1
|
Sun J, Wang X, He Y, Han M, Li M, Wang S, Chen J, Zhang Q, Yang B. Environmental fate of antibiotic resistance genes in livestock farming. Arch Microbiol 2025; 207:120. [PMID: 40214801 DOI: 10.1007/s00203-025-04320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
As emerging environmental pollutants, antibiotic resistance genes (ARGs) are prevalent in livestock farms and their surrounding environments. Although existing studies have focused on ARGs in specific environmental media, comprehensive research on ARGs within farming environments and their adjacent areas remains scarce. This review explores the sources, pollution status, and transmission pathways of ARGs from farms to the surrounding environment. Drawing on the "One Health" concept, it also discusses the potential risks of ARGs transmission from animals to human pathogens and the resulting impact on human health. Our findings suggest that the emergence of ARGs in livestock farming environments primarily results from intrinsic resistance and genetic mutations, while their spread is largely driven by horizontal gene transfer. The distribution of ARGs varies according to the type of resistance genes, seasonal changes, and the medium in which they are present. ARGs are disseminated into the surrounding environment via pathways such as manure application, wastewater discharge, and aerosol diffusion. They may be absorbed by humans, accumulating in the intestinal microbiota and subsequently affecting human health. The spread of ARGs is influenced by the interplay of microbial communities, antibiotics, heavy metals, emerging pollutants, and environmental factors. Additionally, we have outlined three control strategies: reducing the emergence of ARGs at the source, controlling their spread, and minimizing human exposure. This article provides a theoretical framework and scientific guidance for understanding the cross-media migration of microbial resistance in livestock farming environments.
Collapse
Affiliation(s)
- Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Jia Chen
- Shijiazhuang University, Shijiazhuang, 050035, China
| | - Qiang Zhang
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Xin R, Yang F, Zeng Y, Zhang M, Zhang K. Analysis of antibiotic resistance genes in livestock manure and receiving environment reveals non-negligible risk from extracellular genes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40208658 DOI: 10.1039/d4em00570h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Antibiotic resistance genes (ARGs), extracellular and intracellular, collectively constitute the complete resistome within farming environments. However, a systematic analysis of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) remains missing. This study characterized eARGs and iARGs in livestock manure and examined their effects on the agricultural soil receiving them. The findings indicated differences in DNA concentration and the ratios of iDNA and eDNA across various manures, with chicken manure demonstrating the highest eDNA levels (20.7-22.7%). Different ARG subtypes had distinct pollution levels in livestock manure. Generally, except for blaTEM-1 and blaOXA-1, ermC, ermB, and cfr, other ARGs were abundant in eDNA (beyond 104 copies per g DW in each sample) and iDNA (beyond 107 copies per g DW) of animal manure. The copy numbers of eARGs and iARGs differed in different manures, with swine manure having the highest, ranging from 6.08 × 103 to 4.30 × 108 and from 3.21 × 107 to 9.51 × 1010 copies per g DW, respectively. Both iARGs and eARGs were more abundant in soil when manure was applied. The impacts of the various manures varied, with chicken manure having the most significant influence. Interestingly, several eARGs were much more abundant in soil than their intracellular counterparts, highlighting the need to regulate and manage both eARGs and iARGs.
Collapse
Affiliation(s)
- Rui Xin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Yuanye Zeng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Meiqi Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| |
Collapse
|
3
|
Krupka M, Wolska L, Piechowicz L, Głowacka K, Piotrowicz-Cieślak AI. The Impact of Tetracycline on the Soil Microbiome and the Rhizosphere of Lettuce ( Lactuca sativa L.). Int J Mol Sci 2025; 26:2854. [PMID: 40243447 PMCID: PMC11988489 DOI: 10.3390/ijms26072854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The impact of tetracycline on the soil and rhizosphere microbiome of lettuce was analyzed. Soil was collected from an agricultural field regularly fertilized with manure, and tetracycline was added at two concentrations (5 mg/kg and 25 mg/kg). In untreated soil, dominant bacteria included Proteobacteria (43.17%), Bacteroidota (17.91%), and Firmicutes (3.06%). Tetracycline addition caused significant shifts in the microbiome composition, notably increasing Actinobacteriota (22%) and favoring Mycobacterium tuberculosis (low concentration) and Mycobacterium holsaticum (high concentration). Proteobacteria decreased by 21%, possibly indicating antibiotic resistance development. An increase in Firmicutes, particularly Bacillales, suggested a selection for resistant strains. In the lettuce rhizosphere, tetracycline-induced changes were less pronounced than in soil. Proteobacteria remained dominant, but taxa like Burkholderiales and Chitinophagales increased in response to tetracycline. The rise in chitin-degrading bacteria might result from fungal overgrowth linked to the bacteriostatic effects of tetracycline. Pathogens such as M. tuberculosis, observed in the soil, were not detected in the lettuce rhizosphere.
Collapse
Affiliation(s)
- Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.K.); (K.G.)
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, 80-204 Gdansk, Poland;
| | - Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, 80-204 Gdansk, Poland;
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.K.); (K.G.)
| | - Agnieszka I. Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.K.); (K.G.)
| |
Collapse
|
4
|
Vougat Ngom R, Laconi A, Tolosi R, Akoussa AMM, Ziebe SD, Kouyabe VM, Piccirillo A. Resistance to medically important antimicrobials in broiler and layer farms in Cameroon and its relation with biosecurity and antimicrobial use. Front Microbiol 2025; 15:1517159. [PMID: 39881983 PMCID: PMC11774882 DOI: 10.3389/fmicb.2024.1517159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Poultry production accounts for 42% of Cameroonian meat production. However, infectious diseases represent the main hindrance in this sector, resulting in overuse and misuse of antimicrobials that can contribute to the emergence and dissemination of antimicrobial resistance (AMR). This study aimed to evaluate the prevalence of antimicrobial resistance genes (ARGs) conferring resistance to carbapenems (blaVIM-2 and blaNDM ), (fluoro) quinolones (qnrS, qnrA, and qnrB), polymyxins (mcr1 to mcr5), and macrolides (ermA and ermB) in the poultry farm environment. Additionally, the study examined the relationship between these ARGs and biosecurity implementation, as well as farmers' knowledge, attitudes, and practices toward antimicrobial use (AMU) and AMR, including their perception of AMR risk. Materials and methods Fecal, drinking water, and biofilm samples from drinking water pipelines were collected from 15 poultry farms and subsequently analyzed by real-time PCR and 16S rRNA NGS. Results All samples tested positive for genes conferring resistance to (fluoro) quinolones, 97.8% to macrolides, 64.4% to polymyxins, and 11.1% to carbapenems. Of concern, more than half of the samples (64.4%) showed a multi-drug resistance (MDR) pattern (i.e., resistance to ≥3 antimicrobial classes). Drinking water and biofilm microbial communities significantly differed from the one of the fecal samples, both in term of diversity (α-diversity) and composition (β-diversity). Furthermore, opportunistic pathogens (i.e., Comamonadaceae and Sphingomonadaceae) were among the most abundant bacteria in drinking water and biofilm. The level of biosecurity implementation was intermediate, while the knowledge and attitude of poultry farmers toward AMU were insufficient and unsuitable, respectively. Good practices toward AMU were found to be correlated with a reduction in polymyxins and MDR. Discussion This study provides valuable information on resistance to medically important antimicrobials in poultry production in Cameroon and highlights their potential impact on human and environmental health.
Collapse
Affiliation(s)
- Ronald Vougat Ngom
- Department of Animal Production, School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Adonis M. M. Akoussa
- Department of Animal Production, School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | - Stephane D. Ziebe
- Department of Animal Production, School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
5
|
Gentile A, Di Stasio L, Oliva G, Vigliotta G, Cicatelli A, Guarino F, Nissim WG, Labra M, Castiglione S. Antibiotic resistance in urban soils: Dynamics and mitigation strategies. ENVIRONMENTAL RESEARCH 2024; 263:120120. [PMID: 39384008 DOI: 10.1016/j.envres.2024.120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments.
