1
|
Sjöström Y, Holmes B, Ricklund N, Struwe N, Hagström K, Hagberg J, Larsson M. Endocrine disruption potential of dust in children's indoor environments: Associations with multiple chemicals from various compound classes across exposure matrices used for health risk assessment. ENVIRONMENTAL RESEARCH 2025; 278:121614. [PMID: 40250588 DOI: 10.1016/j.envres.2025.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Indoor dust contains a complex mixture of chemicals, including endocrine-disrupting chemicals (EDCs), which may pose risks to children's health. As children spend most of their time indoors and have frequent dust contact, their exposure is heightened. This study quantified the endocrine disrupting potential of dust from children's indoor environments in Sweden, and assessed associations with flame retardants and plasticizers in dust, handwipes, and urine. Fifty dust samples from 18 homes and 11 preschool units were analyzed for estrogen, anti-androgen, and thyroid receptor activities using human osteosarcoma cell-based luciferase reporter assays. Associations were evaluated with 21 legacy and 18 emerging halogenated flame retardants (HFRs) and 11 organophosphate esters (OPEs) in dust and handwipes, as well as nine plasticizers (eight phthalates and di-isononyl cyclohexane 1,2-dicarboxylate (DiNCH)) in dust, and 14 plasticizer metabolites in urine. Samples for biological and chemical analyses were collected from the same designated areas within a limited time frame. Most dust samples exhibited estrogen receptor agonist (ER) and androgen receptor antagonistic (anti-AR) activity, while thyroid receptor (TR) induction was low. Preschool dust showed significantly higher estrogenic activity than home dust. No seasonal variation was observed. Associations were observed between dust hormonal activities and urinary plasticizer metabolites, as well as HFR and OPE concentrations in dust and handwipes. Relative potency (REP) analyses of 36 HFRs and OPEs revealed notable anti-AR activity for 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (REP values .85 ± .10 (EC25) and .93 ± .07 (EC50)) and 2,2',4,4',6-pentabromo diphenyl ether (BDE-100) (REP values 2.74 ± .29 (EC25) and 3.23 ± .42 (EC50)). Additionally, BDE-100 showed low ER induction.
Collapse
Affiliation(s)
- Ylva Sjöström
- Department of Occupational and Environmental Medicine, Faculty of Business, Science and Engineering, Örebro University, SE-70182, Örebro, Sweden; Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden.
| | - Breanne Holmes
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden
| | - Niklas Ricklund
- Department of Occupational and Environmental Medicine, Örebro University Hospital, Region Örebro County, PO Box 1613, SE-70116, Örebro, Sweden
| | - Nathalie Struwe
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden
| | - Katja Hagström
- Department of Occupational and Environmental Medicine, Faculty of Business, Science and Engineering, Örebro University, SE-70182, Örebro, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Medicine, Faculty of Business, Science and Engineering, Örebro University, SE-70182, Örebro, Sweden; Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden
| |
Collapse
|
2
|
Bérubé R, LeFauve MK, Khalaf A, Aminioroomi D, Kassotis CD. Effects of organic and inorganic contaminants and their mixtures on metabolic health and gene expression in developmentally exposed zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620642. [PMID: 39554096 PMCID: PMC11565930 DOI: 10.1101/2024.10.28.620642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Organic and inorganic chemicals co-occur in household dust, and these chemicals have been determined to have endocrine and metabolic disrupting effects. While there is increasing study of chemical mixtures, the effects of complex mixtures mimicking household dust and other environmental matrices have not been well studied and their potential metabolism disrupting effects are thus poorly understood. Previous research has demonstrated high potency adipogenic effects of residential household dust extracts using in vitro adipogenesis assays. More recent research simplified this to a mixture relevant to household dust and comprised of common co-occurring organic and inorganic contaminants, finding that these complex combinations often exhibited additive or even synergistic effects in cell models. This study aimed to translate our previous in vitro observation to an in vivo model, the developing zebrafish, to evaluate the metabolic effects of early exposure to organic and inorganic chemicals, individually and in mixtures. Zebrafish embryos were exposed from 1 day post fertilization (dpf) to 6 dpf, then metabolic energy expenditure, swimming behavior and gene expression were measured. Globally, we observed that most mixtures did not reflect the effects of individual chemicals; the BFR mixture produced a less potent effect when compared to the individual chemicals, while the PFAS and the inorganic mixtures seemed to have a more potent effect than the individual chemicals. Finally, the environmental mixture, mimicking household dust proportions, was less potent than the inorganic chemical mix alone. Additional work is necessary to better understand the mixture effect of inorganic and organic chemicals combined.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Matthew K. LeFauve
