1
|
Wei X, Zheng L, Li Y, Zhan X, Li T, Shi Y, Liu Y, Wang D, Zhang Q. Enhancing soil fertility and organic carbon stability with high-nitrogen biogas slurry: Benefits and environmental risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125584. [PMID: 40306210 DOI: 10.1016/j.jenvman.2025.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Large-scale livestock farming has increased the amount of excrement, leading to ecological and environmental issues. To address this, sustainable solutions like biogas slurry (BS) are needed to enhance soil fertility and soil organic carbon (SOC). This study investigated the effects of conventional nitrogen fertilizer (NPK), standard BS (BS1), and high-nitrogen input BS treatments (BS5, BS7, and BS11) on soil quality, nutrient dynamics, SOC fractions, and environmental risks across soil depths (0-20, 20-40, and 40-60 cm). Field experiments revealed that BS application significantly enhanced the soil quality index (SQI) by 32.5 %-61.6 % in the 0-20 cm soil layer and ecosystem multifunctionality (EMF) by 42.3 %-169.0 % across all layers compared to NPK. Mineral-associated organic carbon (MOC) dominated SOC stabilization (57.2 %-91.3 % of total SOC), with BS11 increasing MOC content by 76.3 % in the 40-60 cm soil layer. High-nitrogen BS treatments increased microbial biomass carbon (MBC) by 318.1 % (BS11) and β-glucosidase activity by 144 % (BS7) in 0-20 cm soil, indicating enhanced soil enzyme activities. However, excessive nitrogen inputs induced nitrate accumulation in the 40-60 cm soil layer, where NO3--N concentrations surged to 97.2 %-200.6 % above NPK levels. Vertical nutrient migration also triggered subsoil acidification, with the pH decreasing by 5.0 % under the BS11 treatment. These results underscore the dual role of BS: while it enhances SOC stability (via MOC dominance) and multifunctionality, nitrogen inputs must be capped below 300 kg N ha-1 yr-1 to mitigate leaching risks. The findings provide actionable insights for optimizing BS applications in sustainable agriculture, balancing soil health improvements with environmental safeguards.
Collapse
Affiliation(s)
- Xinyuan Wei
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Li Zheng
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Yi Li
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Xiaoying Zhan
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Tingting Li
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China; Hubei Provincial Engineering Research Center of Efficient Utilization of Nutrient Resources, Xinyangfeng Agricultural Technology Co., Ltd., Jingmen, Hubei, 448001, China
| | - Yulong Shi
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Yu Liu
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Dong Wang
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Qingwen Zhang
- Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China.
| |
Collapse
|
2
|
Silva MJ, Zainol I, Tanoeiro JR, Sitowski A, Major I, Murphy EJ, Fehrenbach GW. Livestock Slurry and Sustainable Pasture Management: Microbial Roles, Environmental Impacts, and Regulatory Perspectives in Ireland and Europe. Microorganisms 2025; 13:788. [PMID: 40284625 PMCID: PMC12029279 DOI: 10.3390/microorganisms13040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Pastures serve as the primary source of grass and forage plants for grazing livestock, requiring adequate nutrient input to sustain growth and soil fertility. Slurry from the livestock industry is widely utilized as a sustainable and cost-effective alternative to chemical fertilizers. Microorganisms within the slurry-pasture system are essential for breaking down organic matter, facilitating nutrient cycling, and improving soil health. However, mismanagement or inefficient microbial decomposition can lead to significant issues, such as nutrient leaching into water bodies, causing eutrophication, antimicrobial resistance, and reduced nutrient availability in pastures, which, in turn, may negatively impact livestock productivity. Thus, this paper investigates the composition and benefits of livestock slurry in pasture management, highlights microbial roles in nutrient cycling, and evaluates regulatory frameworks in Ireland and Europe. Additionally, it examines the environmental risks associated with improper slurry application, providing insights to support sustainable management practices.
Collapse
Affiliation(s)
- Mariana Juca Silva
- Bioengineering Organ-on-Chip Research Group (BOC), Centre for Applied Bioscience Research, Limerick Campus, Technological University of the Shannon, V94 EC5T Limerick, Ireland; (M.J.S.); (E.J.M.)
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - Ismin Zainol
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - João Rui Tanoeiro
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - Aline Sitowski
- Post-Graduation Program in Biology of Fungi, Algae, and Plants, Department of Biology Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil;
| | - Ian Major
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - Emma J. Murphy
- Bioengineering Organ-on-Chip Research Group (BOC), Centre for Applied Bioscience Research, Limerick Campus, Technological University of the Shannon, V94 EC5T Limerick, Ireland; (M.J.S.); (E.J.M.)
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| | - Gustavo Waltzer Fehrenbach
- Bioengineering Organ-on-Chip Research Group (BOC), Centre for Applied Bioscience Research, Limerick Campus, Technological University of the Shannon, V94 EC5T Limerick, Ireland; (M.J.S.); (E.J.M.)
- Department of Engineering, Polymer, Recycling, Industrial, Sustainability and Manufacturing Research Institute (PRISM), Athlone Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (I.Z.); (J.R.T.); (I.M.)
| |
Collapse
|
3
|
Yang X, Zhang K, Chen Y, Zheng C, Lei C, Song X, Wen B, Yuan X, Liu H, Zhu J. Impact of different concentrations of biogas slurry as a fertilizer substitute on the structure and gene distribution of microbial communities in oilseed rape soil. Front Vet Sci 2025; 12:1563124. [PMID: 40225761 PMCID: PMC11987513 DOI: 10.3389/fvets.2025.1563124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Application of biogas slurry (BS) in paddy fields offers a sustainable approach to reducing environmental risks while efficiently utilizing nutrients from biogas residues. However, BS may harbor animal gut microorganisms and associated antibiotic resistance genes (ARGs) arising from antibiotic use during livestock breeding, potentially facilitating the spread of resistance genes in soil ecosystems. In this two-year field study, we investigated the effects of replacing chemical fertilizers with different proportions of BS on the microbial communities in oilseed rape soils. Soil bacterial community diversity and composition were systematically evaluated using Illumina MiSeq high throughput sequencing, focusing on interrelationships and changes at the genetic level. The predominant bacterial phyla identified were Proteobacteria, Actinobacteria, and Bacteroidetes, with no significant differences observed at the phylum or species level across treatment groups. Overall microbial diversity and community structure remained largely stable. Dimensionality reduction analysis further revealed only minor variations in the abundance of ARGs, mobile genetic elements (MGEs), and metal resistance genes (MRGs) among treatments. These findings suggest that, in the short term, substituting chemical fertilizers with BS has minimal effects on soil microbial community structure and resistance gene dynamics. This study highlights the potential of BS as a viable alternative to chemical fertilizers, contributing to reduced environmental risks in agriculture. Future research should investigate the long-term ecological safety of BS under different soil types and management practices to comprehensively evaluate its sustainability in agricultural systems.