Collapse
Affiliation(s)
- Annamaria Gentile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Luca Di Stasio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Gianmaria Oliva
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy.
| | - Giovanni Vigliotta
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
6
|
Zeng Q, Lam K, Salcedo A, Tikekar RV, Micallef SA, Blaustein RA. Effects of Organic Soil Amendments on Antimicrobial-Resistant Bacteria in Urban Agriculture Environments. J Food Prot 2024; 87:100344. [PMID: 39147100 DOI: 10.1016/j.jfp.2024.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Biological soil amendments of animal origin (BSAAOs) are widely used in urban agriculture to improve soil quality. Although BSAAO use is regulated due to risks for introducing foodborne pathogens, effects on antimicrobial-resistant (AMR) bacteria are not well established. Here, we aimed to explore the impacts of BSAAOs on levels of resident AMR bacteria in leafy vegetable production environments (i.e., kale, lettuce, chard, cabbage) across urban farms and community gardens in the greater Washington D.C. area (n = 7 sites). Leaf tissue (LT), root zone soil (RZS; amended soil in crop beds), and bulk soil (BS; site perimeter) were collected and analyzed for concentrations of total heterotrophic bacteria (THB), ampicillin (Amp) or tetracycline (Tet) resistant THB, and coliforms. As expected, amended plots harbored significantly higher concentrations of THB than bulk soil (P < 0.001). The increases in total bacteria associated with reduced fractions of Tet-resistant bacteria (P = 0.008), as well as case-specific trends for reduced fractions of Amp-resistant bacteria and coliforms. Site-to-site variation in concentrations of AMR bacteria in soil and vegetable samples reflected differences in land history and crop management, while within-site variation was associated with specific amendment sources, as well as vegetable type and cultivar. Representative isolates of the AMR bacteria and coliforms were further screened for multidrug resistance (MDR) phenotypes, and a high frequency was observed for the former. In amended soils, as the soil pH (range 6.56-7.80) positively correlated with the fraction of Tet-resistant bacteria (rho = 0.529; P < 0.001), crop management strategies targeting pH may have applications to control related risks. Overall, our findings demonstrate that soil amendments promote soil bacteria concentrations and have important implications for limiting the spread of AMR bacteria, at least in the urban landscape.
Collapse
Affiliation(s)
- Qingyue Zeng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Kevin Lam
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Autumn Salcedo
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States; Centre for Food Safety and Security Systems, University of Maryland, College Park, Maryland, United States
| | - Ryan A Blaustein
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States.
| |
Collapse
|
7
|
Zeng JY, Meng M, Qi L, Li Y, Yao H. Environmental risks in swine biogas slurry-irrigated soils: A comprehensive analysis of antibiotic residues, resistome, and bacterial pathogens. ENVIRONMENT INTERNATIONAL 2024; 191:108954. [PMID: 39173236 DOI: 10.1016/j.envint.2024.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Simple anaerobic digestion is insufficient to completely remove residual parent antibiotics and antibiotic resistance genes (ARGs) from animal manure. ARG prevalence in swine biogas slurry-irrigated soils threatens human health. However, comprehensive analysis of antibiotic residues, high-resolution resistance gene profiles, and pathogenic microbiomes in biogas slurry-irrigated soils is very limited. Here, we comprehensively determined the antibiotics, resistome, and potential pathogens distribution in these soils, using high-performance liquid chromatography-tandem mass spectrometry, high-throughput quantitative PCR, and 16S rRNA gene sequencing. The results revealed a significant enrichment of tetracyclines and fluoroquinolones antibiotics and ARGs in soils with prolonged biogas slurry irrigation, with a total of 12 antibiotics, 175 unique ARGs, and 9 mobile genetic elements (MGEs) detected. Quantification of veterinary antibiotic residues (especially chlortetracycline) showed significant correlations with multiple ARGs. The abundance of ARGs and MGEs was highest in the biogas slurry-irrigated soils, denoting a tight link between the application of biogas slurry and the spread of antibiotic resistance. The presence of 50 potential pathogenic bacterial genera, including 13 with multidrug resistance, was identified. Variation partitioning, combined with hierarchical partitioning analysis, indicated that Firmicutes, MGEs, and tetracyclines were the key drivers shaping the ARG profiles in biogas slurry-irrigated soils. The findings offer insights into the mechanisms of antibiotic residue and ARGs spread from the agricultural practice of biogas slurry irrigation, underscoring the necessity of sustainable soil management to mitigate the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jie-Yi Zeng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Miaoling Meng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lin Qi
- Ningbo Agricultural and Rural Green Development Center, Ningbo 315012, PR China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
8
|
Piccirillo A, Tolosi R, Mughini-Gras L, Kers JG, Laconi A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics (Basel) 2024; 13:808. [PMID: 39334983 PMCID: PMC11429059 DOI: 10.3390/antibiotics13090808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Drinking water distribution systems (DWDSs) represent an ideal environment for biofilm formation, which can harbor pathogenic and antimicrobial-resistant bacteria. This study aimed to assess longitudinally the microbial community composition and antimicrobial resistance (AMR), as determined by 16S rRNA NGS and qPCR, respectively, in drinking water (DW) and biofilm from DWDSs, as well as faeces, of free-range organic broiler farms. The role of DWDSs in AMR gene (ARG) dissemination within the farm environment and transmission to animals, was also assessed. DW and biofilm microbial communities differed from those of faecal samples. Moreover, potentially pathogenic and opportunistic bacteria (e.g., Staphylococcaceae) were identified in water and biofilms. High prevalence and abundance of ARGs conferring resistance to carbapenems (i.e., blaNDM), 3rd and 4th generation cephalosporins (i.e., blaCMY-2), (fluoro)quinolones (i.e., qnrS), and polymyxins (i.e., mcr-3 and mcr-5) were detected in DW, biofilm, and faecal samples, which is of concern for both animal and human health. Although other factors (e.g., feed, pests, and wildlife) may contribute to the dissemination of AMR in free-range organic poultry farms, this study indicates that DWDSs can also play a role.
Collapse
Affiliation(s)
- Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| | - Lapo Mughini-Gras
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 BA Bilthoven, The Netherlands;
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, De Uithof, 3584 CL Utrecht, The Netherlands;
| | - Jannigje G. Kers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, De Uithof, 3584 CL Utrecht, The Netherlands;
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| |
Collapse
|
9
|
Pires AJ, Pereira G, Fangueiro D, Bexiga R, Oliveira M. When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiol 2024; 19:903-929. [PMID: 38661710 PMCID: PMC11290761 DOI: 10.2217/fmb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.