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Aicha Khalaf
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Darya Aminioroomi
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| |
Collapse
|
3
|
Bérubé R, Murray B, Kocarek TA, Gurdziel K, Kassotis CD. Nonylphenol and Cetyl Alcohol Polyethoxylates Disrupt Thyroid Hormone Receptor Signaling to Disrupt Metabolic Health. Endocrinology 2024; 165:bqae149. [PMID: 39497475 PMCID: PMC11574291 DOI: 10.1210/endocr/bqae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Surfactants are molecules with both hydrophobic and hydrophilic structural groups that adsorb at the air-water or oil-water interface and serve to decrease the surface tension. Surfactants combine to form micelles that surround and break down or remove oils, making them ideal for detergents and cleaners. Two of the most important classes of nonionic surfactants are alkylphenol ethoxylates (APEOs) and alcohol ethoxylates (AEOs). APEOs and AEOs are high production-volume chemicals that are used for many industrial and residential purposes, including laundry detergents, hard-surface cleaners, paints, and pesticide adjuvants. Commensurate with better appreciation of the toxicity of APEOs and the base alkylphenols, use of AEOs has increased, and both sets of compounds are now ubiquitous environmental contaminants. We recently demonstrated that diverse APEOs and AEOs induce triglyceride accumulation and/or preadipocyte proliferation in vitro. Both sets of contaminants have also been demonstrated as obesogenic and metabolism-disrupting in a developmental exposure zebrafish model. While these metabolic health effects are consistent across models and species, the mechanisms underlying these effects are less clear. This study sought to evaluate causal mechanisms through reporter gene assays, relative binding affinity assays, coexposure experiments, and use of both human cell and zebrafish models. We report that antagonism of thyroid hormone receptor signaling appears to mediate at least a portion of the polyethoxylate-induced metabolic health effects. These results suggest further evaluation is needed, given the ubiquitous environmental presence of these thyroid-disrupting contaminants and reproducible effects in human cell models and vertebrate animals.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Brooklynn Murray
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
- Genome Sciences Core, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Chiang YTT, Kassotis CD. Molecular Assessment of Proadipogenic Effects for Common-Use Contraceptives and Their Mixtures. Endocrinology 2024; 165:bqae050. [PMID: 38648498 PMCID: PMC11081078 DOI: 10.1210/endocr/bqae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Hormonal contraceptives are widely prescribed due to their effectiveness and convenience and have become an integral part of family planning strategies worldwide. In the United States, approximately 65% of reproductive-aged women are estimated to be using contraceptive options, with approximately 33% using one or a combination of hormonal contraceptives. While these methods have undeniably contributed to improved reproductive health, recent studies have raised concerns regarding their potential effect on metabolic health. Despite widespread anecdotal reports, epidemiological research has been mixed as to whether hormonal contraceptives contribute to metabolic health effects. As such, the goals of this study were to assess the adipogenic activity of common hormonal contraceptive chemicals and their mixtures. Five different models of adipogenesis were used to provide a rigorous assessment of metabolism-disrupting effects. Interestingly, every individual contraceptive (both estrogens and progestins) and each mixture promoted significant adipogenesis (eg, triglyceride accumulation and/or preadipocyte proliferation). These effects appeared to be mediated in part through estrogen receptor signaling, particularly for the contraceptive mixtures, as cotreatment with fulvestrant acted to inhibit contraceptive-mediated proadipogenic effects on triglyceride accumulation. In conclusion, this research provides valuable insights into the complex interactions between hormonal contraceptives and adipocyte development. The results suggest that both progestins and estrogens within these contraceptives can influence adipogenesis, and the specific effects may vary based on the receptor disruption profiles. Further research is warranted to establish translation of these findings to in vivo models and to further assess causal mechanisms underlying these effects.
