1
|
Maher S, Sweeney T, O’Doherty JV. Optimising Nutrition for Sustainable Pig Production: Strategies to Quantify and Mitigate Environmental Impact. Animals (Basel) 2025; 15:1403. [PMID: 40427280 PMCID: PMC12108488 DOI: 10.3390/ani15101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
The intensifying global demand for food presents significant challenges for sustainable pig production, particularly in the context of escalating input costs, environmental degradation, and resource scarcity. Life cycle assessment provides a comprehensive framework for quantifying environmental impacts and identifying production hotspots within pig production systems. Feed production and manure management are consistently identified as major contributors, emphasising the need for targeted interventions. Although soybean meal remains a key protein source, its association with deforestation and biodiversity loss is driving an interest in more sustainable alternatives. In temperate climates, faba beans offer a promising, locally sourced option, though their wider adoption is limited by amino acid imbalances and anti-nutritional factors. Grain preservation is another critical consideration, as post-harvest losses and fungal contamination compromise feed quality and animal health. Organic acid preservation has emerged as an energy-efficient, cost-effective alternative to industrial drying, improving storage stability and reducing fossil fuel dependence. Additional nutritional strategies, including dietary crude protein reduction, carbohydrate source modification, feed additive inclusion, and maternal nutritional interventions, can enhance nutrient utilisation, intestinal health, and herd resilience while mitigating environmental impact. This review explores practical feed-based strategies to support sustainable, resilient, and resource-efficient pig production and contribute to global food security.
Collapse
Affiliation(s)
- Shane Maher
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
2
|
Fan H, Li C, Zhang W, Liu C, Abass OK, Liu L, Huang X, Sun Y, Wang H, Gesiye MW, Chen W. Evaluation of pollution potential in swine manure across growth stages: Impact of dietary nutrients and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177942. [PMID: 39700975 DOI: 10.1016/j.scitotenv.2024.177942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Regulation of dietary nutrient fractions to control the release of labile manure pollutants in swine production remains a challenge. Feeding trials were conducted to assess the impact of dietary nutrient fractions on labile manure composition and pollution potential in pigs at different growth stages. The pigs were selected based on age (weaning = 60 days, feeding = 100 days, and finishing = 160 days), health, and average body weight (23.7 kg, 50.5 kg, and 109.0 kg respectively) and fed with (1) high, (2) medium, and (3) low energy diets twice daily in all three growth stages. Urine and feces were collected for analysis. The study utilized correlation, nutrient balance analysis, and theoretical models to evaluate the dietary impact on nutrient distribution and pollution potential. Results showed higher nutrient retention (N, P, Cu, Zn) with the high-energy diet across all growth stages compared to the other two diet energy levels. Correlation analysis revealed that pigs' weight gain does not reflect dietary efficiency nor indicate lower pollution potential from nutrient retention. However, dietary nutrient fractions played more significant role in labile manure release compare to the total manure component. Overall, the dietary regulatory approach offers a sustainable strategy to mitigate environmental pollution while supporting nutrient recycling using manure with lower pollutant loads.
Collapse
Affiliation(s)
- Hongyong Fan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Chenghao Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Wenxuan Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Chaoxiang Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, PR China.
| | - Olusegun K Abass
- Department of Civil Engineering and ReNEWACT Laboratory, SDG 9 - Industry, Innovation and Infrastructure, Landmark University, P.M.B 1001, Omu Aran 251103, Nigeria; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Lin Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Huang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Maureen W Gesiye
- Department of Civil Engineering and ReNEWACT Laboratory, SDG 9 - Industry, Innovation and Infrastructure, Landmark University, P.M.B 1001, Omu Aran 251103, Nigeria
| | - Wushan Chen
- Nanjing County Feng Xiuzhen Animal Husbandry Co., Ltd. Fujian, 350108, PR China
| |
Collapse
|
3
|
de Almeida AM, Latorre MA, Alvarez-Rodriguez J. Productive, Physiological, and Environmental Implications of Reducing Crude Protein Content in Swine Diets: A Review. Animals (Basel) 2024; 14:3081. [PMID: 39518804 PMCID: PMC11544889 DOI: 10.3390/ani14213081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Pig production is one of the most important providers of high-quality proteins and amino acids (AAs) to human nutrition. In this sector, feeding has an important economic and environmental impact. A strategy to reduce production costs and negative sustainability effects is reducing dietary crude protein (CP) contents with or without AA supplementation. This review addresses the different aspects related to this strategy, particularly the effects on growth performance and pork traits in piglets and growing and finishing pigs, as well as the physiological molecular mechanisms' underlying effects. Insight is also provided into the effects of dietary CP reduction on the productive performances of alternative pig production systems and breeding boars and sows. Finally, an overview is conducted on the effects of dietary CP reduction on ammonia, odor, and greenhouse gas emissions arising from pig production systems. Overall, CP reduction may lead to production losses, albeit they can be, to some extent, hindered by adequate AA supplementation. Losses are particularly relevant during the post-weaning phase, whereas in finishing pigs, it may bring additional benefits, such as high intramuscular fat contents in some markets or improved gut barrier function with benefits to the animals' health and welfare, as well as decreased ammonia emissions to the environment.