Collapse
Affiliation(s)
- Ana José Pires
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Gonçalo Pereira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - David Fangueiro
- LEAF Research Center, Terra Associate Laboratory, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Bexiga
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
10
|
Torres MC, Breyer GM, Riveros Escalona MA, Mayer FQ, Muterle Varela AP, Ariston de Carvalho Azevedo V, Matiuzzi da Costa M, Aburjaile FF, Dorn M, Brenig B, Ribeiro de Itapema Cardoso M, Siqueira FM. Exploring bacterial diversity and antimicrobial resistance gene on a southern Brazilian swine farm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124146. [PMID: 38740246 DOI: 10.1016/j.envpol.2024.124146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The bacterial composition of and the circulation of antimicrobial resistance genes (ARGs) in waste from Brazilian swine farms are still poorly understood. Considering that antimicrobial resistance (AMR) is one of the main threats to human, animal, and environmental health, the need to accurately assess the load of ARGs released into the environment is urgent. Therefore, this study aimed to characterize the microbiota in a swine farm in southern Brazil and the resistome in swine farm wastewater treated in a series of waste stabilization ponds (WSPs). Samples were collected from farm facilities and the surrounding environment, representing all levels of swine manure within the treatment system. Total metagenomic sequencing was performed on samples from WSPs, and 16S-rDNA sequencing was performed on all the collected samples. The results showed increased bacterial diversity in WSPs, characterized by the presence of Caldatribacteriota, Cloacimonadota, Desulfobacterota, Spirochaetota, Synergistota, and Verrucomicrobiota. Furthermore, resistance genes to tetracyclines, lincosamides, macrolides, rifamycin, phenicol, and genes conferring multidrug resistance were detected in WSPs samples. Interestingly, the most abundant ARG was linG, which confers resistance to the lincosamides. Notably, genes conferring macrolide (mphG and mefC) and rifamycin (rpoB_RIF) resistance appeared in greater numbers in the late WSPs. These drugs are among the high-priority antibiotic classes for human health. Moreover, certain mobile genetic elements (MGEs) were identified in the samples, notably tnpA, which was found in high abundance. These elements are of particular concern due to their potential to facilitate the dissemination of ARGs among bacteria. In summary, the results indicate that, in the studied farm, the swine manure treatment system could not eliminate ARGs and MGEs. Our results validate concerns about Brazil's swine production system. The misuse and overuse of antimicrobials during animal production must be avoided to mitigate AMR.
Collapse
Affiliation(s)
- Mariana Costa Torres
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91540-000, Brazil; Postgraduate Program in Veterinary Science, Brazil
| | - Gabriela Merker Breyer
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91540-000, Brazil; Postgraduate Program in Veterinary Science, Brazil
| | | | - Fabiana Quoos Mayer
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil
| | - Ana Paula Muterle Varela
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil
| | | | - Mateus Matiuzzi da Costa
- Department of Biological Sciences, Federal University of Vale do São Francisco, Petrolina, PE - 56306-410, Brazil
| | | | - Marcio Dorn
- Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil; Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg August University Göttingen, 37073, Göttingen, Germany
| | | | - Franciele Maboni Siqueira
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91540-000, Brazil; Postgraduate Program in Veterinary Science, Brazil; Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil.
| |
Collapse
|
11
|
Liu H, Pan S, Cheng Y, Luo L, Zhou L, Fan S, Wang L, Jiang S, Zhou Z, Liu H, Zhang S, Ren Z, Ma X, Cao S, Shen L, Wang Y, Cai D, Gou L, Geng Y, Peng G, Yan Q, Luo Y, Zhong Z. Distribution and associations for antimicrobial resistance and antibiotic resistance genes of Escherichia coli from musk deer (Moschus berezovskii) in Sichuan, China. PLoS One 2023; 18:e0289028. [PMID: 38011149 PMCID: PMC10681177 DOI: 10.1371/journal.pone.0289028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/08/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to investigate the antimicrobial resistance (AMR), antibiotic resistance genes (ARGs) and integrons in 157 Escherichia coli (E. coli) strains isolated from feces of captive musk deer from 2 farms (Dujiang Yan and Barkam) in Sichuan province. Result showed that 91.72% (144/157) strains were resistant to at least one antimicrobial and 24.20% (38/157) strains were multi-drug resistant (MDR). The antibiotics that most E. coli strains were resistant to was sulfamethoxazole (85.99%), followed by ampicillin (26.11%) and tetracycline (24.84%). We further detected 13 ARGs in the 157 E. coli strains, of which blaTEM had the highest occurrence (91.72%), followed by aac(3')-Iid (60.51%) and blaCTX-M (16.56%). Doxycycline, chloramphenicol, and ceftriaxone resistance were strongly correlated with the presence of tetB, floR and blaCTX-M, respectively. The strongest positive association among AMR phenotypes was ampicillin/cefuroxime sodium (OR, 828.000). The strongest positive association among 16 pairs of ARGs was sul1/floR (OR, 21.667). Nine pairs positive associations were observed between AMR phenotypes and corresponding resistance genes and the strongest association was observed for CHL/floR (OR, 301.167). Investigation of integrons revealed intl1 and intl2 genes were detected in 10.19% (16/157) and 1.27% (2/157) E. coli strains, respectively. Only one type of gene cassettes (drA17-aadA5) was detected in class 1 integron positive strains. Our data implied musk deer is a reservoir of ARGs and positive associations were common observed among E. coli strains carrying AMRs and ARGs.
Collapse
Affiliation(s)
- Hang Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shulei Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yuehong Cheng
- Sichuan Wolong National Natural Reserve Administration Bureau, Wenchuan, Sichuan, China
| | - Lijun Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Lei Zhou
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, China
| | - Siping Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Shaoqi Jiang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
12
|
Huang Z, Hu LX, Yang JB, Liu YS, He LY, Zhao JL, Ying GG. Comprehensive discovery and migration evaluation of antimicrobial drugs and their transformation products in a swine farm by target, suspect, and nontarget screening. ENVIRONMENT INTERNATIONAL 2023; 181:108304. [PMID: 37931561 DOI: 10.1016/j.envint.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Swine farms contaminated the surrounding environment through manure application and biogas slurry irrigation, hence causing the wide residual of multiple antimicrobial drugs (ADs) and their transformation products (TPs). This study performed target, suspect, and nontarget screening methods to comprehensively investigate the pollution profiles of ADs in a typical swine farm, and characterize the potential transformed pathway of TPs and distinguish specific reactions of different catalog of ADs. Samples of fresh feces, compost, biogas slurry, topsoil, column soil, groundwater and plants were analyzed using the database containing 98 target analytes, 679 suspected parent ADs, and ∼ 107 TPs. In total, 29 ADs were quantitively detected, and tetracyclines (TCs) were mostly frequently detected ADs with the concentrations up to 4251 ng/g in topsoil. Soil column investigation revealed that doxycycline (DOX) and tetracycline (TC) in soil could migrate to depths of approximately 1 m in soil. Suspect screening identified 75 parent ADs, with 10 being reported for the first time in environmental media. Semi-quantification of ADs revealed that one of the less-concerned ADs, clinafloxacin, was detected to exceed 5000 ng/L in biogas slurry, suggesting that significant attentions should be paid to these less-concerned ADs. Moreover, 314 TPs was identified, and most of them were found to undergo microbial/enzymatic metabolism pathways. Overall, our study displays a comprehensive overview of ADs and their TPs in swine farming environments, and provides an inventory of crucial list that worthy of concern. The results emphasize the need to quantify the levels and distribution of previously overlooked ADs and their TPs in livestock farms.
Collapse
Affiliation(s)
- Zheng Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jiong-Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Han B, Yang F, Shen S, Mu M, Zhang K. Effects of soil habitat changes on antibiotic resistance genes and related microbiomes in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165109. [PMID: 37385504 DOI: 10.1016/j.scitotenv.2023.165109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The changes of paddy soil habitat profoundly affect the structure and function of soil microorganisms, but how this process drives the growth and spread of manure- derived antibiotic resistance genes (ARGs) after entering the soil is unclear. Herein, this study explored the environmental fate and behavior of various ARGs in the paddy soil during rice growth period. Results showed that most ARG abundances in flooded soil was lower than that in non-flooded soil during rice growth (decreased by 33.4 %). And soil dry-wet alternation altered microbial community structure in paddy field (P < 0.05), showing that Actinobacteria and Firmicutes increased in proportion under non-flooded conditions, and Chloroflexi, Proteobacteria and Acidobacteria evolved into the dominant groups in flooded soil. Meanwhile, the correlation between ARGs and bacterial communities was stronger than that with mobile genetic elements (MGEs) in both flooded and non-flooded paddy soils. Furthermore, soil properties, especially oxidation reduction potential (ORP), were proved to be an essential factor in regulating the variability of ARGs in the whole rice growth stage by structural equation model, with a direct influence (λ = 0.38, P < 0.05), following by similar effects of bacterial communities and MGEs (λ = 0.36, P < 0.05; λ = 0.29, P < 0.05). This study demonstrated that soil dry-wet alternation effectively reduced the proliferation and dissemination of most ARGs in paddy fields, providing a novel agronomic measure for pollution control of antibiotic resistance in farmland ecosystem.