Collapse
Affiliation(s)
- Yu-Ting Tiffany Chiang
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
5
|
Pyambri M, Lacorte S, Jaumot J, Bedia C. Effects of Indoor Dust Exposure on Lung Cells: Association of Chemical Composition with Phenotypic and Lipid Changes in a 3D Lung Cancer Cell Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20532-20541. [PMID: 38035630 PMCID: PMC10720387 DOI: 10.1021/acs.est.3c07573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Indoor dust is a key contributor to the global human exposome in urban areas since the population develops most of its activities in private and public buildings. To gain insight into the health risks associated with this chronic exposure, it is necessary to characterize the chemical composition of dust and understand its biological impacts using reliable physiological models. The present study investigated the biological effects of chemically characterized indoor dust extracts using three-dimensional (3D) lung cancer cell cultures combining phenotypic and lipidomic analyses. Apart from the assessment of cell viability, reactive oxygen species (ROS) induction, and interleukin-8 release, lipidomics was applied to capture the main lipid changes induced as a cellular response to the extracted dust compounds. The application of chemometric tools enabled the finding of associations between chemical compounds present in dust and lipidic and phenotypic profiles in the cells. This study contributes to a better understanding of the toxicity mechanisms associated with exposure to chemical pollutants present in indoor dust.
Collapse
Affiliation(s)
- Maryam Pyambri
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sílvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carmen Bedia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Braun G, Krauss M, Escher BI. Recovery of 400 Chemicals with Three Extraction Methods for Low Volumes of Human Plasma Quantified by Instrumental Analysis and In Vitro Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19363-19373. [PMID: 37987701 DOI: 10.1021/acs.est.3c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Human biomonitoring studies are important for understanding adverse health outcomes caused by exposure to chemicals. Complex mixtures of chemicals detected in blood - the blood exposome - may serve as proxies for systemic exposure. Ideally, several analytical methods are combined with in vitro bioassays to capture chemical mixtures as diverse as possible. How many and which (bio)analyses can be performed is limited by the sample volume and compatibility of extraction and (bio)analytical methods. We compared the extraction efficacy of three extraction methods using pooled human plasma spiked with >400 organic chemicals. Passive equilibrium sampling (PES) with polydimethylsiloxane (PDMS) followed by solid phase extraction (PES + SPE), SPE alone (SPE), and solvent precipitation (SolvPrec) were compared for chemical recovery in LC-HRMS and GC-HRMS as well as effect recovery in four mammalian cell lines (AhR-CALUX, SH-SY5Y, AREc32, PPARγ-BLA). The mean chemical recoveries were 38% for PES + SPE, 27% for SPE, and 61% for SolvPrec. PES + SPE enhanced the mean chemical recovery compared to SPE, especially for neutral hydrophobic chemicals. PES + SPE and SolvPrec had effect recoveries of 100-200% in all four cell lines, outperforming SPE, which had 30-100% effect recovery. Although SolvPrec has the best chemical recoveries, it does not remove matrix like inorganics or lipids, which might pose problems for some (bio)analytical methods. PES + SPE is the most promising method for sample preparation in human biomonitoring as it combines good recoveries with cleanup, enrichment, and potential for high throughput.
Collapse
Affiliation(s)
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| |
Collapse
|
7
|
Overdahl KE, Kassotis CD, Hoffman K, Getzinger GJ, Phillips A, Hammel S, Stapleton HM, Ferguson PL. Characterizing azobenzene disperse dyes and related compounds in house dust and their correlations with other organic contaminant classes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122491. [PMID: 37709124 PMCID: PMC10655148 DOI: 10.1016/j.envpol.2023.122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and are implicated in the literature as potentially allergenic. In the indoor environment, these dyes may be shed from various textiles, including clothing and upholstery and accumulate in dust particles potentially leading to exposure in young children who have higher exposure to chemicals associated with dust due to their crawling and mouthing behaviors. Children may be more vulnerable to dye exposure due to their developing immune systems, and therefore, it is critical to characterize azobenzene disperse dyes in children's home environments. Here, we investigate azobenzene disperse dyes and related compounds in house dust samples (n = 124) that were previously analyzed for flame retardants, phthalates, pesticides and per- and polyfluoroalkyl substances (PFAS). High-resolution mass spectrometry was used to support both targeted and suspect screening of dyes in dust. Statistical analyses were conducted to determine if dye concentrations were related to demographic information. Detection frequencies for 12 target dyes ranged from 11% to 89%; of the dyes that were detected in at least 50% of the samples, geometric mean levels ranged from 32.4 to 360 ng/g. Suspect screening analysis identified eight additional high-abundance azobenzene compounds in dust. Some dyes were correlated to numerous flame retardants and several antimicrobials, and statistically higher levels of some dyes were observed in homes of non-Hispanic Black mothers than in homes of non-Hispanic white mothers. To our knowledge, this is the most comprehensive study of azobenzene disperse dyes in house dust to date. Future studies are needed to quantify additional dyes in dust and to examine exposure pathways of dyes in indoor environments where children are concerned.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Christopher D Kassotis
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202. United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Gordon J Getzinger
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Stephanie Hammel
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States.