Collapse
Affiliation(s)
- André Martinho de Almeida
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Angeles Latorre
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-Universidad de Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain;
| | - Javier Alvarez-Rodriguez
- Departamento de Ciencia Animal, Universidad de Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
4
|
Cappelaere L, Garcia-Launay F, Larios D, Simongiovanni A, Godbout S, Letourneau-Montminy MP. Environmental benefits of crude protein reduction in growing pig diets: is it worth going further? J Anim Sci 2024; 102:skae317. [PMID: 39460612 PMCID: PMC11561583 DOI: 10.1093/jas/skae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024] Open
Abstract
Nitrogen (N) excretion and emissions can be reduced in fattening pigs by reducing dietary crude protein (CP) levels. Effects of this strategy are well documented for moderate CP reduction, but little literature exists on further CP reduction made possible by free isoleucine, histidine, and leucine. This trial evaluated the effects of 2 levels of reduction in CP on growth performance, N balance, and gaseous emissions. Forty-eight pigs were allocated to 12 gaseous emission-measuring chambers at 28 kg live weight. Three dietary treatments (CTRL; -1.2pt; -2.4pt), with a CP content, respectively, of 18.1%, 16.9%, and 15.0% in phase 1 (28 to 48 kg) and 16.1%, 15.0%, and 13.8% in phase 2 (48 to 80 kg), were fed ad libitum. Growth performance was recorded for each phase. Body lipid and protein composition were analyzed by dual-energy X-ray absorptiometry in 2 animals per chamber at the beginning and end of the trial. These results were used to calculate the N balance. Slurry volume and composition were measured at the end of the trial. Ammonia, methane, and nitrous oxide emissions were recorded continuously. Data were analyzed with a general linear model including the linear and quadratic effect of CP reduction and phase as fixed effects. A trend for a quadratic effect of CP reduction on feed intake was observed (P = 0.085) with a decrease from CTRL to -1.2pt and then an increase with the -2.4pt treatment. Daily gain and gain to feed were improved by the low CP diets in phase 1 but were degraded in phase 2 (phase × CP interaction, P < 0.001) while body composition was not affected. Nitrogen excretion decreased with CP reduction (linear effect, P = 0.023) but tended to plateau with the low CP diets (quadratic effect, P = 0.081). Methane emissions per kg of gain were reduced with CP reduction (linear effect, P = 0.031). Ammonia emissions decreased with CP reduction, mostly in phase 1 (phase × CP interaction, P = 0.015); however, the emission factor (g N-NH3 / g urinary N) was not affected. Nitrous oxide emissions were not affected by CP reduction and its emission factor (g N-N2O / g N) tended to increase (linear effect, P = 0.07). Slurry ammonia-N decreased (linear effect, P < 0.023; quadratic effect, P = 0.049), but other slurry components were not significantly impacted. In this trial, a plateau in N excretion and emission reduction was reached with the -2.4pt treatment. Nevertheless, it is important to study such a reduction in conditions closer to commercial ones.