Collapse
Affiliation(s)
- Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Meirui Mu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China.
| |
Collapse
|
14
|
Smoglica C, Farooq M, Ruffini F, Marsilio F, Di Francesco CE. Microbial Community and Abundance of Selected Antimicrobial Resistance Genes in Poultry Litter from Conventional and Antibiotic-Free Farms. Antibiotics (Basel) 2023; 12:1461. [PMID: 37760756 PMCID: PMC10525487 DOI: 10.3390/antibiotics12091461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, a culture-independent approach was applied to compare the microbiome composition and the abundance of the antimicrobial resistance genes (ARGs) aadA2 for aminoglycosides, tet(A), tet(B), tet(K), and tet(M) for tetracyclines, and mcr-1 for colistin in broiler litter samples collected from conventional and antibiotic-free flocks located in Central Italy. A total of 13 flocks and 26 litter samples, collected at the beginning and at the end of each rearing cycle, were submitted to 16s rRNA sequence analysis and quantitative PCR for targeted ARGs. Firmicutes resulted in the dominant phylum in both groups of flocks, and within it, the Clostridia and Bacilli classes showed a similar distribution. Conversely, in antibiotic-free flocks, a higher frequency of Actinobacteria class and Clostridiaceae, Lactobacillaceae, Corynebacteriaceae families were reported, while in the conventional group, routinely treated with antibiotics for therapeutic purposes, the Bacteroidia class and the Enterobacteriaceae and Bacillaceae families were predominant. All investigated samples were found to be positive for at least one ARG, with the mean values of aadA2 and tet(A) the highest in conventional flocks by a significant margin. The results suggest that antibiotic use can influence the frequency of resistance determinants and the microbial community in poultry flocks, even though other environmental factors should also be investigated more deeply in order to identify additional drivers of antimicrobial resistance.
Collapse
Affiliation(s)
- Camilla Smoglica
- Department of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy; (M.F.); (F.M.); (C.E.D.F.)
| | - Muhammad Farooq
- Department of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy; (M.F.); (F.M.); (C.E.D.F.)
| | - Fausto Ruffini
- Gesco Consorzio Cooperativo a r.l., 64020 Teramo, Italy;
| | - Fulvio Marsilio
- Department of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy; (M.F.); (F.M.); (C.E.D.F.)
| | - Cristina Esmeralda Di Francesco
- Department of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy; (M.F.); (F.M.); (C.E.D.F.)
| |
Collapse
|
15
|
Wentzien NM, Fernández-González AJ, Villadas PJ, Valverde-Corredor A, Mercado-Blanco J, Fernández-López M. Thriving beneath olive trees: The influence of organic farming on microbial communities. Comput Struct Biotechnol J 2023; 21:3575-3589. [PMID: 37520283 PMCID: PMC10372477 DOI: 10.1016/j.csbj.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Soil health and root-associated microbiome are interconnected factors involved in plant health. The use of manure amendment on agricultural fields exerts a direct benefit on soil nutrient content and water retention, among others. However, little is known about the impact of manure amendment on the root-associated microbiome, particularly in woody species. In this study, we aimed to evaluate the effects of ovine manure on the microbial communities of the olive rhizosphere and root endosphere. Two adjacent orchards subjected to conventional (CM) and organic (OM) management were selected. We used metabarcoding sequencing to assess the bacterial and fungal communities. Our results point out a clear effect of manure amendment on the microbial community. Fungal richness and diversity were increased in the rhizosphere. The fungal biomass in the rhizosphere was more than doubled, ranging from 1.72 × 106 ± 1.62 × 105 (CM) to 4.54 × 106 ± 8.07 × 105 (OM) copies of the 18 S rRNA gene g-1 soil. Soil nutrient content was also enhanced in the OM orchard. Specifically, oxidable organic matter, total nitrogen, nitrate, phosphorous, potassium and sulfate concentrations were significantly increased in the OM orchard. Moreover, we predicted a higher abundance of bacteria in OM with metabolic functions involved in pollutant degradation and defence against pathogens. Lastly, microbial co-occurrence network showed more positive interactions, complexity and shorter geodesic distance in the OM orchard. According to our results, manure amendment on olive orchards represents a promising tool for positively modulating the microbial community in direct contact with the plant.
Collapse
Affiliation(s)
- Nuria M. Wentzien
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Antonio J. Fernández-González
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Pablo J. Villadas
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | | | - Jesús Mercado-Blanco
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- Crop Protection Department, Instituto de Agricultura Sostenible (CSIC), 14004 Córdoba, Spain
| | - Manuel Fernández-López
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| |
Collapse
|
16
|
Yan K, Wei M, Li F, Wu C, Yi S, Tian J, Liu Y, Lu H. Diffusion and enrichment of high-risk antibiotic resistance genes (ARGs) via the transmission chain (mulberry leave, guts and feces of silkworm, and soil) in an ecological restoration area of manganese mining, China: Role of heavy metals. ENVIRONMENTAL RESEARCH 2023; 225:115616. [PMID: 36871940 DOI: 10.1016/j.envres.2023.115616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the diffusion and enrichment of antibiotic resistance genes (ARGs) and pathogens via the transmission chain (mulberry leaves - silkworm guts - silkworm feces - soil) near a manganese mine restoration area (RA) and control area (CA, away from RA). Horizontal gene transfer (HGT) of ARGs was testified by an IncP a-type broad host range plasmid RP4 harboring ARGs (tetA) and conjugative genes (e.g., korB, trbA, and trbB) as an indicator. Compared to leaves, the abundances of ARGs and pathogens in feces after silkworms ingested leaves from RA increased by 10.8% and 52.3%, respectively, whereas their abundance in feces from CA dropped by 17.1% and 97.7%, respectively. The predominant ARG types in feces involved the resistances to β-lactam, quinolone, multidrug, peptide, and rifamycin. Therein, several high-risk ARGs (e.g., qnrB, oqxA, and rpoB) carried by pathogens were more enriched in feces. However, HGT mediated by plasmid RP4 in this transmission chain was not a main factor to promote the enrichment of ARGs due to the harsh survival environment of silkworm guts for the plasmid RP4 host E. coli. Notably, Zn, Mn, and As in feces and guts promoted the enrichment of qnrB and oqxA. Worriedly, the abundance of qnrB and oqxA in soil increased by over 4-fold after feces from RA were added into soil for 30 days regardless of feces with or without E. coli RP4. Overall, ARGs and pathogens could diffuse and enrich in environment via the sericulture transmission chain developed at RA, especially some high-risk ARGs carried by pathogens. Thus, greater attentions should be paid to dispel such high-risk ARGs to support benign development of sericulture industry in the safe utilization of some RAs.
