1
|
Shi J, Hu Y, Li S, Xiao W, Yang Y, Ji J. Electro-Conductive Modification of Polyvinylidene Fluoride Membrane for Electrified Wastewater Treatment: Optimization and Antifouling Performance. MEMBRANES 2024; 15:1. [PMID: 39852242 PMCID: PMC11767159 DOI: 10.3390/membranes15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance. The anti-fouling property of the conductive membranes was analyzed using model pollutants. The results indicate that when the concentrations of the pyrrole, BVIMBF4, and FeCl3·6H2O are 0.9 mol/L, 4.8 mmol, and 0.8 mol/L, respectively, the electrical resistance of the PVDF-CM is 93 Ω/sq with the water contact angle of 31°, demonstrating good conductivity and hydrophilicity. Batch membrane filtration experiments coupled with negative voltage indicated that when an external voltage of 2.0 V is applied, membrane fouling rates for the conductive membrane filtering BSA and SA solutions are reduced by 17.7% and 17.2%, respectively, compared to the control (0 V). When an external voltage of 0.5 V is applied, the membrane fouling rate for the conductive membrane filtering HA solution is reduced by 72.6%. This study provides a valuable reference for the efficient preparation of conductive membranes for cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Jinzhuo Shi
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yisong Hu
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Songhua Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Wenqian Xiao
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yuan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Jiayuan Ji
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
2
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Qi Y, Li D, Zhang S, Li F, Hua T. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. J Environ Sci (China) 2024; 141:102-128. [PMID: 38408813 DOI: 10.1016/j.jes.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Electrochemical filtration can not only enrich low concentrations of pollutants but also produce reactive oxygen species to interact with toxic pollutants with the assistance of a power supply, making it an effective strategy for drinking water purification. In addition, the application of electrochemical filtration facilitates the reduction of pretreatment procedures and the use of chemicals, which has outstanding potential for maximizing process simplicity and reducing operating costs, enabling the production of safe drinking water in smaller installations. In recent years, the research on electrochemical filtration has gradually increased, but there has been a lack of attention on its application in the removal of low concentrations of pollutants from low conductivity water. In this review, membrane substrates and electrocatalysts used to improve the performance of electrochemical membranes are briefly summarized. Meanwhile, the application prospects of emerging single-atom catalysts in electrochemical filtration are also presented. Thereafter, several electrochemical advanced oxidation processes coupled with membrane filtration are described, and the related working mechanisms and their advantages and shortcomings used in drinking water purification are illustrated. Finally, the roles of electrochemical filtration in drinking water purification are presented, and the main problems and future perspectives of electrochemical filtration in the removal of low concentration pollutants are discussed.
Collapse
Affiliation(s)
- Yuying Qi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
4
|
Peng F, Zhang Z, Sun M, Shao Y, Feng Y. Evaluating performance of nano-Fe 3O 4 modified granular activated carbon assisted wastewater treatment in anaerobic fluidized membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 374:128737. [PMID: 36781146 DOI: 10.1016/j.biortech.2023.128737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Magnetic granular activated carbon (MGAC), a nano-Fe3O4 modified granular activated carbon, was used as the carrier in an anaerobic fluidized-bed membrane bioreactor (AFMBR) to promote domestic wastewater treatment efficiency and alleviate membrane biofouling. Chemical oxygen demand (COD) removal reached 89 ± 2.6% with the effluent concentration of 20 ± 3.9 mg/L in the MGAC-AFMBR, while it was 28 ± 5.2 mg/L in AFMBR at hydraulic retention time (HRT) of 4 h. Total nitrogen (TN) removal was also enhanced by 4.0% with MGAC. An increased proportion of Chloroflexi and Bacteroidetes in the sludge may be responsible for improved treatment performance. MGAC reduced the protein and polysaccharide content in extracellular polymeric substances (EPS) by 9.8% and 8.1%, respectively. Besides, Bacteroidetes and Proteobacteria abundance decreased by 4.0% and 16.6% in the membrane cake layer with MGAC addition. Therefore, the high-quality effluent and low membrane biofouling of AFMBR was sustained by MGAC.