Collapse
Affiliation(s)
- Léa Cappelaere
- Département des Sciences Animales, Université Laval, Québec, G1V 0A6, Québec, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Kim S, Shim S, Won S, Ra C. Assessment of a Novel Real-Time Bio-Liquor Circulation System for Manure Management and Mitigation of Odor Potential in Swine Farming. Animals (Basel) 2023; 13:3849. [PMID: 38136886 PMCID: PMC10740851 DOI: 10.3390/ani13243849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, circulating biologically treated manure in slurry pits has been used as an odor reduction technology, but few successful results have been reported, due to the lack of proper control strategies for bioreactors. This study was conducted to investigate the performance of the developed real-time controlled bio-liquor circulation system (BCS) at farm scale. The BCS was operated sequentially as per swine manure inflow (anoxic, aerobic, and settling) circulation to the slurry pit. Each operational phase was self-adjusted in real-time using a novel algorithm for detecting the control point on the oxidation reduction potential (ORP) and pH (mV)-time profiles, the nitrogen break point (NBP), and the nitrate knee point (NKP) in the aerobic and anoxic phases, respectively. The NH4-N in the slurry manure was thoroughly removed (100%) in the bioreactor, optimizing the duration of each operational phase by accurately detecting real-time control points. The newly developed real-time BCS decreased the nitrogen and organic matter in the slurry pit by >70%, and the potential ammonia and methane emissions by 75% and 95%, respectively. This study highlights that improved BCS that utilizes ORP tracking and pH (mV)-time profiles can effectively optimize BCS operation, and thereby reduce malodor and GHG emissions from swine farms.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.K.); (S.S.)
| | - Soomin Shim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.K.); (S.S.)
| | - Seunggun Won
- Department of Animal Resources, College of Life and Environmental Science, Daegu University, Gyeongsan 38453, Republic of Korea;
| | - Changsix Ra
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.K.); (S.S.)
| |
Collapse
|
6
|
Yang P, Yu M, Ma X, Deng D. Carbon Footprint of the Pork Product Chain and Recent Advancements in Mitigation Strategies. Foods 2023; 12:4203. [PMID: 38231615 DOI: 10.3390/foods12234203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024] Open
Abstract
The carbon footprint of pork production is a pressing concern due to the industry's significant greenhouse gas emissions. It is crucial to achieve low-carbon development and carbon neutrality in pork production. Thus, this paper reviewed the recent studies about various sources of carbon emissions throughout the current pork production chain; feed production, processing, and manure management are the major sources of carbon emissions. The carbon footprint of the pork production chain varies from 0.6 to 6.75 kg CO2e·kg-1 pig live weight, and the carbon footprint of 1 kg of pork cuts is equivalent to 2.25 to 4.52 kg CO2e. A large reduction in carbon emissions could be achieved simultaneously if combining strategies of reducing transportation distances, optimizing farmland management, minimizing chemical fertilizer usage, promoting organic farming, increasing renewable energy adoption, and improving production efficiency. In summary, these mitigation strategies could effectively decrease carbon emissions by 6.5% to 50% in each sector. Therefore, a proper combination of mitigation strategies is essential to alleviate greenhouse gas emissions without sacrificing pork supply.
Collapse
Affiliation(s)
- Pan Yang
- Key Laboratory of Animal Nutrition and Feed of South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Miao Yu
- Key Laboratory of Animal Nutrition and Feed of South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xianyong Ma
- Key Laboratory of Animal Nutrition and Feed of South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dun Deng
- Key Laboratory of Animal Nutrition and Feed of South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Reiter J, Beier M. Deammonification Potential of Pig Slurries and Vapor Condensates from Sewage Sludge Drying-Substrate Quality and Inhibition. Bioengineering (Basel) 2023; 10:826. [PMID: 37508853 PMCID: PMC10376242 DOI: 10.3390/bioengineering10070826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Deammonification is a well-established process for sludge liquor treatment and promising for wastewaters with high nitrogen loads because of its low energy demand compared to nitrification/denitrification. Two wastewaters with high NH4-N concentrations and a rising significance in Germany-pig slurry (12 samples) and condensates from sewage sludge drying (6 samples)-were studied for their deammonification potential. Furthermore, a comprehensive quality assessment is presented. Both wastewaters show a wide range in terms of CODt, CODs, TN and NH4-N, whereby condensates show a greater variability with no direct relation to dryer type or temperature. In the slurries, CODt shows a relative standard deviation of 106% (mean 21.1 g/L) and NH4-N of 33% (mean 2.29 g/L), while in condensates it reaches 148% for CODt (mean 2.0 g/L) and 122% for NH4-N (mean 0.7 g/L). No inhibition of ammonium-oxidizing-bacteria was detected in the slurries, while two out of five condensates showed an inhibition of >40%, one of >10% and two showed no inhibition at all. Since the inhibition could be avoided by mixing, deammonification can be recommended for condensate treatment. For slurry treatment, the importance of employing some form of solid-liquid-separation as a pretreatment was noted due to the associated COD.