Collapse
Affiliation(s)
- Kanxuan Yan
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Ming Wei
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Yun Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Hainan Lu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| |
Collapse
|
17
|
Lin Z, Lu P, Wang R, Liu X, Yuan T. Sulfur: a neglected driver of the increased abundance of antibiotic resistance genes in agricultural reclaimed subsidence land located in coal mines with high phreatic water levels. Heliyon 2023; 9:e14364. [PMID: 36994396 PMCID: PMC10040520 DOI: 10.1016/j.heliyon.2023.e14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Due to the shallow burial of groundwater in coal mines with a high phreatic water level, a large area of subsidence lakes is formed after the mine collapses. Agricultural and fishery reclamation activities have been carried out, which introduced antibiotics and exacerbated the contamination of antibiotic resistance genes (ARGs), but this has received limited attention. This study analyzed ARG occurrence in reclaimed mining areas, the key impact factors, and the underlying mechanism. The results show that sulfur is the most critical factor impacting the abundance of ARGs in reclaimed soil, which is due to changes in the microbial community. The species and abundance of ARGs in the reclaimed soil were higher than those in the controlled soil. The relative abundances of most ARGs increased with the depth of reclaimed soil (from 0 to 80 cm). In addition, the microbial structures of the reclaimed and controlled soils were significantly different. Proteobacteria, was the most dominant microbial phylum in the reclaimed soil. This difference is likely related to the high abundance of sulfur metabolism functional genes in the reclaimed soil. Correlation analysis showed that the differences in ARGs and microorganisms in the two soil types were highly correlated with the sulfur content. High levels of sulfur promoted the proliferation of sulfur-metabolizing microbial populations such as Proteobacteria and Gemmatimonadetes in the reclaimed soils. Remarkably, these microbial phyla were the main antibiotic-resistant bacteria in this study, and their proliferation created conditions for the enrichment of ARGs. Overall, this study underscores the risk of the abundance and spread of ARGs driven by high-level sulfur in reclaimed soils and reveals the mechanisms.
Collapse
|
18
|
Laconi A, Tolosi R, Mughini-Gras L, Cuccato M, Cannizzo FT, Piccirillo A. Amoxicillin and thiamphenicol treatments may influence the co-selection of resistance genes in the chicken gut microbiota. Sci Rep 2022; 12:20413. [PMID: 36437351 PMCID: PMC9701756 DOI: 10.1038/s41598-022-24927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to assess the dynamics of microbial communities and antimicrobial resistance genes (ARGs) in the chicken gut following amoxicillin and thiamphenicol treatments and potential co-selection of ARGs. To this purpose, the microbial community composition, using 16S rRNA NGS, and the abundance of ARGs conferring resistance to β-lactams and phenicols, using qPCRs, were determined. Results revealed that the administered antimicrobials did not significantly reduce the gut microbiota diversity, but changed its composition, with taxa (e.g. Gallibacterium and Megamonas) being enriched after treatment and replacing other bacteria (e.g. Streptococcus and Bifidobacterium). Positive correlations were found between ARGs (e.g. cmlA, blaCMY-2, and blaSHV) and the relative abundance of specific taxa (e.g. Lactobacillus and Subdoligranulum). The selective pressure exerted by both amoxicillin and thiamphenicol resulted in an increased abundance of ARGs conferring resistance to β-lactams (e.g. blaTEM-1, blaSHV, and blaCTX-M1-like) and phenicols (e.g. floR and cmlA). These findings, together with the co-occurrence of genes conferring resistance to the two antimicrobial classes (e.g. blaTEM-1 and cmlA), suggest a possible interaction among antimicrobials on resistance emergence, possibly due to the presence of mobile genetic elements (MGEs) carrying multiple resistance determinants.
Collapse
Affiliation(s)
- Andrea Laconi
- grid.5608.b0000 0004 1757 3470Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD Italy
| | - Roberta Tolosi
- grid.5608.b0000 0004 1757 3470Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD Italy
| | - Lapo Mughini-Gras
- grid.5477.10000000120346234Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands ,grid.31147.300000 0001 2208 0118Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Matteo Cuccato
- grid.7605.40000 0001 2336 6580Department of Veterinary Science, University of Turin, Turin, Italy
| | | | - Alessandra Piccirillo
- grid.5608.b0000 0004 1757 3470Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, PD Italy
| |
Collapse
|
19
|
Marutescu LG, Jaga M, Postolache C, Barbuceanu F, Milita NM, Romascu LM, Schmitt H, de Roda Husman AM, Sefeedpari P, Glaeser S, Kämpfer P, Boerlin P, Topp E, Gradisteanu Pircalabioru G, Chifiriuc MC, Popa M. Insights into the impact of manure on the environmental antibiotic residues and resistance pool. Front Microbiol 2022; 13:965132. [PMID: 36187968 PMCID: PMC9522911 DOI: 10.3389/fmicb.2022.965132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The intensive use of antibiotics in the veterinary sector, linked to the application of manure-derived amendments in agriculture, translates into increased environmental levels of chemical residues, AR bacteria (ARB) and antibiotic resistance genes (ARG). The aim of this review was to evaluate the current evidence regarding the impact of animal farming and manure application on the antibiotic resistance pool in the environment. Several studies reported correlations between the prevalence of clinically relevant ARB and the amount and classes of antibiotics used in animal farming (high resistance rates being reported for medically important antibiotics such as penicillins, tetracyclines, sulfonamides and fluoroquinolones). However, the results are difficult to compare, due to the diversity of the used antimicrobials quantification techniques and to the different amounts and types of antibiotics, exhibiting various degradation times, given in animal feed in different countries. The soils fertilized with manure-derived products harbor a higher and chronic abundance of ARB, multiple ARG and an enriched associated mobilome, which is also sometimes seen in the crops grown on the amended soils. Different manure processing techniques have various efficiencies in the removal of antibiotic residues, ARB and ARGs, but there is only a small amount of data from commercial farms. The efficiency of sludge anaerobic digestion appears to be dependent on the microbial communities composition, the ARB/ARG and operating temperature (mesophilic vs. thermophilic conditions). Composting seems to reduce or eliminate most of antibiotics residues, enteric bacteria, ARB and different representative ARG in manure more rapidly and effectively than lagoon storage. Our review highlights that despite the body of research accumulated in the last years, there are still important knowledge gaps regarding the contribution of manure to the AMR emergence, accumulation, spread and risk of human exposure in countries with high clinical resistance rates. Land microbiome before and after manure application, efficiency of different manure treatment techniques in decreasing the AMR levels in the natural environments and along the food chain must be investigated in depth, covering different geographical regions and countries and using harmonized methodologies. The support of stakeholders is required for the development of specific best practices for prudent – cautious use of antibiotics on farm animals. The use of human reserve antibiotics in veterinary medicine and of unprescribed animal antimicrobials should be stopped and the use of antibiotics on farms must be limited. This integrated approach is needed to determine the optimal conditions for the removal of antibiotic residues, ARB and ARG, to formulate specific recommendations for livestock manure treatment, storage and handling procedures and to translate them into practical on-farm management decisions, to ultimately prevent exposure of human population.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
| | - Mihaela Jaga
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Florica Barbuceanu
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Nicoleta Manuela Milita
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Luminita Maria Romascu
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Heike Schmitt
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | | | - Stefanie Glaeser
- Institute for Applied Microbiology Heinrich-Buff-Ring, Justus-Liebig University, Gießen, Germany
| | - Peter Kämpfer
- Institute for Applied Microbiology Heinrich-Buff-Ring, Justus-Liebig University, Gießen, Germany
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Department of Biology, Agriculture and Agri-Food Canada, University of Western Ontario, London, ON, Canada
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- *Correspondence: Gratiela Gradisteanu Pircalabioru,
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- Mariana Carmen Chifiriuc,
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
| |
Collapse
|
20
|
Farooq M, Smoglica C, Ruffini F, Soldati L, Marsilio F, Di Francesco CE. Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Animals (Basel) 2022; 12:ani12182310. [PMID: 36139170 PMCID: PMC9495165 DOI: 10.3390/ani12182310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination.