Collapse
Affiliation(s)
- Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Muchen Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yuqiang Shao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
5
|
Dhiman S, Balakrishnan M, Naddeo V, Ahsan N. Performance of Anaerobic Membrane Bioreactor (AnMBR) with Sugarcane Bagasse Ash-based Ceramic Membrane treating Simulated Low-strength Municipal Wastewater: Effect of Operation Conditions. WATER, AIR, AND SOIL POLLUTION 2023; 234:141. [PMID: 36811124 PMCID: PMC9933834 DOI: 10.1007/s11270-023-06173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED This study assesses the performance of waste sugarcane bagasse ash (SBA)-based ceramic membrane in anaerobic membrane bioreactor (AnMBR) treating low-strength wastewater. The AnMBR was operated in sequential batch reactor (SBR) mode at hydraulic retention time (HRT) of 24 h, 18 h, and 10 h to understand the effect on organics removal and membrane performance. Feast-famine conditions were also examined to evaluate system performance under variable influent loadings. An average removal of >90% chemical oxygen demand (COD) was obtained at each HRT and starvation periods up to 96 days did not significantly affect removal efficiency. However, feast-famine conditions affected extracellular polymeric substances (EPS) production and consequently the membrane fouling. EPS production was high (135 mg/g MLVSS) when the system was restarted at 18 h HRT after shutdown (96 days) with corresponding high transmembrane pressure (TMP) build-up; however, the EPS content stabilized at ~60-80 mg/g MLVSS after a week of operation. Similar phenomenon of high EPS and high TMP was experienced after other shutdowns (94 and 48 days) as well. Permeate flux was 8.8±0.3, 11.2±0.1 and 18.4±3.4 L/m2 h at 24 h, 18 h and 10 h HRT, respectively. Filtration-relaxation (4 min - 1 min) and backflush (up to 4 times operating flux) helped control fouling rate. Surface deposits (that significantly attributed to fouling) could be effectively removed by physical cleaning, resulting in nearly complete flux recovery. Overall, SBR-AnMBR system equipped with waste-based ceramic membrane appears promising for treatment of low-strength wastewater with disruptions in feeding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11270-023-06173-3.
Collapse
Affiliation(s)
- Sourbh Dhiman
- Department of Civil Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, 110025 India
| | - Malini Balakrishnan
- The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA Italy
| | - Naved Ahsan
- Department of Civil Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
6
|
Su X, Xing D, Song Z, Dong W, Zhang M, Feng L, Wang M, Sun F. Understanding the effects of electrical exposure mode on membrane fouling in an electric anaerobic ceramic membrane bioreactor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Zhou L, Dong N, Ye B, Zhuang WQ, Xia S. Assessing effects of Ca 2+ addition on membrane bioreactor performance and macro-floc sludge characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149223. [PMID: 34375270 DOI: 10.1016/j.scitotenv.2021.149223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Calcium ions (Ca2+) can trigger coagulation-flocculation process to form macro-flocculated sludge (MFS). Thus, dosing Ca2+-containing reagents into membrane bioreactors (MBRs) is considered as a promising approach to mitigate membrane biofouling. However, a mechanistic understanding of Ca2+ addition to MBR performance remains elucidated, such as physicochemical characteristics of MFS and their functionality variations. Consequently, this study was sought to understand the interplays of Ca2+ addition and MBR performance with a focus on characterizing MFS in detail. Three parallel MBRs were amended with 82, 208 and 410 mg-Ca2+/L final concentrations. Particle size analyses revealed that MFS formation was overall enhanced by the Ca2+ addition and granular sludge with diameters of up to 900 μm was formed in the 410 mg-Ca2+/L scenario. We believed that cationic bridges facilitated by elevated Ca2+ concentrations in conjunction with coagulation-flocculation were primary mechanisms of the formation of large flocs. Moreover, significant portions of soluble proteins and polysaccharides were flocculated and precipitated by Ca2+, which demonstrated a negative correlation between extracellular polymeric substances (EPS) concentrations and the formation of MFS. Furthermore, the population abundancies of Thiotrichaceae, Sphingomonadales and Hyphomicrobiaceae decreased in the sludge with Ca2+ addition resulted in profound changes of the microbial communities in the MBRs. But MBR performance, such as chemical oxygen demand removal (over 90%), showed no variation during the MBR operation. On the contrary, total nitrogen removal was inhibited in the MBRs. It was because the enlarging MFS formed diffusion barriers to prevent organic component from entering into the sludge flocs to be consumed.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Nan Dong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Biao Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, PR China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, PR China.