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States.
| |
Collapse
|
8
|
Bérubé R, LeFauve MK, Heldman S, Chiang YTT, Birbeck J, Westrick J, Hoffman K, Kassotis CD. Adipogenic and endocrine disrupting mixture effects of organic and inorganic pollutant mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162587. [PMID: 36871739 PMCID: PMC10148906 DOI: 10.1016/j.scitotenv.2023.162587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Chronic health conditions are rapidly increasing in prevalence and cost to society worldwide: in the US, >42 % of adults aged 20 and older are currently classified as obese. Exposure to endocrine disrupting chemicals (EDCs) has been implicated as a causal factor; some EDCs, termed "obesogens", can increase weight and lipid accumulation and/or perturb metabolic homeostasis. This project aimed to assess the potential combination effects of diverse inorganic and organic contaminant mixtures, which more closely reflect environmentally realistic exposures, on nuclear receptor activation/inhibition and adipocyte differentiation. Herein, we focused on two polychlorinated biphenyls (PCB-77 and 153), two perfluoroalkyl substances (PFOA and PFOS), two brominated flame retardants (PBB-153 and BDE-47), and three inorganic contaminants (lead, arsenic, and cadmium). We examined adipogenesis using human mesenchymal stem cells and receptor bioactivities using luciferase reporter gene assays in human cell lines. We observed significantly greater effects for several receptor bioactivities by various contaminant mixtures relative to individual components. All nine contaminants promoted triglyceride accumulation and/or pre-adipocyte proliferation in human mesenchymal stem cells. Comparing simple component mixtures to individual components at 10 % and 50 % effect levels revealed putative synergistic effects for each of the mixtures for at least one of the concentrations relative to the individual component chemicals, some of which also exhibited significantly greater effects than the component contaminants. Our results support further testing of more realistic and complex contaminant mixtures that better reflect environmental exposures, in order to more conclusively define mixture responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States of America
| | - Matthew K LeFauve
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States of America
| | - Samantha Heldman
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States of America
| | - Yu-Ting Tiffany Chiang
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States of America
| | - Johnna Birbeck
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| | - Judy Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
9
|
LeFauve MK, Bérubé R, Heldman S, Chiang YTT, Kassotis CD. Cetyl Alcohol Polyethoxylates Disrupt Metabolic Health in Developmentally Exposed Zebrafish. Metabolites 2023; 13:359. [PMID: 36984799 PMCID: PMC10057089 DOI: 10.3390/metabo13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Alcohol polyethoxylates (AEOs), such as cetyl alcohol ethoxylates (CetAEOs), are high-production-volume surfactants used in laundry detergents, hard-surface cleaners, pesticide formulations, textile production, oils, paints, and other products. AEOs have been suggested as lower toxicity replacements for alkylphenol polyethoxylates (APEOs), such as the nonylphenol and octylphenol polyethoxylates. We previously demonstrated that nonylphenol polyethoxylates induced triglyceride accumulation in several in vitro adipogenesis models and promoted adiposity and increased body weights in developmentally exposed zebrafish. We also demonstrated that diverse APEOs and AEOs were able to increase triglyceride accumulation and/or pre-adipocyte proliferation in a murine pre-adipocyte model. As such, the goals of this study were to assess the potential of CetAEOs to promote adiposity and alter growth and/or development (toxicity, length, weight, behavior, energy expenditure) of developmentally exposed zebrafish (Danio rerio). We also sought to expand our understanding of ethoxylate chain-length dependent effects through interrogation of varying chain-length CetAEOs. We demonstrated consistent adipogenic effects in two separate human bone-marrow-derived mesenchymal stem cell models as well as murine pre-adipocytes. Immediately following chemical exposures in zebrafish, we reported disrupted neurodevelopment and aberrant behavior in light/dark activity testing, with medium chain-length CetAEO-exposed fish exhibiting hyperactivity across both light and dark phases. By day 30, we demonstrated that cetyl alcohol and CetAEOs disrupted adipose deposition in developmentally exposed zebrafish, despite no apparent impacts on standard length or gross body weight. This research suggests metabolic health concerns for these common environmental contaminants, suggesting further need to assess molecular mechanisms and better characterize environmental concentrations for human health risk assessments.