Collapse
Affiliation(s)
- Johannes Reiter
- Institute of Sanitary Engineering and Waste Management (ISAH), Faculty of Civil Engineering and Geodetic Science, Leibniz University Hannover, Welfengarten 1, 30167 Hanover, Germany;
| | | |
Collapse
|
8
|
Harmsen M, Tabak C, Höglund-Isaksson L, Humpenöder F, Purohit P, van Vuuren D. Uncertainty in non-CO 2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility. Nat Commun 2023; 14:2949. [PMID: 37268633 PMCID: PMC10238505 DOI: 10.1038/s41467-023-38577-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
Despite its projected crucial role in stringent, future global climate policy, non-CO2 greenhouse gas (NCGG) mitigation remains a large uncertain factor in climate research. A revision of the estimated mitigation potential has implications for the feasibility of global climate policy to reach the Paris Agreement climate goals. Here, we provide a systematic bottom-up estimate of the total uncertainty in NCGG mitigation, by developing 'optimistic', 'default' and 'pessimistic' long-term NCGG marginal abatement cost (MAC) curves, based on a comprehensive literature review of mitigation options. The global 1.5-degree climate target is found to be out of reach under pessimistic MAC assumptions, as is the 2-degree target under high emission assumptions. In a 2-degree scenario, MAC uncertainty translates into a large projected range in relative NCGG reduction (40-58%), carbon budget (±120 Gt CO2) and policy costs (±16%). Partly, the MAC uncertainty signifies a gap that could be bridged by human efforts, but largely it indicates uncertainty in technical limitations.
Collapse
Affiliation(s)
- Mathijs Harmsen
- PBL Netherlands Environmental Assessment Agency, Bezuidenhoutseweg 30, NL-2594, AV, The Hague, the Netherlands.
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, NL-3584, CB, Utrecht, the Netherlands.
| | - Charlotte Tabak
- PBL Netherlands Environmental Assessment Agency, Bezuidenhoutseweg 30, NL-2594, AV, The Hague, the Netherlands
| | - Lena Höglund-Isaksson
- Pollution Management Group, International Institute for Applied Systems Analysis, A-2361, Laxenburg, Austria
| | - Florian Humpenöder
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, POBox 60 12 03, D-14412, Potsdam, Germany
| | - Pallav Purohit
- Pollution Management Group, International Institute for Applied Systems Analysis, A-2361, Laxenburg, Austria
| | - Detlef van Vuuren
- PBL Netherlands Environmental Assessment Agency, Bezuidenhoutseweg 30, NL-2594, AV, The Hague, the Netherlands
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, NL-3584, CB, Utrecht, the Netherlands
| |
Collapse
|
9
|
Cao T, Zheng Y, Dong H. Control of odor emissions from livestock farms: A review. ENVIRONMENTAL RESEARCH 2023; 225:115545. [PMID: 36822532 DOI: 10.1016/j.envres.2023.115545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Odor emission seriously affects human and animal health, and the ecological environment. Nevertheless, a systematic summary regarding the control technology for odor emissions in livestock breeding is currently lacking. This paper summarizes odor control technology, highlighting its applicability, advantages, and limitations, which can be used to evaluate and identify the most appropriate methods in livestock production management. Odor control technologies are divided into four categories: dietary manipulation (low-crude protein diet and enzyme additives in feed), in-housing management (separation of urine from feces, adsorbents used as litter additive, and indoor environment/manure surface spraying agent), manure management (semi-permeable membrane-covered, reactor composting, slurry cover, and slurry acidification), and end-of-pipe measures for air treatment (wet scrubbing of the exhaust air from animal houses and biofiltration of the exhaust air from animal houses or composting). Findings of this paper provide a theoretical basis for the application of odor control technology in livestock farms.