Collapse
Affiliation(s)
- Muhammad Farooq
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
| | - Camilla Smoglica
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
| | | | - Lidia Soldati
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
| | - Cristina E. Di Francesco
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861-266869
| |
Collapse
|
21
|
A Comprehensive Study of the Microbiome, Resistome, and Physical and Chemical Characteristics of Chicken Waste from Intensive Farms. Biomolecules 2022; 12:biom12081132. [PMID: 36009027 PMCID: PMC9406075 DOI: 10.3390/biom12081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment.
Collapse
|
22
|
Qing L, Qigen D, Jian H, Hongjun W, Jingdu C. Profiles of tetracycline resistance genes in paddy soils with three different organic fertilizer applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119368. [PMID: 35489540 DOI: 10.1016/j.envpol.2022.119368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of organic rice cultivation areas have been accompanied by increased application of organic fertilizers. The high prevalence of soil antibiotic resistance caused by organic fertilizer application poses a severe threat to the agricultural and soil ecosystems. To date, research efforts and understanding of the effects and mechanism of action of the various organic fertilizers on antibiotic resistance in paddy soils remain poorly investigated. Tetracycline resistance genes (TRGs, including tetB, tetC, tetL, tetZ, tetM, tetO, tetT, and tetX), class 1 integron-integrase gene (intI1) and bacterial communities were characterized using quantitative-PCR and Illumina MiSeq sequencing, in paddy soils exposed to inorganic fertilizer (NPK), animal-derived organic fertilizer (AOF, composted swine and/or chicken manure), plant-derived organic fertilizer (POF, rapeseed cake and/or astragalus) and commercial organic fertilizer (COF, composted of animal manure mix with crop residues) applications. Compared with NPK, AOF applications significantly increased the relative abundance of TRGs, which was predominantly expressed in the increase of the relative abundance of tetC, tetM, tetO, tetT, and tetX, while POF and COF had no significant effect on the relative abundance of TRGs. Principal coordinate analysis revealed that AOF and POF significantly altered bacterial communities in paddy soils relative to NPK, while COF had no significant change of bacterial communities. Variation partitioning analysis indicated that soil physicochemical properties were the decisive factors for the changes of TRGs in organic paddy fields. Furthermore, redundancy analysis and the Mantel test showed that TRG profiles in AOF applied paddy soils were strongly influenced by electrical conductivity (EC). Total nitrogen (TN) and organic matter (OM) affected the distribution of TRGs in COF and POF applied paddy soils through a different mechanism. This study provides insights into the impacts of different types of organic fertilizer on the profiles of TRGs in paddy soils.
Collapse
Affiliation(s)
- Li Qing
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dai Qigen
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Hu Jian
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Wu Hongjun
- Yangzhou Supervision & Inspection Center for Agri-products, Yangzhou, 225101, China
| | - Chen Jingdu
- Yangzhou Municipal Bureau of Agriculture and Rural Affairs, Yangzhou, 225000, China
| |
Collapse
|
23
|
Laconi A, Tolosi R, Mughini-Gras L, Mazzucato M, Ferrè N, Carraro L, Cardazzo B, Capolongo F, Merlanti R, Piccirillo A. Beehive products as bioindicators of antimicrobial resistance contamination in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:151131. [PMID: 34695463 DOI: 10.1016/j.scitotenv.2021.151131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The use of antimicrobials in agricultural, veterinary and medical practice exerts selective pressure on environmental microbiota, promoting the emergence and spread of antimicrobial resistance (AMR), a global concern for the One Health Initiative Task Force (OHITF). Honeybees have been studied as bioindicators of AMR in the environment, but little is known about beehive products like honey and pollen. The aim of this study was to assess the prevalence of AMR genes (ARGs) in beehive products and investigated their origins. Specifically, possible associations between ARGs, microbiota and other characteristics of different honey and pollen samples, including country of origin, flower type, type of commercial distribution and environmental factors, such as land use, weather and composition of the environment surrounding the beehives were investigated. We found that beehive products harboured ARGs conferring resistance to β-lactams, macrolides, (fluoro)quinolones and polymyxins. Most samples possessed resistance to multiple antimicrobial classes, with honey and pollen showing similar ARG profiles. Even if Lactobacillus and Acinetobacter genera were common in the microbial communities of both honey and pollen, Bacillus, Clostridium, and Bombella defined honey microbiota, while Pseudomonas and Vibrio were enriched in pollen. ErmB and blaTEM-1 co-occurred with Lactobacillus and Fructobacillus, while positive associations between β-lactams and macrolides and anthropogenic environments (i.e. industrial and commercial areas and non-irrigated arable lands) were found. Altogether, our findings suggest that ARGs in honey and pollen might originate from the honeybee foraging environment, and that the beehive products can be used as bioindicators of the AMR environmental contamination.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy.
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Lapo Mughini-Gras
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 BA Bilthoven, the Netherlands; Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, De Uithof, 3584 CL Utrecht, the Netherlands
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Nicola Ferrè
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Roberta Merlanti
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| |
Collapse
|
24
|
Tilli G, Laconi A, Galuppo F, Mughini-Gras L, Piccirillo A. Assessing Biosecurity Compliance in Poultry Farms: A Survey in a Densely Populated Poultry Area in North East Italy. Animals (Basel) 2022; 12:ani12111409. [PMID: 35681871 PMCID: PMC9179503 DOI: 10.3390/ani12111409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Biosecurity in poultry farms represents the first line of defense against the entry and spread of pathogens that may have animal health, food safety, and economic consequences. The aim of this study was to assess biosecurity compliance in poultry farms located in a densely populated poultry area in North East Italy. A total of 259 poultry farms (i.e., broilers, turkeys, and layers) were surveyed between 2018 and 2019 using standardized checklists, and differences in biosecurity compliance between the poultry sectors and years (only for turkey farms) were tested for significance. Among the three sectors, turkey farms showed the highest compliance. Farm hygiene, infrastructure condition, cleaning and disinfection tools, and procedures were the biosecurity measures most complied with. Some deficiencies were observed in the cleanliness of the farm hygiene lock in broiler farms, as well as the presence of the house hygiene lock in broiler and layer farms and an adequate coverage of built-up litter in turkey and broiler farms. In conclusion, this study highlighted a generally high level of biosecurity in the visited poultry farms (probably due to the stringent national regulation and the integration of the poultry industry) and identified some measures that still need to be improved.
Collapse
Affiliation(s)
- Giuditta Tilli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (G.T.); (A.L.)
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (G.T.); (A.L.)
| | - Francesco Galuppo
- Unità Locale Socio-Sanitaria (ULSS) 6 Euganea, via Enrico degli Scrovegni 14, 35131 Padua, Italy;
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands;
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (G.T.); (A.L.)