Collapse
Affiliation(s)
| | | | | | | | - Christopher D. Kassotis
- Institute of Environmental Health Sciences, Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Effect of Pesticides on Peroxisome Proliferator-Activated Receptors (PPARs) and Their Association with Obesity and Diabetes. PPAR Res 2023; 2023:1743289. [PMID: 36875280 PMCID: PMC9984265 DOI: 10.1155/2023/1743289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Obesity and diabetes mellitus are considered the most important diseases of the XXI century. Recently, many epidemiological studies have linked exposure to pesticides to the development of obesity and type 2 diabetes mellitus. The role of pesticides and their possible influence on the development of these diseases was investigated by examining the relationship between these compounds and one of the major nuclear receptor families controlling lipid and carbohydrate metabolism: the peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ; this was possible through in silico, in vitro, and in vivo assays. The present review aims to show the effect of pesticides on PPARs and their contribution to the changes in energy metabolism that enable the development of obesity and type 2 diabetes mellitus.
Collapse
|
11
|
Gustafsson Å, Bergman Å, Weiss JM. Estimated daily intake of per- and polyfluoroalkyl substances related to different particle size fractions of house dust. CHEMOSPHERE 2022; 303:135061. [PMID: 35649447 DOI: 10.1016/j.chemosphere.2022.135061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Indoor environmental pollutants are a threat to human health. In the current study, we analysed 25 per- and polyfluoroalkyl substances (PFASs) in seven different size fraction of house dust including the two relevant for exposure via ingestion and inhalation. The highest PFAS concentration is found in the inhalable particulate fraction which is explained by the increased surface area as the particulate's sizes decrease. The estimated daily intake (EDI) of the individual PFAS and exposure pathways were calculated for children and adults. In addition, the total EDI for PFOA and its precursors was estimated. The polyfluoroalkyl phosphoric acid diesters (diPAP), followed by PFOA and PFHxA fluortelomer, showed the highest concentrations of PFAS analysed. The cumulative EDI of PFAS for children was 3.0 ng/kg bw per day, a worst-case scenario, which is 17 times higher than the calculated EDI for adults. For children, ingestion of dust was found to result in 800 times higher PFOA exposure than via inhalation. The contribution from PFOA precursors corresponded to only 1% of the EDI from dust indicating PFOA as the main source of exposure. The EDI's of PFOA and PFOS from dust were lower than the calculated EDI's from food ingestion reported by the Swedish Food Agency. Our data indicate that the EDI for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS from dust intake alone is close to the established tolerable weakly intake of 4.4 ng/kg bw in children, set by European Food Safety Authority (EFSA) in 2020. The combined EDI levels PFOA and PFOS from both dust and food exceeded the EFSA TWI for both children and adults. This study demonstrates that dust is a relevant exposure pathway for PFAS intake and that analysis of relevant particle size fractions is important for evaluation of dust as an exposure pathway.