Collapse
Affiliation(s)
- Tiantian Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| |
Collapse
|
10
|
Hao J, Liu S, Luo A, Zhao J, Shi S, Zhang Y, Li C. Assessing Nursery-Finishing Pig Manures on Growth of Black Soldier Fly Larvae. Animals (Basel) 2023; 13:ani13030452. [PMID: 36766341 PMCID: PMC9913757 DOI: 10.3390/ani13030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Livestock manure is an important component of agricultural organic waste, and in recent years, with the development of research on the bioconversion of manure, BSFs have been proven to be useful in the treatment of a variety of livestock wastes. In-depth research on the composition of manure and its effect on the development of BSFL is, however, very scarce. The purpose of this study was to identify the parameters that influenced the growth of BSFL that was fed fattening pig manure. The pH, moisture, and nutrients of the fattening manures (namely, nursery, growing, and finishing pig manures) were measured. To examine the influence of manure types on larval growth, 100 larvae were inoculated in 100 g of each type of manure in triplicate. According to the findings, larvae fed finishing pig manure had the lowest dry weight (30.2 ± 6.1 mg) compared to those fed growing (58.2 ± 7.3 mg) or nursery (65.5 ± 6.2 mg) pig manure. The correlation coefficients (r) between the nutrients in the manure and the weight of the larvae were calculated. Hemicellulose had the greatest |r| value (0.9569). Further research revealed that larvae raised on hemicellulase-pretreated finishing pig manure frequently weighed 21-30% (days 2-8) more than larvae raised on control manure. In conclusion, hemicellulose was a significant component that might hinder larval growth. The results of this study could be used to improve the system before it is put into use.
Collapse
Affiliation(s)
- Jianwei Hao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Shuang Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
- Correspondence:
| | - Aiguo Luo
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Jia Zhao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Shengli Shi
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Yun Zhang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chujun Li
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475, USA
| |
Collapse
|
11
|
Fedyaeva ON, Vostrikov AA. Processing Watered Toxic Waste of Pig and Poultry Farming in Sub- and Supercritical Water (Review). RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122080085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
He Z, Zhang Y, Liu X, Xu W, Hou Y, Wang H, Zhang F. Ammonia mitigation potential in an optimized crop-layer production system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156701. [PMID: 35716757 DOI: 10.1016/j.scitotenv.2022.156701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Livestock and crop production are the main sources of ammonia (NH3) emissions, which are known to degrade the air quality. Numerous studies have been conducted to explore the mitigation potential of various approaches, although few have examined the systematic NH3 emission mitigation potential when considering both crop and livestock systems based on coherent in situ measurement results. Herein, we design an optimal system wherein coupled crop and layer production systems reveal feasible approaches for significant mitigation potential at each stage of the process. Specifically, these measures involve (i) using a low crude protein (LCP) feed, (ii) composting manure with certain additives, and (iii) substituting manure with optimal fertilization in a summer maize-winter wheat cropping system. The results show that (i) LCP feed leads to a 14 % reduction in NH3 emissions at the housing stage, (ii) introducing additives during the composing stage reduces NH3 emissions by 16 %-46 %, and (iii) the NH3 reduction potential reaches 35 %-44 % at the field application stage. In the overall crop-layer system, the optimal system with the improved management strategy applied at every stage results in a 48 % and 56 % reduction in NH3 emissions for per unit eggs and grain production, respectively, relative to a traditional production system. This study confirms that NH3 emissions can be cut in half by implementing optimal crop-livestock systems with appropriate mitigation approaches. This is a feasible model that can be promoted and extended in various agricultural areas, which together with technological, policy, and economic support can enable significant mitigation potential for sustainable agriculture development.