Collapse
Affiliation(s)
- Xue Yang
- Animal Husbandry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Kai Zhang
- Institute of Herbivorous Livestock Research, Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - YaYing Chen
- Animal Husbandry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Cancai Zheng
- Sichuan Provincial Planning and Construction Service Center, Chengdu, Sichuan, China
| | - Chunlong Lei
- Animal Husbandry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Xiaoqin Song
- Dayi County Agriculture and Rural Bureau, Chengdu, Sichuan, China
| | - Bin Wen
- Institute of Herbivorous Livestock Research, Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Xin Yuan
- Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hanyang Liu
- Animal Husbandry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Jiawen Zhu
- Animal Husbandry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| |
Collapse
|
4
|
Pan J, Peng K, Ruan R, Liu Y, Cui X. Impact of Anaerobic Fermentation Liquid on Bok Choy and Mechanism of Combined Vitamin C from Bok Choy and Allicin in Treatment of DSS Colitis. Foods 2025; 14:785. [PMID: 40077487 PMCID: PMC11899586 DOI: 10.3390/foods14050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
In the context of pollution-free waste treatment, anaerobic fermentation liquid (AFL), a prominent by-product of biogas engineering, has emerged as a focal point in contemporary research. Concurrently, vitamin C, an active compound abundant in fruits and vegetables, possesses extensive application potential. The development of efficient extraction processes and the utilization of its biological activities have garnered significant attention from researchers. This study investigated the impact of AFL on the growth and vitamin C content of Bok choy through field trials of varying concentrations of AFL. The results indicated that the growth characteristics of Bok choy exhibited a concentration-dependent trend with increasing AFL dosage, with the highest yield observed in the AFL-2 group (8.43 kg/m2). Additionally, with the increase in the concentration of the AFL application, the vitamin C content in Bok choy exhibited a trend of initially increasing and then decreasing, reaching its highest value (70.83 mg/100 g) in the AFL-1 group. Furthermore, response surface methodology was employed to optimize the microwave-assisted organic solvent extraction process of vitamin C, revealing that the optimal conditions for microwave-assisted extraction using a 2% citric acid solution were as follows: a microwave power of 313 W, a microwave time of 1.3 min, and a liquid-to-solid ratio of 16.4:1 v/w, achieving a vitamin C extraction rate of 90.77%. Subsequent mechanistic studies on colitis repair demonstrated that the combination of vitamin C and allicin significantly enhanced the ability of intestinal microorganisms to ferment and degrade complex carbohydrates in colitis-afflicted mice, thereby alleviating intestinal inflammation, markedly reducing bacterial invasion signals on intestinal epithelial cells, and decreasing the risk of intestinal infection. This study provides a valuable perspective for the harmless utilization of agricultural waste, and provides a theoretical basis and technical support for the high-value utilization of natural active ingredients.
Collapse
Affiliation(s)
- Junhui Pan
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (J.P.); (K.P.)
| | - Kaitao Peng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (J.P.); (K.P.)
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA;
| | - Yuhuan Liu
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (J.P.); (K.P.)
| |
Collapse
|
5
|
Mora-Salguero D, Ranjard L, Morvan T, Dequiedt S, Jean-Baptiste V, Sadet-Bourgeteau S. Long-term effect of repeated application of pig slurry digestate on microbial communities in arable soils. Heliyon 2025; 11:e41117. [PMID: 39758392 PMCID: PMC11699314 DOI: 10.1016/j.heliyon.2024.e41117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments. Conducted from 2012 to 2022 at an experimental field site in France, the study involved plots with identical agricultural soil management practices, differing only in fertilization treatments: mineral fertilizer, three different OW (cattle manure, pig slurry, pig slurry digestate), and a control with no organic or mineral fertilizer input. Changes in soil microbial communities were analyzed through molecular microbial biomass and diversity assessments using high-throughput sequencing targeting 16S and 18S ribosomal RNA genes. DNA extraction and molecular analyses were performed on soil samples collected at the start of the trial in 2012 and subsequently in 2017 and 2022. The long-term effects of annual digestate application over a decade include a higher soil microbial diversity in digestate-treated plots than in pig slurry-treated plots, and changes in the soil's microbial community structure and taxonomic composition resembling those observed with mineral fertilizer. Differential abundance analysis at the phylum level revealed few significant differences between digestate- and mineral fertilizer-treated plots for both prokaryotic and fungal communities. Only plots amended with cattle manure exhibited higher soil organic carbon content. Agricultural practices, along with climatic and environmental fluctuations, can significantly influence the response of soil microbial communities, thereby buffering the effects of fertilization treatments. Further research is needed to better understand the effects on soil microbial communities, considering the interactions between repeated digestate applications, different pedological contexts, and agricultural practices.
Collapse
Affiliation(s)
- Daniela Mora-Salguero
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Lionel Ranjard
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Thierry Morvan
- French National Institute for Agriculture, Food, and Environment (INRAE), UMR Sol Agro el hydrosystème Spatialisation, Rennes, France
| | - Samuel Dequiedt
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Sophie Sadet-Bourgeteau
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Institut Agro Dijon, France
| |
Collapse
|
6
|
Mora-Salguero D, Montenach D, Gilles M, Jean-Baptiste V, Sadet-Bourgeteau S. Long-term effects of combining anaerobic digestate with other organic waste products on soil microbial communities. Front Microbiol 2025; 15:1490034. [PMID: 39845051 PMCID: PMC11752920 DOI: 10.3389/fmicb.2024.1490034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience. Material and methods This study presents provides a comparative analysis in long-term field conditions of fertilization strategies combining annual applications of raw digestate with biennial applications of different organic waste products (OWPs)-biowaste compost (BIO), farmyard manure (FYM), and urban sewage sludge (SLU)-and compares them to combinations of the same OWPs with mineral fertilizers. The cumulative effects of repeated OWP applications, paired with two nitrogen sources-organic (digestate) and chemical (mineral fertilizer)-were assessed through soil physicochemical and microbial analyses. We hypothesized that the combined effect varied according to the N-supply sources and that this effect also depended on the type of OWP applied. Soil microbial communities were characterized using high-throughput sequencing targeting 16S and 18S ribosomal RNA genes, following DNA extraction from soil samples collected in 2022, six years after the initial digestate application. Results The results indicated that combining OWPs rich in stable and recalcitrant organic matter, such as BIO and FYM, with raw digestate, offers an improved fertilization practice. This approach maintains soil organic carbon (SOC) levels, increases soil phosphorus and potassium content, and stimulates microbial communities differently than nitrogen supplied via mineral fertilizers. While microbial biomass showed no significant variation across treatments, microbial diversity indices exhibited differences based on the type of OWP and nitrogen source. The fertilization strategies moderately influenced prokaryotic and fungal community structures, with distinct patterns depending on the OWP and nitrogen source. Notably, fungal communities responded more strongly to treatment variations than prokaryotic communities. Discussion This study provides new insights into the cumulative effects of substituting mineral fertilizers with digestates on soil microbial communities and soil physicochemical parameters. The sustainable development of agroecosystems significantly depends on a better understanding of the complex responses of soil microbial communities to different fertilization regimes. Future research should continue to assess the long-term impact of digestate application on soil microbiota in real agronomic field conditions, considering associated agricultural practices.