Collapse
Affiliation(s)
- Åsa Gustafsson
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| | - Åke Bergman
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden; Department of Environmental Science, Stockholm University, SE-10691, Stockholm, Sweden
| | - Jana M Weiss
- Department of Environmental Science, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
12
|
Sonego E, Simonetti G, Di Filippo P, Riccardi C, Buiarelli F, Fresta A, Olivastri M, Pomata D. Characterization of organophosphate esters (OPEs) and polyfluoralkyl substances (PFASs) in settled dust in specific workplaces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52302-52316. [PMID: 35258734 DOI: 10.1007/s11356-022-19486-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
An analytical method for detecting flame retardants was slightly modified and optimized for the simultaneous determination of 11 organophosphate esters (OPEs) and 26 polyfluoralkyl substances (PFASs) contained in dust. All the analytes were determined in HPLC/MS-MS, and OPEs were also analyzed in GC/MS, and the results were compared. The study was conducted through the investigation of the Standard Reference Material SRM 2585 of the National Institute of Standard and Technology (NIST). The results were compared with the available reference mass fraction reported in the NIST certificate. The mass fraction obtained for the other OPEs and PFASs was compared to available data in the literature. After verifying the reliability of the results, the method was applied to environmental samples of settled dust, collected in four workplaces, where OPE and PFAS content is expected to be higher than in house dust: a mechanical workshop, an electronic repair center, a disassembly site, and a shredding site of two electronic waste recycling plants. By analyzing both PFASs and OPEs in the same samples, the present work demonstrated that the selected working places were more polluted in OPEs than houses; on the contrary, PFAS content in house dust proved to be more than ten times higher than that in workplaces. Additional research is necessary to confirm these data. Nevertheless, because this preliminary study showed not negligible concentrations of OPEs in some workplaces and of PFASs in houses, their monitoring should be extended to other domestic and selected working sites.
Collapse
Affiliation(s)
- Elisa Sonego
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | | | | - Francesca Buiarelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Alice Fresta
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Olivastri
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | |
Collapse
|
13
|
The Mixture of Bisphenol-A and Its Substitutes Bisphenol-S and Bisphenol-F Exerts Obesogenic Activity on Human Adipose-Derived Stem Cells. TOXICS 2022; 10:toxics10060287. [PMID: 35736896 PMCID: PMC9229358 DOI: 10.3390/toxics10060287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022]
Abstract
Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and S (BPS), have previously shown in vitro obesogenic activity. This study was designed to investigate their combined effect on the adipogenic differentiation of human adipose-derived stem cells (hASCs). Cells were exposed for 14 days to an equimolar mixture of bisphenols (MIX) (range 10 nM–10 µM). Oil Red staining was used to measure intracellular lipid accumulation, quantitative real-time polymerase chain reaction (qRT-PCR) to study gene expression of adipogenic markers (PPARγ, C/EBPα, LPL, and FABP4), and Western Blot to determine their corresponding proteins. The MIX promoted intracellular lipid accumulation in a dose-dependent manner with a maximal response at 10 µM. Co-incubation with pure antiestrogen (ICI 182,780) inhibited lipid accumulation, suggesting that the effect was mediated by the estrogen receptor. The MIX also significantly altered the expression of PPARγ, C/EBPα, LPL, and FABP4 markers, observing a non-monotonic (U-shaped) dose-response, with maximal gene expression at 10 nM and 10 µM and lesser expression at 1 µM. This pattern was not observed when bisphenols were tested individually. Exposure to MIX (1–10 µM) also increased all encoded proteins except for FABP4, which showed no changes. Evaluation of the combined effect of relevant chemical mixtures is needed rather than single chemical testing.
Collapse
|
14
|
Lucas A, Herrmann S, Lucas M. The role of endocrine-disrupting phthalates and bisphenols in cardiometabolic disease: the evidence is mounting. Curr Opin Endocrinol Diabetes Obes 2022; 29:87-94. [PMID: 35034036 PMCID: PMC8915988 DOI: 10.1097/med.0000000000000712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW There is substantive and accumulating evidence that endemic exposure to plastic-associated chemicals (PACs) contribute to the pathophysiology of metabolic conditions, like obesity, diabetes, and heart disease. The consequences of this endemic exposure in inducing a pro-inflammatory state in adipose tissues as a critical link between exposure and disease is reviewed. RECENT FINDINGS In general, PACs are classified as nonpersistent in vivo because of their rapid metabolism to easily excreted forms. The parental chemicals, however, are typically lipophilic, with the potential to bioaccumulate. Recent data from selected association studies suggest exposure to PACs drive predisease states like obesity and inflammation of the adipose tissues. A range of experimental studies are discussed with a focus on biological mechanisms that are susceptible to the influence of PACs and which may promote metabolic disease, the detection of PACs within susceptible tissues and biological effects that are detectable at doses that correspond to real-life exposures to these chemicals. SUMMARY If we hypothesize the toxic pressure from chronic exposure to PACs will progress disease processes, then individuals with comprehensively characterized indicators of premetabolic disease could undergo trials of quantifiable interventions to reduce exposure to PACs to test if the trajectory of disease-associated analytes, is altered.