- Correspondence: ; Tel.: +39-049-8272793
| |
Collapse
|
25
|
Smoglica C, Angelucci S, Farooq M, Antonucci A, Marsilio F, Di Francesco CE. Microbial community and antimicrobial resistance in fecal samples from wild and domestic ruminants in Maiella National Park, Italy. One Health 2022; 15:100403. [PMID: 35647256 PMCID: PMC9136667 DOI: 10.1016/j.onehlt.2022.100403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Abstract
This study aimed to provide new insights about antimicrobial resistance genes abundance and microbial communities of wild and domestic ruminants in wildlife-livestock interface. In total, 88 fecal samples were recovered from Apennine chamois, red deer, goat, cattle and sheep, and were collected in pools. The populations under study were selected based on ecological data useful to define sympatric and non-sympatric populations. Samples were screened for commonly used in farms under study or critically important antimicrobial resistance genes (aadA2, TetA, TetB, TetK, TetM, mcr-1). The microbial community composition was found to be different based on the species and land use of animals under study. Indeed, it was mostly characterized by phyla Firmicutes in bovine, Bacteroidota in chamois and Proteobacteria in red deer. Additionally, positive correlations between antibiotic resistance genes and microbial taxa (e.g., Tet genes correlated with Firmicutes and Patescibacteria) were described. Of the antimicrobials investigated, the abundance of mcr-1 gene suggests the importance of monitoring the wildlife in order to detect the emerging resistance genes contamination in environment. This study provides new data that highlight the importance of multidisciplinary and uncultured study in order to describe the spreading of antimicrobial resistance and related contamination in the environment. Multidisciplinary approach including ecological data, real time PCRs and 16S rRNA analysis Microbial communities composition of rare species as Apennine chamois Evaluation of antibiotic resistance genes abundance in feces of wild and domestic ruminants Detection of mcr-1 resistance gene relevant for Public Health
Collapse
|
26
|
Li S, Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G. Liming mitigates the spread of antibiotic resistance genes in an acid black soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152971. [PMID: 35016930 DOI: 10.1016/j.scitotenv.2022.152971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The threat of antibiotic resistance genes (ARGs) caused by animal manure application to human health has been the focus of attention in agriculture. Applying lime to acid soil for the amelioration of soil acidity is a prevailing agricultural practice. However, the role of lime on the spread of antibiotic resistome from soil to plant is unknown. In this study, a pot experiment of lettuce was established in the acid black soil with lime addition at the rate (w/w) of 0%, 0.08%, 0.16%, and 0.32% of the total soil mass to explore the transmission of ARGs introduced by the fresh poultry manure in the soil-plant system. The bulk and rhizosphere soils as well as the leaf samples were collected after lettuce was cultivated for 60 days, the bacterial community and antibiotic resistome in these samples were determined by using Illumina sequencing and high-throughput quantitative PCR (HT-qPCR) methods, respectively. Results showed that lime application decreased the number and abundance of ARGs and slowed down the spread of manure-derived ARGs in the soil-plant system. The ARGs and bacterial community composition were significantly varied among bulk soils, rhizosphere soils and leaf endophyte, and also influenced by lime within the same sampling types. The structural equation model further demonstrated that the lime addition had a negative effect on ARG diversity, which was also indirectly regulated by bacterial community diversity. These findings suggest that lime addition can alleviate the level and dissemination of ARGs in soils and provide a potential measure to control the spread of ARGs derived from animal manure.
Collapse
Affiliation(s)
- Sen Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
27
|
Meng M, Li Y, Yao H. Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Antibiotics (Basel) 2022; 11:antibiotics11040525. [PMID: 35453275 PMCID: PMC9024699 DOI: 10.3390/antibiotics11040525] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Due to selective pressure from the widespread use of antibiotics, antibiotic resistance genes (ARGs) are found in human hosts, plants, and animals and virtually all natural environments. Their migration and transmission in different environmental media are often more harmful than antibiotics themselves. ARGs mainly move between different microorganisms through a variety of mobile genetic elements (MGEs), such as plasmids and phages. The soil environment is regarded as the most microbially active biosphere on the Earth’s surface and is closely related to human activities. With the increase in human activity, soils are becoming increasingly contaminated with antibiotics and ARGs. Soil plasmids play an important role in this process. This paper reviews the current scenario of plasmid-mediated migration and transmission of ARGs in natural environments and under different antibiotic selection pressures, summarizes the current methods of plasmid extraction and analysis, and briefly introduces the mechanism of plasmid splice transfer using the F factor as an example. However, as the global spread of drug-resistant bacteria has increased and the knowledge of MGEs improves, the contribution of soil plasmids to resistance gene transmission needs to be further investigated. The prevalence of multidrug-resistant bacteria has also made the effective prevention of the transmission of resistance genes through the plasmid-bacteria pathway a major research priority.
Collapse
Affiliation(s)
- Miaoling Meng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- Correspondence: ; Tel.: +86-0574-8678-4812
| |
Collapse
|
28
|
Kaviani Rad A, Balasundram SK, Azizi S, Afsharyzad Y, Zarei M, Etesami H, Shamshiri RR. An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4666. [PMID: 35457533 PMCID: PMC9025980 DOI: 10.3390/ijerph19084666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/29/2023]
Abstract
Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.
Collapse
Affiliation(s)
- Abdullah Kaviani Rad
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria 0003, South Africa;
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town 7129, South Africa
| | - Yeganeh Afsharyzad
- Department of Microbiology, Faculty of Modern Sciences, The Islamic Azad University of Tehran Medical Sciences, Tehran 19496-35881, Iran;
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid 73819-43885, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran 14179-35840, Iran;
| | - Redmond R. Shamshiri
- Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam-Bornim, Germany;
| |
Collapse
|
29
|
Gilroy R, Leng J, Ravi A, Adriaenssens EM, Oren A, Baker D, La Ragione RM, Proudman C, Pallen MJ. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity. PeerJ 2022; 10:e13084. [PMID: 35345588 PMCID: PMC8957277 DOI: 10.7717/peerj.13084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background The horse plays crucial roles across the globe, including in horseracing, as a working and companion animal and as a food animal. The horse hindgut microbiome makes a key contribution in turning a high fibre diet into body mass and horsepower. However, despite its importance, the horse hindgut microbiome remains largely undefined. Here, we applied culture-independent shotgun metagenomics to thoroughbred equine faecal samples to deliver novel insights into this complex microbial community. Results We performed metagenomic sequencing on five equine faecal samples to construct 123 high- or medium-quality metagenome-assembled genomes from Bacteria and Archaea. In addition, we recovered nearly 200 bacteriophage genomes. We document surprising taxonomic diversity, encompassing dozens of novel or unnamed bacterial genera and species, to which we have assigned new Candidatus names. Many of these genera are conserved across a range of mammalian gut microbiomes. Conclusions Our metagenomic analyses provide new insights into the bacterial, archaeal and bacteriophage components of the horse gut microbiome. The resulting datasets provide a key resource for future high-resolution taxonomic and functional studies on the equine gut microbiome.
Collapse
Affiliation(s)
- Rachel Gilroy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Joy Leng
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Anuradha Ravi
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Aharon Oren
- The Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dave Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | | | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
30
|
Black Z, Balta I, Black L, Naughton PJ, Dooley JSG, Corcionivoschi N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front Microbiol 2021; 12:781357. [PMID: 34956145 PMCID: PMC8702830 DOI: 10.3389/fmicb.2021.781357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this review was to provide an update on the complex relationship between manure application, altered pathogen levels and antibiotic resistance. This is necessary to protect health and improve the sustainability of this major farming practice in agricultural systems based on high levels of manure production. It is important to consider soil health in relation to environment and land management practices in the context of the soil microflora and the introduction of pathogens on the health of the soil microbiome. Viable pathogens in manure spread on agricultural land may be distributed by leaching, surface run-off, water source contamination and contaminated crop removal. Thus it is important to understand how multiple pathogens can persist in manures and on soil at farm-scale and how crops produced under these conditions could be a potential transfer route for zoonotic pathogens. The management of pathogen load within livestock manure is a potential mechanism for the reduction and prevention of outbreaks infection with Escherichia coli, Listeria Salmonella, and Campylobacter. The ability of Campylobacter, E. coli, Listeria and Salmonella to combat environmental stress coupled with their survival on food crops and vegetables post-harvest emphasizes the need for further study of these pathogens along with the emerging pathogen Providencia given its link to disease in the immunocompromised and its’ high levels of antibiotic resistance. The management of pathogen load within livestock manure has been widely recognized as a potential mechanism for the reduction and prevention of outbreaks infection but any studies undertaken should be considered as region specific due to the variable nature of the factors influencing pathogen content and survival in manures and soil. Mediocre soils that require nutrients could be one template for research on manure inputs and their influence on soil health and on pathogen survival on grassland and in food crops.