Collapse
Affiliation(s)
- Zhilong He
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Ying Zhang
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Xuejun Liu
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Wen Xu
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Yong Hou
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Hongliang Wang
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Fusuo Zhang
- National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Trabue SL, Kerr BJ, Scoggin KD, Andersen DS, van Weelden M. Swine diets: Impact of carbohydrate sources on manure characteristics and gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153911. [PMID: 35189227 DOI: 10.1016/j.scitotenv.2022.153911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Swine growers seeking to lower costs and environmental impact have turned to alternative carbohydrate feed sources. A feeding trial was conducted to determine the effect carbohydrate sources have on manure composition and gas emissions. A total of 48 gilts averaging 138 kg BW were fed diets consisting of (a) low fiber (LF) grain, or (b) high fiber (HF) aro-industrial co-product (AICP). The LF diets included corn and soybean meal (CSBM) and barley soybean meal (BSBM). The HF AICP diets were CSBM based and supplemented with one of the following materials: beet pulp; corn distillers dried grains with solubles; soybean hulls; or wheat bran. Diets were fed for 42 d with an average daily feed intake of 2.71 kg d-1. Feces and urine were collected twice daily and added to manure storage containers in which manure slurries were monitored for gas emissions and chemical properties. Manures of animals fed HF diets had significantly (P < 0.05) more excretion of solids, C, N, and organic N, but less total S compared to pigs fed the LF diets. Animals feed HF diets had significantly (P < 0.05) higher levels of ammonia, sulfide, volatile fatty acids, and phenols in manure compared to pigs fed the LF diets. Manure of animals fed HF diets had 30% (P < 0.05) lower NH3 and 17% lower hydrogen sulfide emissions; however, fiber had no impact on odor emissions. Based on the partitioning of nutrients, animals fed HF fiber diets had increased manure retention for C and N but decreased levels of N gas emissions and manure S. There were little differences in manure and gas emissions for animals fed LF diets, but the source of HF AICP diets had a significant impact on manure composition and gas emissions.
Collapse
Affiliation(s)
- S L Trabue
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America.
| | - B J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - K D Scoggin
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - D S Andersen
- Iowa State University, Department of Agriculture and Biological Engineering, Ames, IA 50011, United States of America
| | - M van Weelden
- Iowa State University, Department of Agriculture and Biological Engineering, Ames, IA 50011, United States of America
| |
Collapse
|
14
|
Chojnacka K, Mikula K, Izydorczyk G, Skrzypczak D, Witek-Krowiak A, Gersz A, Moustakas K, Iwaniuk J, Grzędzicki M, Korczyński M. Innovative high digestibility protein feed materials reducing environmental impact through improved nitrogen-use efficiency in sustainable agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112693. [PMID: 33962281 DOI: 10.1016/j.jenvman.2021.112693] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Sustainable development in agriculture brings both environmental and economic benefits. Contemporary agriculture is also about increasing nutrient use efficiency, especially nitrogen, as the critical nutrient causing the most significant environmental pressure. This creates the need to produce highly digestible protein feed with high bioavailability, reducing losses of biogenic elements to feces. In this review, the latest trends and the potential for their implementation in sustainable agriculture have been compared, as well as the need to reduce the negative environmental impact of agriculture has been demonstrated. Applying local protein sources to feed animals reduces greenhouse gas emissions associated with transportation. The production of highly digestible fodder leads to a reduction in environmental pollution caused by excessive nitrogen outflows. Another approach indecreasing ammonia emissions from livestock farming is feed protein reduction and amino acid supplementation. All of the aforementioned approaches may result in beneficial long-term changes, contributing to environmental safety, animal welfare and human health.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland.
| | - Dawid Skrzypczak
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Aleksandra Gersz
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | | | | | - Mariusz Korczyński
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Science, ul. Chełmońskiego 38C, 55-630, Wrocław, Poland
| |
Collapse
|
15
|
Trabue SL, Kerr BJ, Scoggin KD, Andersen D, van Weelden M. Swine diets impact manure characteristics and gas emissions: Part II protein source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144207. [PMID: 33383511 DOI: 10.1016/j.scitotenv.2020.144207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Soybean meal is the dominate protein source for swine diets in the world driven largely by economics, nutritive value, and availability; but conditions can change requiring growers to consider more economical and available protein alternatives. A feeding trial was conducted to determine the impact dietary protein source material on manure slurry chemical properties and manure gas emissions. A total of 32 gilts averaging 130 kg BW were fed either a control diet formulated with soybean meal (SB) or an alternative protein source that included corn gluten meal (CG); canola meal (CM); or poultry meal (PM), with all diets containing 176 g protein kg-1. Diets were fed for 45 d with an average daily feed intake of 2.68 kg/d. Feces and urine were collected twice daily after each feeding and added to animal-specific manure storage containers. At the end of the study, manure slurries were monitored for gas emissions and chemical properties. Dietary protein source had a significant effect (P < 0.05) on manure pH, total solids, total C, protein N, and total S. Pigs fed the diets containing CM had significantly higher levels of sulfide, butanoic acid, and branch chain fatty acids compared to pigs fed SB diets (P < 0.05). Pigs fed CM diets had significantly lower emissions of NH3 compared to pigs fed SB diets (P < 0.05). There were no significant differences in C or S emissions or in odorant emission as affected by source of dietary protein. Hydrogen sulfide was the most dominate odorants for all dietary treatments.