Collapse
Affiliation(s)
- Daniela Mora-Salguero
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Denis Montenach
- French National Institute for Agriculture, Food, and Environment (INRAE), UE 0871 Service d’expérimentation Agronomique et Viticole, Colmar, France
| | - Manon Gilles
- French National Institute for Agriculture, Food, and Environment (INRAE), UE 0871 Service d’expérimentation Agronomique et Viticole, Colmar, France
| | | | - Sophie Sadet-Bourgeteau
- Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Institut Agro Dijon, France
| |
Collapse
|
7
|
Tang Y, Li Y, Zhang R, Zhou K, Zhou W, Qi C, Bian B. A new paradigm for whole-chain low-carbon utilization of food waste secondary waste based on multivariate evaluations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122622. [PMID: 39316880 DOI: 10.1016/j.jenvman.2024.122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The rapid growth of China's food and beverage industry has led to a significant increase in food waste, presenting major challenges for its disposal. Anaerobic digestion is the primary treatment method, but its by-products-biogas slurry (BS) and biogas residue (BR)-pose additional treatment challenges. This study proposes and evaluates three management scenarios for these by-products: (1) BS sewage treatment with BR incineration (S1), (2) BS land application with BR composting (S2), and (3) BS sewage treatment with BR composting (S3). The scenarios were comprehensively assessed using material flow analysis, life cycle assessment, and economic benefit analysis. The findings show that S2 achieves the highest carbon utilization efficiency (80.16%) and delivers superior environmental and economic benefits. Scaling up S2 by 2030 could reduce national carbon emissions by 1817.8 kilotons and generate $11.14 billion in economic profit. This study offers a novel model for the sustainable, low-carbon utilization of food waste by-products, providing valuable insights for future organic waste management.
Collapse
Affiliation(s)
- Yazhou Tang
- School of Environment, Nanjing Normal University, Nanjing 210046, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210046, China
| | - Yongze Li
- School of Environment, Nanjing Normal University, Nanjing 210046, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210046, China
| | - Runhao Zhang
- School of Environment, Nanjing Normal University, Nanjing 210046, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210046, China
| | - Kai Zhou
- School of Environment, Nanjing Normal University, Nanjing 210046, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210046, China
| | - Wenxiang Zhou
- School of Environment, Nanjing Normal University, Nanjing 210046, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210046, China
| | - Chujie Qi
- School of Environment, Nanjing Normal University, Nanjing 210046, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210046, China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing 210046, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210046, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210046, China.
| |
Collapse
|
8
|
Loffredo E, Carnimeo C, De Chirico N, Traversa A, Cocozza C. The liquid by-product of biogas production: characterisation and impact on soil fungi. ENVIRONMENTAL TECHNOLOGY 2024; 45:3570-3585. [PMID: 37254968 DOI: 10.1080/09593330.2023.2220888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
ABSTRACTA liquid digestate (LD) obtained from the anaerobic digestion of mixed organic waste was characterised and tested on the fungi Pleurotus eryngii, Irpex lacteus and Trametes versicolor. Aqueous mixtures of LD at doses of 0.5, 1 and 2% (v/v) were tested directly or after interaction with 5% (w/v) biochar (BC-LD) and/or 100 mg L-1 soil humic acid (HA-BC-LD and HA-LD). Total luminescence (TL) analysis of LD showed the presence of fluorophores typical of scarcely aromatic matter, while the Fourier transform infrared (FTIR) spectrum evidenced absorption bands typical of labile and non-condensed material. Some spectroscopic variations of the LD sample were observed after its interaction with the other materials. All LD treatments markedly promoted hyphal extension of P. eryngii whose growth rate increased up to 38% at the highest LD dose. The LD alone had no influence on the other fungi, whose growth was stimulated by some combinations of LD with the other materials. In facts, the growth rate of I. lacteus increased in BC-LD 1 and BC-LD 2 (P ≤ 0.05) and in all treatments with HA (up to 6% in HA-LD 2, P ≤ 0.01), while the growth of T. versicolor was promoted by HA-BC-LD 2 treatment (P ≤ 0.05) and slightly inhibited by all BC-LD combinations (up to 7% by BC-LD 1, P ≤ 0.05). The overall results obtained encourage the addition of LD to the soil and suggest a possible use of this material as substrate ingredient for the cultivation of edible mushrooms such as P. eryngii.
Collapse
Affiliation(s)
- Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Claudia Carnimeo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nicoletta De Chirico
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Andreina Traversa
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Claudio Cocozza
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
9
|
Liang X, Wang H, Wang C, Wang H, Yao Z, Qiu X, Ju H, Wang J. Unraveling the relationship between soil carbon-degrading enzyme activity and carbon fraction under biogas slurry topdressing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120641. [PMID: 38513586 DOI: 10.1016/j.jenvman.2024.120641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/01/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Biogas slurry, a by-product of the anaerobic digestion of biomass waste, predominantly consisting of livestock and poultry manure, is widely acclaimed as a sustainable organic fertilizer owing to its abundant reserves of essential nutrients. Its distinctive liquid composition, when tactfully integrated with a drip irrigation system, unveils immense potential, offering unparalleled convenience in application. In this study, we investigated the impact of biogas slurry topdressing as a replacement for chemical fertilizer (BSTR) on soil total organic carbon (TOC) fractions and carbon (C)-degrading enzyme activities across different soil depths (surface, sub-surface, and deep) during the tasseling (VT) and full maturity stage (R6) of maize. BSTR increased the TOC content within each soil layer during both VT and R6 periods, inducing alterations in the content and proportion of individual C component, particularly in the topsoil. Notably, the pure biogas slurry topdressing treatment (100%BS) compared with the pure chemical fertilizer topdressing treatment (CF), exhibited a 38.9% increase in the labile organic carbon of the topsoil during VT, and a 30.3% increase in the recalcitrant organic carbon during R6, facilitating microbial nutrient utilization and post-harvest C storage during the vigorous growth period of maize. Furthermore, BSTR treatment stimulated the activity of oxidative and hydrolytic C-degrading enzymes, with the 100%BS treatment showcasing the most significant enhancements, with its average geometric enzyme activity surpassing that of CF treatment by 27.9% and 27.4%, respectively. This enhancement facilitated ongoing and efficient degradation and transformation of C. Additionally, we screened for C components and C-degrading enzymes that are relatively sensitive to BSTR. The study highlight the advantages of employing pure biogas slurry topdressing, which enhances C component and C-degrading enzyme activity, thereby reducing the risk of soil degradation. This research lays a solid theoretical foundation for the rational recycling of biogas slurry.
