the loss of effect over time. Higher dose (4.33 g L-1) sustained positive effects for a longer time along with higher methane content, but this fact seems to be related to microbiome acclimation. Changes in microbial community structure could also play a role in the mechanisms involved in methane enhancement. In this sense, the microbial consortium analysis reported a shift in the balance among acetogenic eubacterial communities, and a marked increase in the relative abundance of members assigned to Methanothrix genus, recognized as acetoclastic species showing high affinity for acetate, which explain the rise in methane content in the biogas. This research demonstrates that biogas methane enrichment in semicontinuous anaerobic digesters can be achieved by using nZVI nanoparticles, thus increasing energy production or reducing costs of a later biogas upgrading process.
Collapse
Affiliation(s)
- Raquel Barrena
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - María Del Carmen Vargas-García
- Department of Biology and Geology, CITE II-B, Universidad de Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - Georgina Capell
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Maja Barańska
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Victor Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), P. Lluís Companys 23, 08010 Barcelona, Spain
| | - Javier Moral-Vico
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Antoni Sánchez
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Xavier Font
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
33
|
Syafiuddin A, Boopathy R. Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes - A review. BIORESOURCE TECHNOLOGY 2021; 330:124970. [PMID: 33735726 DOI: 10.1016/j.biortech.2021.124970] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Currently, anaerobic sludge digestion (ASD) is considered not only for treating residual sewage sludge and energy recovery but also for the reduction of antibiotic resistance genes (ARGs). The current review highlights the reasons why antibiotic resistant bacteria (ARB) and ARGs exist in ASD and how ASD performs in the reduction of ARB and ARGs. ARGs and ARB have been detected in ASD with some reports indicating some of the ARGs can be completely removed during the ASD process, while other studies reported the enrichment of ARB and ARGs after ASD. This paper reviews the performance of ASD based on operational parameters as well as environmental chemistry. More studies are needed to improve the performance of ASD in reducing ARGs that are difficult to handle and also differentiate between extracellular (eARGs) and intracellular ARGs (iARGs) to achieve more accurate quantification of the ARGs.
Collapse
Affiliation(s)
- Achmad Syafiuddin
- Department of Public Health, Universitas Nahdlatul Ulama Surabaya, 60237 Surabaya, East Java, Indonesia
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
34
|
Xie HN, Li J, Wang YE, Zhao W, Zhang LH, Li J. Influencing factors for the Fenton-like of biological sponge iron system and its degradation mechanism of aniline. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|