Collapse
Affiliation(s)
- Zoe Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Lisa Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Patrick J Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James S G Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
31
|
Tolosi R, Carraro L, Laconi A, Piccirillo A. Optimization of five qPCR protocols toward the detection and the quantification of antimicrobial resistance genes in environmental samples. MethodsX 2021; 8:101488. [PMID: 34754761 PMCID: PMC8563462 DOI: 10.1016/j.mex.2021.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Here, we describe the optimization and validation of five quantitative PCR (qPCR) assays by employing the SYBRGreen chemistry paired with melting curve analysis to detect and quantify clinically relevant antimicrobial resistance genes (ARGs) (i.e. ermB, blaCTXM1-like, blaCMY-2, qnrA and qnrS) from environmental samples (i.e. soil and manure). These five protocols accurately detected and quantified the aforementioned ARGs in complex environmental matrices and represent useful tools for both diagnostic and monitoring activities of resistant bacteria and ARGs into the environment.
Collapse
Affiliation(s)
- Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| |
Collapse
|
32
|
Li W, Liu Z, Hu B, Zhu L. Co-occurrence of crAssphage and antibiotic resistance genes in agricultural soils of the Yangtze River Delta, China. ENVIRONMENT INTERNATIONAL 2021; 156:106620. [PMID: 33989841 DOI: 10.1016/j.envint.2021.106620] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/01/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Agricultural soil is highly susceptible to manure contamination and thus is a potential source for the spread of pathogens and antibiotic resistance genes (ARGs). Routine monitoring fecal contamination in agricultural soil can reduce the manure-derived ARG contaminations. This study investigated the distribution of crAssphage, a highly human-specific indicator of fecal pollution, in agricultural soils in the Yangtze River Delta (YRD) of China, and its potential in serving as an indicator of soil ARGs. CrAssphage was indeed strongly correlated with the abundance of soil ARGs, and particularly tetracycline resistance gene tetW (rho = 0.55, p < 0.01). Meanwhile, with the increasing of crAssphage abundance, the frequency of multiple abundant ARGs is also increased. When the relative abundance of crAssphage in soil samples exceeded 4.94 × 10-4 copies per copy of the 16S rRNA gene, there would be more than three types of co-existing ARGs. Regional differences in crAssphage and ARGs abundances were observed for samples collected from Zhejiang, Shanghai, Jiangsu, and Anhui in the YRD, indicating different levels of fecal pollution therein. High sewage treatment capacity could contribute to the reduce of fecal pollution and the control ARG transmission in agricultural soils.
Collapse
Affiliation(s)
- Wen Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
33
|
Yanlong C, Kejian Y, Yin Y, Yuhan Z, Huizi M, Cui L, Zhonghui L, Ziru P, Fan C, Jiangtao Y, Xianwei W, Yuheng W. Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126632. [PMID: 34293692 DOI: 10.1016/j.jhazmat.2021.126632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Reductive soil disinfestation (RSD) is an emerging technique that ameliorates soil degradation, but its effects against antibiotic resistance genes (ARGs) were unclear. Here, we examined soil properties, ARG types and numbers, and ARG profiles, and bacterial community compositions following 4 soil treatments: control; straw addition (SA); water flooding (WF); and RSD, both straw addition and water flooding. The results showed that the numbers of ARG types and subtypes decreased by 10.8% and 21.1%, respectively, after RSD, and the numbers of ARGs decreased by 18.6%. The attenuated multidrug, beta-lactam, macrolide, and phenicol resistance genes in the RSD soil corresponded to a decreased relative abundance of ARG subtypes (i.e., adeF, mdtM, TypeB_NfxB, mecA, nalC, OXA-60, and cmlA4). Taxa in phyla Proteobacteria, Actinobacteria, and Deinococcus-Thermus were the main hosts for dominant ARG subtypes and were inhibited by RSD. The selected bacterial genera and soil properties explained 83.4% of the variance in ARG composition, suggesting that the improved soil properties and the reduced potential ARG hosts produced by the interactions of straw addition and water flooding are likely responsible for ARG attenuation by RSD. Therefore, RSD has the potential to mitigate ARG pollution in soils.
Collapse
Affiliation(s)
- Chen Yanlong
- School of Ecology and Environment, Northwestern Polytechnical University, 710000 Xi'an, Shaanxi, China.
| | - Yang Kejian
- Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center, 710068 Xi'an, Shaanxi, China
| | - Ye Yin
- School of Ecology and Environment, Northwestern Polytechnical University, 710000 Xi'an, Shaanxi, China
| | - Zhang Yuhan
- School of Ecology and Environment, Northwestern Polytechnical University, 710000 Xi'an, Shaanxi, China
| | - Mi Huizi
- School of Ecology and Environment, Northwestern Polytechnical University, 710000 Xi'an, Shaanxi, China
| | - Li Cui
- School of Ecology and Environment, Northwestern Polytechnical University, 710000 Xi'an, Shaanxi, China
| | - Li Zhonghui
- Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center, 710068 Xi'an, Shaanxi, China
| | - Pei Ziru
- School of Ecology and Environment, Northwestern Polytechnical University, 710000 Xi'an, Shaanxi, China
| | - Chen Fan
- School of Ecology and Environment, Northwestern Polytechnical University, 710000 Xi'an, Shaanxi, China
| | - Yan Jiangtao
- Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center, 710068 Xi'an, Shaanxi, China
| | - Wang Xianwei
- Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center, 710068 Xi'an, Shaanxi, China
| | - Wang Yuheng
- School of Ecology and Environment, Northwestern Polytechnical University, 710000 Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Gwenzi W, Chaukura N, Muisa-Zikali N, Teta C, Musvuugwa T, Rzymski P, Abia ALK. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:antibiotics10010068. [PMID: 33445633 PMCID: PMC7826649 DOI: 10.3390/antibiotics10010068] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
This paper reviews the occurrence of antimicrobial resistance (AMR) in insects, rodents, and pets. Insects (e.g., houseflies, cockroaches), rodents (rats, mice), and pets (dogs, cats) act as reservoirs of AMR for first-line and last-resort antimicrobial agents. AMR proliferates in insects, rodents, and pets, and their skin and gut systems. Subsequently, insects, rodents, and pets act as vectors that disseminate AMR to humans via direct contact, human food contamination, and horizontal gene transfer. Thus, insects, rodents, and pets might act as sentinels or bioindicators of AMR. Human health risks are discussed, including those unique to low-income countries. Current evidence on human health risks is largely inferential and based on qualitative data, but comprehensive statistics based on quantitative microbial risk assessment (QMRA) are still lacking. Hence, tracing human health risks of AMR to insects, rodents, and pets, remains a challenge. To safeguard human health, mitigation measures are proposed, based on the one-health approach. Future research should include human health risk analysis using QMRA, and the application of in-silico techniques, genomics, network analysis, and ’big data’ analytical tools to understand the role of household insects, rodents, and pets in the persistence, circulation, and health risks of AMR.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Mount. Pleasant, Harare P.O. Box MP167, Zimbabwe
- Correspondence: or (W.G.); or (A.L.K.A.)
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Norah Muisa-Zikali
- Department of Environmental Sciences and Technology, School of Agricultural Sciences and Technology, Chinhoyi University of Technology, Private Bag, Chinhoyi 7724, Zimbabwe; or
| | - Charles Teta
- Future Water Institute, Faculty of Engineering & Built Environment, University of Cape Town, Cape Town 7700, South Africa;
| | - Tendai Musvuugwa
- Department of Biological and Agricultural Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Correspondence: or (W.G.); or (A.L.K.A.)
| |
Collapse
|