Collapse
Affiliation(s)
- Xiaoyang Liang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Hang Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chuanjuan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Haitao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xuefeng Qiu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Hui Ju
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiandong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
10
|
Feng G, Hao F, He W, Ran Q, Nie G, Huang L, Wang X, Yuan S, Xu W, Zhang X. Effect of Biogas Slurry on the Soil Properties and Microbial Composition in an Annual Ryegrass-Silage Maize Rotation System over a Five-Year Period. Microorganisms 2024; 12:716. [PMID: 38674660 PMCID: PMC11051864 DOI: 10.3390/microorganisms12040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Soil health is seriously threatened by the overuse of chemical fertilizers in agricultural management. Biogas slurry is often seen as an organic fertilizer resource that is rich in nutrients, and its use has the goal of lowering the amount of chemical fertilizers used while preserving crop yields and soil health. However, the application of continuous biogas slurry has not yet been studied for its long-term impact on soil nutrients and microbial communities in a rotation system of annual ryegrass-silage maize (Zea mays). This study aimed to investigate the impacts on the chemical properties and microbial community of farmland soils to which chemical fertilizer (NPK) (225 kg ha-1), biogas slurry (150 t ha-1), and a combination (49.5 t ha-1 biogas slurry + 150 kg ha-1 chemical fertilizer) were applied for five years. The results indicated that compared to the control group, the long-term application of biogas slurry significantly increased the SOC, TN, AP, and AK values by 45.93%, 39.52%, 174.73%, and 161.54%, respectively; it neutralized acidic soil and increased the soil pH. TN, SOC, pH, and AP are all important environmental factors that influence the structural composition of the soil's bacterial and fungal communities. Chemical fertilizer application significantly increased the diversity of the bacterial community. Variation was observed in the composition of soil bacterial and fungal communities among the different treatments. The structure and diversity of soil microbes are affected by different methods of fertilization; the application of biogas slurry not only increases the contents of soil nutrients but also regulates the soil's bacterial and fungal community structures. Therefore, biogas slurry can serve as a sustainable management measure and offers an alternative to the application of chemical fertilizers for sustainable intensification.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (W.H.); (Q.R.)
| | - Qifan Ran
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (W.H.); (Q.R.)
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Suhong Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Wenzhi Xu
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| |
Collapse
|
11
|
Chen Z, Ma J, Ma J, Ye J, Yu Q, Zou P, Sun W, Lin H, Wang F, Zhao X, Wang Q. Long-term biogas slurry application increases microbial necromass but not plant lignin contribution to soil organic carbon in paddy soils as regulated by fungal community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:254-264. [PMID: 38219463 DOI: 10.1016/j.wasman.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Biogas slurry (BS) is widely considered as a source of organic matter and nutrients for improving soil organic carbon (SOC) sequestration and crop production in agroecosystems. Microbial necromass C (MNC) is considered one of the major precursors of SOC sequestration, which is regulated by soil microbial anabolism and catabolism. However, the microbial mechanisms through which BS application increases SOC accumulation in paddy soils have not yet been elucidated. A 12-year field experiment with four treatments (CK, no fertilizers; CF, chemical fertilizer application; BS1 and BS2, biogas slurry application at two nitrogen rates from BS) was conducted in rice paddy fields. The results showed that long-term BS application had no effect on lignin phenols proportion in SOC relative to CF. In contrast, BS application elevated the MNC contribution to SOC by 15.5-20.5 % compared with the CF treatment. The proportion of fungal necromass C (FNC) to SOC increased by 16.0 % under BS1 and by 25.8 % under BS2 compared with the CF treatment, while no significant difference in bacterial necromass C (BNC) contribution to SOC was observed between the BS and CF treatments. The MNC was more closely correlated with fungal community structures than with bacterial community structures. We further found that fungal genera, Mortierella and Ciliophora, mainly regulated the MNC, FNC and BNC accumulation. Collectively, our results highlighted that fungi play a vital role in SOC storage in paddy soils by regulating MNC formation and accumulation under long-term BS application.
Collapse
Affiliation(s)
- Zhaoming Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinchuan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiaogang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ping Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanchun Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinlin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
12
|
Wang Z, Sanusi IA, Wang J, Ye X, Kana EG, Olaniran AO. Biogas Slurry Significantly Improved Degraded Farmland Soil Quality and Promoted Capsicum spp. Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:265. [PMID: 38256818 PMCID: PMC10820347 DOI: 10.3390/plants13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
This study reports on the effects of pretreated biogas slurry on degraded farm soil properties, microflora and the production of Capsicum spp. The responses of soil properties, microorganisms and Capsicum spp. production to biogas slurry pretreated soil were determined. The biogas slurry pretreatment of degraded soil increases the total nitrogen (0.15-0.32 g/kg), total phosphorus (0.13-0.75 g/kg), available phosphorus (102.62-190.68 mg/kg), available potassium (78.94-140.31 mg/kg), organic carbon content (0.67-3.32 g/kg) and pH value of the soil, while the population, diversity and distribution of soil bacteria and fungi were significantly affected. Interestingly, soil ammonium nitrogen, soil pH and soil nitrate nitrogen were highly correlated with the population of bacteria and fungi present in the pretreated soil. The soil with biogas slurry pretreatment of 495 m3/hm2 favored the seedling survival rate, flowering rate and fruit-bearing rate of Capsicum spp. and significantly reduced the rate of rigid seedlings. In this study, the application of 495 m3/hm2 biogas slurry to pretreat degraded soil has achieved the multiple goals of biogas slurry valorization, soil biofertilization and preventing and controlling plant diseases caused by soil-borne pathogenic microorganisms. These findings are of significant importance for the safe and environmentally friendly application of biogas slurry for soil pretreatment.
Collapse
Affiliation(s)
- Zichen Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 4000, South Africa; (I.A.S.); (A.O.O.)
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Liuhe Observation and Experimental Station of National Agricultural Environment, Nanjing 210014, China
| | - Isaac A. Sanusi
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 4000, South Africa; (I.A.S.); (A.O.O.)
| | - Jidong Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Liuhe Observation and Experimental Station of National Agricultural Environment, Nanjing 210014, China
| | - Xiaomei Ye
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;
| | - Evariste Gueguim Kana
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 4000, South Africa; (I.A.S.); (A.O.O.)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 4000, South Africa; (I.A.S.); (A.O.O.)
| |
Collapse
|
13
|
Thao HV, Tarao M, Takada H, Nishizawa T, Nam TS, Cong NV, Xuan DT. Methanotrophic Communities and Cultivation of Methanotrophs from Rice Paddy Fields Fertilized with Pig-livestock Biogas Digestive Effluent and Synthetic Fertilizer in the Vietnamese Mekong Delta. Microbes Environ 2024; 39:ME24021. [PMID: 39358243 PMCID: PMC11821765 DOI: 10.1264/jsme2.me24021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
Biogas digestive effluent (BDE) has been applied to rice fields in the Vietnamese Mekong Delta (VMD). However, limited information is available on the community composition and isolation of methanotrophs in these fields. Therefore, the present study aimed (i) to clarify the responses of the methanotrophic community in paddy fields fertilized with BDE or synthetic fertilizer (SF) and (ii) to isolate methanotrophs from these fields. Methanotrophic communities were detected in rhizospheric soil at the rice ripening stage throughout 2 cropping seasons, winter-spring (dry) and summer-autumn (wet). Methanotrophs were isolated from dry-season soil samples. Although the continued application of BDE markedly reduced net methane oxidation potential and the copy number of pmoA genes, a dissimilarity ordination ana-lysis revealed no significant difference in the methanotrophic community between BDE and SF fields (P=0.167). Eleven methanotrophic genera were identified in the methanotrophic community, and Methylosinus and Methylomicrobium were the most abundant, accounting for 32.3-36.7 and 45.7-47.3%, respectively. Type-I methanotrophs (69.4-73.7%) were more abundant than type-II methanotrophs (26.3-30.6%). Six methanotrophic strains belonging to 3 genera were successfully isolated, which included type I (Methylococcus sp. strain BE1 and Methylococcus sp. strain SF3) and type II (Methylocystis sp. strain BE2, Methylosinus sp. strain SF1, Methylosinus sp. strain SF2, and Methylosinus sp. strain SF4). This is the first study to examine the methanotrophic community structure in and isolate several methanotrophic strains from BDE-fertilized fields in VMD.