Collapse
Affiliation(s)
- S L Trabue
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America.
| | - B J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - K D Scoggin
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - D Andersen
- Iowa State University, Department of Agriculture and Biological Engineering, Ames, IA 50011, United States of America
| | - M van Weelden
- Iowa State University, Department of Agriculture and Biological Engineering, Ames, IA 50011, United States of America
| |
Collapse
|
16
|
Kim S, Reza A, Shim S, Won S, Ra C. Development of a Real-Time Controlled Bio-Liquor Circulation System for Swine Farms: A Lab-Scale Study. Animals (Basel) 2021; 11:ani11020311. [PMID: 33530600 PMCID: PMC7910917 DOI: 10.3390/ani11020311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Odor emission from swine production facilities can irritate the people living in surrounding areas, although the farmers consider odor emission as a part of farming practice. Despite the governmental and institutional efforts, odor-related complaints from the neighborhood communities around the swine farms are rapidly increasing and have been identified as a key concern to sustaining progress of the swine industry globally. Bio-liquor circulation systems (BCSs) in swine farms have become popular among the farmers as an odor reduction technology in Korea. However, due to the lack of appropriate operating strategies, the odor reduction capacity of BCSs is often depleted. In this lab-scale study, a real-time control strategy based on oxidation–reduction potential (ORP) and pH (mV) time profiles was developed and applied for BCS operation. This study shows the potential effectiveness of using ORP and pH (mV) time profiles as operational parameters for the BCS to improve swine manure properties in slurry pits and thus reduce odor emission. Abstract In this study, an attempt was made to develop a real-time control strategy using oxidation–reduction potential (ORP) and pH (mV) time profiles for the efficient operation of bio-liquor circulation system (BCS) in swine farms and its effectiveness in reducing odor emission through improving manure properties in the slurry pit was evaluated. The lab-scale BCS used in this study comprised a bioreactor and a slurry pit. The bioreactor was operated in a sequence of inflow of swine manure → anoxic phase → aerobic phase → circulation to the slurry pit. The improvement in swine manure properties was elucidated by comparing the results of the BCS slurry pit (circulation type, CT) and conventional slurry pit (non-circulation type, NCT). The results revealed that the ORP time profile successfully detected the nitrate knee point (NKP) in the anoxic phase. However, it was less stable in detecting the nitrogen break point (NBP) in the aerobic phase. The pH (mV) time profile showed a more efficient detection of NBP. Compared to the NCT slurry pit, concentrations of ammonium nitrogen (NH4-N) and soluble total organic carbon (STOC) and other analyzed swine manure properties were much lower in the CT slurry pit. In the aspect of odor reduction, around 98.3% of NH3 was removed in the CT slurry pit. The real-time controlled BCS can overcome the drawbacks of fixed time-based BCS operation and therefore can be considered as a useful tool to reduce odor emission from intensive swine farming operations. However, further studies and refinement in control algorithms might be required prior to its large-scale application.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.K.); (A.R.); (S.S.)
| | - Arif Reza
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.K.); (A.R.); (S.S.)
| | - Soomin Shim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.K.); (A.R.); (S.S.)
| | - Seunggun Won
- Department of Animal Resources, College of Life and Environmental Science, Daegu University, Gyeongsan 38453, Korea;
| | - Changsix Ra
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.K.); (A.R.); (S.S.)
- Correspondence: ; Tel.: +82-33-250-8618
| |
Collapse
|