Collapse
Affiliation(s)
| | | | - Michaela Lucas
- Medical School, University of Western Australia
- Department of Immunology, PathWest and Sir Charles Gairdner Hospital, Perth, Australia
| |
Collapse
|
15
|
Nováková Z, Novák J, Bittner M, Čupr P, Přibylová P, Kukučka P, Smutná M, Escher BI, Demirtepe H, Miralles-Marco A, Hilscherová K. Toxicity to bronchial cells and endocrine disruptive potentials of indoor air and dust extracts and their association with multiple chemical classes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127306. [PMID: 34879546 DOI: 10.1016/j.jhazmat.2021.127306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Pollution of indoor environment, where people spend much of their time, comprises complex mixtures of compounds with vastly understudied hazard potential. This study examined several important specific toxic effects and pollutant levels (177 compounds) of indoor samples (air gas phase, PM10 and dust) from different microenvironments after two extractions with focus on their gas/particle/dust distribution and polarity. The endocrine disruptive (ED) potential was assessed by human cell-based in vitro bioassays addressing anti-/estrogenicity, anti-/androgenicity, aryl hydrocarbon, thyroid and peroxisome proliferator-activated receptor-mediated activities. Potential toxicity to respiratory tract tissue was assessed using human bronchial cell line. The toxicological analyses pointed out the relevance of both inhalation and ingestion exposure, with significant effects detected after exposure to extracts from all three studied matrices with distinct gas/particle distribution patterns. Chemical analyses document the high complexity of indoor pollutant mixtures with greatest levels of phthalates, their emerging alternatives, and PAHs in dust. Despite the detection of up to 108 chemicals, effects were explained only to low extent. This emphasizes data gaps regarding ED potencies of many detected abundant indoor contaminants, but also potential presence of other unidentified ED compounds. The omnipresent ED potentials in indoor environment rise concern regarding associated human health risk.
Collapse
Affiliation(s)
- Zuzana Nováková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Michal Bittner
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research - UFZ, Cell Toxicology, 04318 Leipzig, Germany
| | - Hale Demirtepe
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ana Miralles-Marco
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic.
| |
Collapse
|
16
|
Herkert NJ, Kassotis CD, Zhang S, Han Y, Pulikkal VF, Sun M, Ferguson PL, Stapleton HM. Characterization of Per- and Polyfluorinated Alkyl Substances Present in Commercial Anti-fog Products and Their In Vitro Adipogenic Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1162-1173. [PMID: 34985261 PMCID: PMC8908479 DOI: 10.1021/acs.est.1c06990] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Anti-fog sprays and solutions are used on eyeglasses to minimize the condensation of water vapor, particularly while wearing a mask. Given their water-repellent properties, we sought to characterize per- and polyfluorinated alkyl substance (PFAS) compounds in four anti-fog spray products, five anti-fog cloth products, and two commercial fluorosurfactant formulations suspected to be used in preparing anti-fog products. Fluorotelomer alcohols (FTOHs) and fluorotelomer ethoxylates (FTEOs) were detected in all products and formulations. While 6:2 FTOH and the 6:2 FTEO polymeric series were predominant, one anti-fog cloth and one formulation contained 8:2, 10:2, 12:2, 14:2, and 16:2 FTOH and FTEO polymeric series. PFAS concentrations varied in samples and were detected at levels up to 25,000 μg/mL in anti-fog sprays and 185,000 μg (g cloth)-1 in anti-fog cloth products. The total organic fluorine (TOF) measurements of anti-fog products ranged from 190 to 20,700 μg/mL in sprays and 44,200 to 131,500 μg (g cloth)-1 in cloths. Quantified FTOHs and FTEOs accounted for 1-99% of TOF mass. In addition, all four anti-fog sprays and both commercial formulations exhibited significant cytotoxicity and adipogenic activity (either triglyceride accumulation and/or pre-adipocyte proliferation) in murine 3T3-L1 cells. Results suggest that FTEOs are a significant contributor to the adipogenic activity exhibited by the anti-fog sprays. Altogether, these results suggest that FTEOs are present in commercial products at toxicologically relevant levels, and more research is needed to fully understand the health risks from using these PFAS-containing products.
Collapse
Affiliation(s)
- Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, Michigan 48202, United States
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
| | - Yuling Han
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Vivek Francis Pulikkal
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mei Sun
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States
| |
Collapse
|