Collapse
Affiliation(s)
- Huynh Van Thao
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183–8509, Japan
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city 900000, Viet Nam
| | - Mitsunori Tarao
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183–8509, Japan
| | - Hideshige Takada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183–8509, Japan
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183–8509, Japan
- Ibaraki University, College of Agriculture, 3–21–1 Chuou, Ami-machi, Ibaraki 300–0393, Japan
| | - Tran Sy Nam
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city 900000, Viet Nam
| | - Nguyen Van Cong
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city 900000, Viet Nam
| | - Do Thi Xuan
- Department of Microbial Technology, Institute of Food and Biotechnology, Can Tho University, 3/2 street, Can Tho city 900000, Viet Nam
| |
Collapse
|
14
|
Liang X, Wang H, Wang C, Yao Z, Qiu X, Ju H, Wang J. Disentangling the impact of biogas slurry topdressing as a replacement for chemical fertilizers on soil bacterial and fungal community composition, functional characteristics, and co-occurrence networks. ENVIRONMENTAL RESEARCH 2023; 238:117256. [PMID: 37775013 DOI: 10.1016/j.envres.2023.117256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The application of biogas slurry topdressing with drip irrigation systems can compensate for the limitation of traditional solid organic fertilizer, which can only be applied at the bottom. Based on this, we attempted to define the response of soil bacterial and fungal communities of maize during the tasseling and full maturity stages, by using a no-topdressing control and different ratios of biogas slurry nitrogen in place of chemical fertilizer topdressing. The application of biogas slurry resulted in the emergence of new bacterial phyla led by Synergistota. Compared with pure urea chemical topdressing, the pure biogas slurry topdressing treatment significantly enriched Firmicutes and Basidiomycota communities during the tasseling stage, in addition to affecting the separation of bacterial and fungal α-diversity indices between the tasseling and full maturity stages. Based on the prediction of community composition and function, the changes in bacterial and fungal communities caused by biogas slurry treatment stimulated the ability of microorganisms to decompose refractory organic components, which was conducive to turnover in the soil carbon cycle, and improved multi-element (such as sulfur) cycles; however it may also bring potential risks of heavy metal and pathogenic microbial contamination. Notably, the biogas slurry treatment reduced the correlation and aggregation of bacterial and fungal symbiotic networks, and had a dual effect on ecological randomness. These findings contribute to a deeper comprehension of the alterations occurring in soil microbial communities when substituting chemical fertilizers treated with biogas slurry topdressing, and promote the efficient and sustainable utilization of biogas slurry resources.
Collapse
Affiliation(s)
- Xiaoyang Liang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Haitao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chuanjuan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xuefeng Qiu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Hui Ju
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiandong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
15
|
Liang X, Wang C, Wang H, Qiu X, Ji H, Ju H, Wang J. Synergistic effect on soil health from combined application of biogas slurry and biochar. CHEMOSPHERE 2023; 343:140228. [PMID: 37742761 DOI: 10.1016/j.chemosphere.2023.140228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Biogas slurry and biochar, as typical by-products and derivatives of organic waste, have been applied in agricultural production to improve the soil carbon (C) pool. However, whether the combined application of biogas slurry and biochar produces synergistic effects on the soil C pool and soil health requires quantitative clarification. In this study, we performed a pot experiment to analyze the changes of soil organic carbon (SOC), potassium permanganate-oxidized carbon (POXC), mineralizable carbon (MC), soil β-glucosidase (S-β-GC), and soil protein (SP) in different treatments at the flowering and fruit-setting stages, and full fruit stage of tomato by establishing two base fertilizer modes (base fertilizer N and base biogas slurry N), three topdressing modes (topdressing chemical fertilizer N, topdressing 50% biogas slurry N + 50% chemical fertilizer N, and topdressing biogas slurry N), and two biochar levels (no addition and 3% biochar addition). During the full fruit period, the SOC content of bottom applications of biogas slurry and topdressings of biogas slurry significantly increased by 9.92-15.52% and 13.02-18.26%, respectively (P < 0.05), when compared to chemical fertilizer bottom applications and topdressings of chemical fertilizer. When compared to non-biochar treatment, the SOC content of the biochar considerably increased by 52.56-58.94% (P < 0.05). Moreover, biogas slurry treatment increased the MC, steady-state C, and C pool index, and decreased the S-β-GC, C pool efficiency, C pool activity, and C pool activity index. Application of biogas slurry initially reduced POXC, SP, the C pool management index, and the soil quality index; nonetheless, these indicators eventually recovered or even exceeded the result of single application chemical fertilizer. Overall, the combined application of biogas slurry and biochar strongly increases the soil C pool, improves soil health, and reduces the short-term negative effects of using only biogas slurry.
Collapse
Affiliation(s)
- Xiaoyang Liang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, China
| | - Chuanjuan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, China
| | - Haitao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, China
| | - Xuefeng Qiu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, China
| | - Hongxu Ji
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hui Ju
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiandong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
16
|
Wang Z, Sanusi IA, Wang J, Ye X, Kana EBG, Olaniran AO, Shao H. Developments and Prospects of Farmland Application of Biogas Slurry in China-A Review. Microorganisms 2023; 11:2675. [PMID: 38004687 PMCID: PMC10673569 DOI: 10.3390/microorganisms11112675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Biogas slurry (BS) is an attractive agricultural waste resource which can be used to regulate soil microbial communities, enhance nutrient absorption capacity of crops, promote plant-soil interactions, and consequently, increase crop productivity. Presently, BS discharge is not environmentally friendly. It is therefore necessary to explore alternative efficient utilization of BS. The use of BS as fertilizer meets the requirements for sustainable and eco-friendly development in agriculture, but this has not been fully actualized. Hence, this paper reviewed the advantages of using BS in farmland as soil fertilization for the improvement of crop production and quality. This review also highlighted the potential of BS for the prevention and control of soil acidification, salinization, as well as improve microbial structure and soil enzyme activity. Moreover, this review reports on the current techniques, application methods, relevant engineering measures, environmental benefits, challenges, and prospects associated with BS utilization. Lastly, additional research efforts require for optimal utilization of BS in farmlands were elucidated.
Collapse
Affiliation(s)
- Zichen Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Z.W.); (H.S.)
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 4000, South Africa; (I.A.S.); (A.O.O.)
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agricultural Environment, Nanjing 210014, China
| | - Isaac A. Sanusi
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 4000, South Africa; (I.A.S.); (A.O.O.)
| | - Jidong Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Z.W.); (H.S.)