| |
Collapse
|
8
|
Li P, Yang C, Sun F, Li XY. Fabrication of conductive ceramic membranes for electrically assisted fouling control during membrane filtration for wastewater treatment. CHEMOSPHERE 2021; 280:130794. [PMID: 34162118 DOI: 10.1016/j.chemosphere.2021.130794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane technology is widely used in water and wastewater treatment. However, membrane fouling remains one of the biggest challenges for membrane applications. In this study, an electrically assisted technique was developed for the control of fouling on flat-sheet ceramic membranes. The novel conductive membrane was fabricated by coating dopamine and carbon nanotubes (CNTs) onto the surface of an α-alumina membrane support to form a conductive CNT coating. The resulting flat-sheet conductive ceramic membrane (FSCCM) exhibited excellent electric conductivity and stability, which performed well in filtration of the synthetic wastewater containing inorganic matter (kaolin solution) or organic pollutants (oil emulsion). By applying a negative charge on the FSCCM with a DC voltage of 2.0 V, the membrane fouling rate was reduced by approximately 50%. The energy consumption rate for the electrically assisted membrane fouling control was only 22.2 × 10-3 kWh/m3 in paused-charge mode, with a pause duration of 15 s. A fouling-layer analysis indicted that the imposed electric field greatly reduced the amount of strongly attached foulants on the membrane surface and in the membrane pores. It is believed that the electric field exerted an electrostatic force on the negatively charged pollutants, such as particles and oil droplets, which prevented the foulants from attaching to the membrane surface. This FSCCM-based method provides a clean, effective, and energy-efficient technique for membrane fouling control, thereby enabling high-rate membrane filtration.
Collapse
Affiliation(s)
- Pu Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Feiyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiao-Yan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; State Key Laboratory of Marine Pollution (City University of Hong Kong), Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Shahid MK, Choi Y. Sustainable Membrane-Based Wastewater Reclamation Employing CO 2 to Impede an Ionic Precipitation and Consequent Scale Progression onto the Membrane Surfaces. MEMBRANES 2021; 11:membranes11090688. [PMID: 34564505 PMCID: PMC8471102 DOI: 10.3390/membranes11090688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
CO2 capture and utilization (CCU) is a promising approach in controlling the global discharge of greenhouse gases (GHG). This study details the experimental investigation of CO2 utilization in membrane-based water treatment systems for lowering the potential of ionic precipitation on membrane surface and subsequent scale development. The CO2 utilization in feed water reduces the water pH that enables the dissociation of salts in their respective ions, which leave the system as a concentrate. This study compares the efficiency of CO2 and other antifouling agents (CA-1, CA-2, and CA-3) for fouling control in four different membrane-based wastewater reclamation operations. These systems include Schemes 1, 2, 3, and 4, which were operated with CA-1, CA-2, CA-3, and CO2 as antiscalants, respectively. The flux profile and percent salt rejection achieved in Scheme 4 confirmed the higher efficiency of CO2 utilization compared with other antifouling agents. This proficient role of CO2 in fouling inhibition is further endorsed by the surface analysis of used membranes. The SEM, EDS, and XRD examination confirmed the higher suitability of CO2 utilization in controlling scale deposition compared with other antiscalants. The cost estimation also supported the CO2 utilization for environmental friendly and safe operation.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon 34134, Korea;
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon 34134, Korea
- Correspondence:
| |
Collapse
|
10
|
New insight into the membrane fouling of anaerobic membrane bioreactors treating sewage: Physicochemical and biological characterization of cake and gel layers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|