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agricultural Environment, Nanjing 210014, China
| | - Xiaomei Ye
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;
| | - Evariste B. Gueguim Kana
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 4000, South Africa; (I.A.S.); (A.O.O.)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 4000, South Africa; (I.A.S.); (A.O.O.)
| | - Hongbo Shao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Z.W.); (H.S.)
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agricultural Environment, Nanjing 210014, China
| |
Collapse
|
17
|
Guo Y, Lu Y, Eltohamy KM, Liu C, Fang Y, Guan Y, Liu B, Yang J, Liang X. Contribution of Biogas Slurry-Derived Colloids to Plant P Uptake and Phosphatase Activities: Spatiotemporal Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16564-16574. [PMID: 37862689 DOI: 10.1021/acs.est.3c05108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The bioavailability for varied-size phosphorus (P)-binding colloids (Pcoll) especially from external P sources in soil terrestrial ecosystems remains unclear. This study evaluated the differential contribution of various-sized biogas slurry (BS)-derived colloids to plant available P uptake in the rhizosphere and the corresponding patterns of phosphatase response. Keeping the same content of total P input (15 mg kg-1), we applied different size-fractioned BS-derived colloids including nanosized colloids (NCs, 1-20 nm), fine-sized colloids (FCs, 20-220 nm), and medium-sized colloids (MCs, 220-450 nm) respectively to conduct a 45-day rice (Oryza sativa L.) rhizotron experiment. During the whole cultivation period, the dynamics of chemical characteristics and P fractions in each experimental rhizosphere soil solution were analyzed. The spatial and temporal dynamics examination of P-transforming enzymes (acid phosphatases) in the rice rhizosphere was visualized by a soil zymography technique after 5, 25, and 45 days of rice transplantation. The results indicated that the acid phosphatase activities and its hot spot areas were significantly 1) correlated with the relative bioavailability of colloidal P (RBAcoll), 2) increased with the colloid-free (truly dissolved P) and BS-derived NC addition, and 3) affected by the plant growth stage. With the nanosized BS colloid addition, the RBAcoll and plant biomass were respectively found to be the highest (64% and 1.22 g plant-1), in which the acid phosphatase-catalyzed hydrolysis of organic Pcoll played an important role. All of the above suggested that nanosized BS-derived colloids are an effective alternative to conventional phosphorus fertilizer for promoting plant P uptake and P bioavailability.
Collapse
Affiliation(s)
- Yuxin Guo
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Lu
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kamel Mohamed Eltohamy
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Chunlong Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yunying Fang
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Boyi Liu
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiao Yang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
18
|
Liang X, Wang C, Wang H, Yao Z, Qiu X, Wang J, He W. Biogas slurry topdressing as replacement of chemical fertilizers reduces leaf senescence of maize by up-regulating tolerance mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118433. [PMID: 37336015 DOI: 10.1016/j.jenvman.2023.118433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Worldwide physiological research has aimed to decelerate the aging of crop leaves by optimizing fertilization measures to improve crop or biomass yield. Solid organic fertilizers can be combined with chemical fertilizers to delay the aging of crop leaves. Biogas slurry is a liquid organic fertilizer produced by the anaerobic fermentation of livestock and poultry manure and other resources, and it can partially replace chemical fertilizers in field application via drip irrigation systems. However, the impact of biogas slurry topdressing on leaf aging remains unclear. This study investigated treatments with no topdressing (control, CK) and five topdressing patterns of biogas slurry replacing chemical fertilizer (nitrogen) at 100%, 75%, 50%, 25%, and 0% (100%BS, 75%BS, 50%BS, 25%BS, CF). The effects of different proportions of biogas slurry on leaf senescence rate, photosynthetic pigments, osmotic adjustment substances, antioxidant defense enzymes, and nitrogen metabolism related enzyme activities of maize were analyzed. Subsequently, the mechanisms of biogas slurry topdressing on the leaf senescence rate of maize were explored. The results showed that the mean decreasing rate of relative green leaf area (Vm) treated with biogas slurry decreased by 3.7%-17.1% and the duration of leaf area duration (LAD) increased by 3.7%-17.1% compared with the results for CK. The maximum senescence rate of 100%BS was delayed by 4.4 and 5.6 d compared to the results for CF and CK, respectively. During the senescence of maize leaves, the use of biogas slurry topdressing increased the content of chlorophyll, decreased the water loss and the accumulation rate of malondialdehyde and proline in leaves, and increased the activities of catalase, peroxidase, and superoxide dismutase in the later growth and development periods of maize. In addition, biogas slurry topdressing improved the nitrogen transport efficiency of the leaves and ensured continuous and efficient ammonium assimilation. Furthermore, there was a strong correlation between leaf senescence and the investigated physiological indices. Cluster analysis showed that the 100%BS treatment exhibited the most prominent effect on leaf senescence. Biogas slurry topdressing as a substitute for chemical fertilizer can be potentially used as an anti-aging regulation measure for crops to decrease the damage induced by senescence.
Collapse
Affiliation(s)
- Xiaoyang Liang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China
| | - Chuanjuan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China
| | - Haitao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China
| | - Xuefeng Qiu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China
| | - Jiandong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China.
| | - Wenqing He
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China.
| |
Collapse
|
19
|
Shi Z, Yang Y, Fan Y, He Y, Li T. Dynamic Responses of Rhizosphere Microorganisms to Biogas Slurry Combined with Chemical Fertilizer Application during the Whole Life Cycle of Rice Growth. Microorganisms 2023; 11:1755. [PMID: 37512927 PMCID: PMC10386682 DOI: 10.3390/microorganisms11071755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Biogas slurry combined with chemical fertilizer (BCF) is widely used as a fertilizer in paddy fields and rhizosphere microorganisms are key players in plant growth and reproduction. However, the dynamic responses of rhizosphere microorganisms of field-grown rice to BCF application still remain largely unknown. In this study, a field experiment was conducted in two proximate paddy fields in Chongming Island to study the impacts of BCF on the changes in rhizosphere microorganisms during the whole rice growth, including seedling, tillering, booting, and grain-filling stages, with solely chemical fertilizer (CF) treatment as control. The results showed BCF could increase the N-, P-, and C- levels in paddy water as well as the rhizosphere microbial abundance and diversity compared with control. In particular, the phosphate-solubilizing- and cellulose-decomposing-bacteria (e.g., Bacillus) and fungi (e.g., Mortierella) were more abundant in the rhizosphere of BCF than those of CF. Moreover, these microbes increased markedly at the booting and grain-filling stages in BCF, which could promote rice to obtain available nutrients (P and C). It was noted that denitrifying-like bacteria (e.g., Steroidobacteraceae) decreased and dissimilatory nitrate reduction to ammonia-related bacteria (e.g., Geobacter, Anaeromyxobacter, and Ignavibacterium) increased at the booting and filling stages, which could promote N-availability. TP in paddy water of BCF was most correlated to the bacteria, while COD was the most critical regulator for the fungi. Furthermore, correlation network analysis showed nutrient-cycling-related microorganisms were more closely interconnected in BCF than those in CF. These findings showed the application of biogas slurry plus chemical fertilizer could regulate rhizosphere microorganisms towards a beneficial fertilizer use for rice growth.
Collapse
Affiliation(s)
- Zhenbao Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanmei Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Yehong Fan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Yan He
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
20
|
Kong F, Li Q, Yang Z, Chen Y. Does the application of biogas slurry reduce soil N 2O emissions and increase crop yield?-A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118339. [PMID: 37315456 DOI: 10.1016/j.jenvman.2023.118339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
The use of organic fertilizer for agricultural production can reduce the use of chemical fertilizer (CF), reduce greenhouse gas emissions, and maintain crop production. However, biogas slurry (BS), a liquid with a high moisture content and a low C/N ratio, differs from commercial organic fertilizer and manure in terms of its impact on the soil N cycle. Replacing CF with BS needs to be reconsidered regarding soil nitrous oxide (N2O) emissions and crop production in terms of fertilization, agricultural land type, and soil characteristics. For this systematic review, the results of 92 published studies worldwide were collected. Based on the findings, the combined application of BS and CF can significantly increase soil total N (TN), microbial biomass N (MBN), and soil organic matter (SOM) levels. The Chaol and ACE index values of soil bacteria were increased by 13.58% and 18.53%, whereas those of soil fungi were decreased by 10.45% and 14.53%, respectively. At a replacement ratio (rr) ≤ 70%, crop yield was promoted by 2.20%-12.17%, and soil N2O emissions were reduced by 1.94%-21.81%. A small rr (≤30%) was more conducive to growth, and a moderate rr (30% < rr ≤ 70%) was more favorable for N2O emission reduction, especially in the dryland crop system. However, at rr = 100%, soil N2O emissions in neutral and alkaline dryland soil were increased by 28.56%-32.22%. The importance analysis of the influencing factors showed that the proportion of BS, the N application rate, and the temperature were the factors affecting soil N2O emissions. Our results provide a scientific basis for the safe use of BS in agricultural systems.
Collapse
Affiliation(s)
- Fanjing Kong
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Qing Li
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China
| | - Zhimin Yang
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China; Chongqing Key Laboratory of Water Environment Evolution and Pollution Prevention and Control in the Three Gorges Reservoir Area, Chongqing, 400716, China
| | - Yucheng Chen
- College of Resources and Environmental Sciences, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China.
| |
Collapse
|
21
|
Dai Y, Wang Z, Li J, Xu Z, Qian C, Xia X, Liu Y, Feng Y. Tofu by-product soy whey substitutes urea: Reduced ammonia volatilization, enhanced soil fertility and improved fruit quality in cherry tomato production. ENVIRONMENTAL RESEARCH 2023; 226:115662. [PMID: 36913827 DOI: 10.1016/j.envres.2023.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Soy whey is an abundant, nutrient-rich and safe wastewater produced in tofu processing, so it is necessary to valorize it instead of discarding it as sewage. Whether soy whey can be used as a fertilizer substitute for agricultural production is unclear. In this study, the effects of soy whey serving as a nitrogen source to substitute urea on soil NH3 volatilization, dissolved organic matter (DOM) components and cherry tomato qualities were investigated by soil column experiment. Results showed that the soil NH4+-N concentrations and pH values of the 50% soy whey fertilizer combined with 50% urea (50%-SW) and 100% soy whey fertilizer (100%-SW) treatments were lower than those of 100% urea treatment (CKU). Compared with CKU, 50%-SW and 100%-SW treatments increased the abundance of ammonia oxidizing bacteria (AOB) by 6.52-100.89%, protease activity by 66.22-83.78%, the contents of total organic carbon (TOC) by 16.97-35.64%, humification index (HIX) of soil DOM by 13.57-17.99%, and average weight per fruit of cherry tomato by 13.46-18.56%, respectively. Moreover, soy whey as liquid organic fertilizer reduced the soil NH3 volatilization by 18.65-25.27% and the fertilization cost by 25.94-51.87% compared with CKU. This study provides a promising option with economic and environmental benefits for soy whey utilization and cherry tomato production, which contributes to the win-win effectiveness of sustainable production for both the soy products industry and agriculture.
Collapse
Affiliation(s)
- Yiqiang Dai
- Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Wang
- Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Key Laboratory of Integrated Planting and Breeding, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhuang Xu
- Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Cong Qian
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Key Laboratory of Integrated Planting and Breeding, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yang Liu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Key Laboratory of Integrated Planting and Breeding, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
22
|
Zhu Y, Yuan G, Zhao Z, Tang Y, Li P, Han J. Pig farm biogas slurry can effectively reduce the pH of saline-alkali soils. ENVIRONMENTAL TECHNOLOGY 2023; 44:1415-1425. [PMID: 34779745 DOI: 10.1080/09593330.2021.2003440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Pig farm biogas slurry is being increasingly used as a potent organic fertilizer for sustainable agriculture under circular economy. However, the effect of biogas slurry on soil pH is currently controversial, and the underlying mechanisms especially in saline-alkali soils are not well understood. A saline-alkali soil (pH = 9.2, EC = 2.0 ms/cm) was selected for soil column (0-50 cm) experiments with (BS) and without (CK) addition of pig farm biogas slurry to investigate the soil pH change and its driving factors. Our results show that the soil pH under CK ranged between 9.1 and 9.5 across different soil depths. Compared to CK, the BS-treated soil had lower pH at 0-20 cm depth and higher pH at 20-30 cm depth (P < 0.01). The soil NH4+-N concentrations were negatively correlated with pH values under BS (P < 0.01), indicating that the oxidation of ammonium mainly contributed to the decrease of soil pH. Interestingly, the anions, such as Cl-, SO42- and NO3-, were accumulated in the topsoil (0-20 cm) under BS, resulting in the changed correlations of these anions with Na+ when compared to the control. FT-IR and 13C-NMR spectra uncovered that carboxyl, amide C, and total alkyl C groups may be responsible for reducing pH of the saline-alkali soil tested. The soil surface morphology confirmed a much tighter granular aggregate microstructure when mixing the biogas slurry with the soil. Overall, we concluded that from the perspective of soil pH, the utilization of biogas slurry for improving saline-alkali soil is feasible and sustainable.
Collapse
Affiliation(s)
- Yongli Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Gen Yuan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zihui Zhao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yifan Tang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Pingping Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Zhao Y, Jia H, Deng H, Xing W, Feng D, Li J, Ge C, Yu H, Zhang Y, Chen H. Response of earthworms to microplastics in soil under biogas slurry irrigation: Toxicity comparison of conventional and biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160092. [PMID: 36370787 DOI: 10.1016/j.scitotenv.2022.160092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/13/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As a reliable environment-friendly alternative, biodegradable plastic mulching films have been introduced into agricultural practice to reduce the adverse threats posed by conventional plastic products. Information regarding whether potential untoward effects of biodegradable plastics exist in soil and how strong are such effects on terrestrial organisms, however, still remains unknown. This study examined differences in the responses of earthworm, represented by Eisenia fetida, to exposure to biodegradable (PLA: polylactic acid) and conventional microplastics (PVC: polyvinylchloride, LDPE: low-density polyethylene) in soil with biogas slurry irrigation. Mortality, growth, histopathology and biochemical enzymes of the earthworms exposed to different concentrations of microplastics (5, 20 and 50 g/kg wet weight of soil, respectively) were investigated after 28 days of incubation in the experiment. The obtained results showed that the ecotoxicity of microplastics (MPs) to earthworms was time-dependent. Regardless of MPs type, continuous exposure to MPs at the concentration of 50 g/kg induced mucous vacuolization, longitude muscle disorder, and granular lipofuscin-like deposits generation in the epithelium. Moreover, tissue fibrosis and cavity formation were also observed in intestinal tissue. The presence of MPs stimulated the oxidative stress system of the earthworms, as indicated by the enhancement of malonaldehyde (MDA) content in vivo. The antioxidative defense system in earthworms was supposed to collapse at the MPs concentration of 50 g/kg after 28 days of exposure. Interestingly, PLA exhibited similar ecotoxicity effects with LDPE, which might violate the original intention of biodegradable plastics with less harmful or nontoxic influence on the terrestrial biotas. Thus, knowledge regarding the molecular and genetic mechanisms of the earthworms in soil containing biodegradable plastics should be further explored to better understand the risk posed by biodegradable plastics in the agroecosystem.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Huiting Jia
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Hui Deng
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Wenzhe Xing
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Dan Feng
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China.
| | - Jiatong Li
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Chengjun Ge
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Huamei Yu
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Ying Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Haiying Chen
- Hainan Qingshi Environmental Engineering & Technology Co., Ltd, Haikou 570100, China.
| |
Collapse
|
24
|
Chen S, Li D, He H, Zhang Q, Lu H, Xue L, Feng Y, Sun H. Substituting urea with biogas slurry and hydrothermal carbonization aqueous product could decrease NH 3 volatilization and increase soil DOM in wheat growth cycle. ENVIRONMENTAL RESEARCH 2022; 214:113997. [PMID: 35934142 DOI: 10.1016/j.envres.2022.113997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Biogas slurry (BS) and hydrothermal carbonization aqueous products (HAP), which are rich in nitrogen (N) and dissolved organic matter (DOM), can be used as organic fertilizer to substitute inorganic N fertilizer. To evaluate the effects of co-application of BS and HAP on the ammonia (NH3) volatilization and soil DOM content in wheat growth season, we compared six treatments that substituting 50%, 75%, and 100% of urea-N with BS plus HAP at low (L) or high (H) ratio, named BCL50, BCL75, BCL100, BCH50, BCH75, BCH100, respectively. Meanwhile, urea alone treatment was set as the control (CKU). The results showed that both BCL and BCH treatments significantly mitigate the NH3 volatilizations by 9.1%-45.6% in comparison with CKU (P < 0.05), whose effects were correlated with soil NH4+-N content. In addition, the decrease in soil urease activity contributed to the lower NH3 volatilization following application of BS plus HAP. Notably, BS plus HAP applications increased the microbial byproduct- and humic acid-like substances in soil by 9.9%-74.5% and 100.7%-451.9%, respectively. Consequently, BS and HAP amended treatments significantly increased soil humification index and DOM content by 13.7%-41.2% and 38.4%-158.7%, respectively (P < 0.05). This study suggested that BS and HAP could be co-applied into agricultural soil as a potential alternative of inorganic fertilizer N, which can decrease NH3 loss but increase soil fertility.
Collapse
Affiliation(s)
- Sen Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Detian Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Huayong He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Qiuyue Zhang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Haiying Lu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
25
|
Zhang H, Ma Y, Shao J, Di R, Zhu F, Yang Z, Sun J, Zhang X, Zheng C. Changes in soil bacterial community and functions by substituting chemical fertilizer with biogas slurry in an apple orchard. FRONTIERS IN PLANT SCIENCE 2022; 13:1013184. [PMID: 36204070 PMCID: PMC9530944 DOI: 10.3389/fpls.2022.1013184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Growing concerns about the negative environmental effects of excessive chemical fertilizer input in fruit production have resulted in many attempts looking for adequate substitution. Biogas slurry as a representative organic fertilizer has the potential to replace chemical fertilizer for improvement of sustainability. However, it is still poorly known how biogas slurry applications may affect the composition of soil microbiome. Here, we investigated different substitution rates of chemical fertilizer with biogas slurry treatment (the control with no fertilizer and biogas slurry, CK; 100% chemical fertilizer, CF; biogas slurry replacing 50% of chemical fertilizer, CBS; and biogas slurry replacing 100% of chemical fertilizer, BS) in an apple orchard. Soil bacterial community and functional structure among treatments were determined using Illumina sequencing technology coupled with Functional Annotation of Prokaryotic Taxonomy (FAPROTAX) analysis. Leaf nutrient contents, apple fruit and soil parameters were used to assess plant and soil quality. Results showed that most of fruit parameters and soil properties were significantly varied in the four treatments. CBS treatment increased the contents of soil organic matter, alkali nitrogen and available potassium average by 49.8%, 40.7% and 27.9%, respectively. Treatments with biogas slurry application increased the single fruit weight, fresh weight, and dry weight of apple fruit average by 15.6%, 18.8% and 17.8, respectively. Soil bacterial community dominance and composition were significantly influenced by substituting of chemical fertilizer with biogas slurry. Biogas slurry application enhanced the relative abundance of some beneficial taxa (e.g. Acidobacteria Gp5 and Gp7, Parasegetibacter) and functional groups related to carbon and nitrogen cycling such as chemoheterotrophy, cellulolysis, and nitrogen fixation. Soil available phosphorus and potassium, pH and electrical conductivity were identified having a high potential for regulating soil bacterial specific taxa and functional groups. This study showed that the proper ratio application (50%: 50%) of biogas slurry with chemical fertilizer could regulate soil bacterial composition and functional structure via changes in soil nutrients. The variations of bacterial community could potentially take significant ecological roles in maintaining apple plant growth, soil fertility and functionality.
Collapse
Affiliation(s)
- He Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yue Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianzhu Shao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Rui Di
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Zhichang Yang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianshe Sun
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueying Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Chunyan Zheng
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
26
|
Chen Z, Liu F, Cai G, Peng X, Wang X. Responses of Soil Carbon Pools and Carbon Management Index to Nitrogen Substitution Treatments in a Sweet Maize Farmland in South China. PLANTS 2022; 11:plants11172194. [PMID: 36079575 PMCID: PMC9460251 DOI: 10.3390/plants11172194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
In China, excessive nitrogen fertilizer application in sweet maize fields contributes to greenhouse gas emissions. This study used maize straw (MS), cow dung (CD), biogas residue (BR), and straw-based biochar (CB) to substitute the mineral nitrogen fertilizer at 20% and 50% ratios in the Pearl River Delta in China. In comparison with a conventional amount of mineral nitrogen fertilizer (CK), the soil organic carbon (SOC) storages of the different treatments increased by 6.5–183.0%. The CB treatment significantly improved the inert organic carbon pool in the soil, while other types of organic materials promoted the formation of activated carbon pools. The treatments increased the soil carbon pool management index by 21.1–111.0% compared to the CK. Moreover, the CB treatments increased the soil carbon sequestration index by 78.3% and 155.8% compared to the CK. In general, substituting the mineral N fertilizer with BR, CB, and CD could improve the SOC accumulation in sweet maize farmland in South China. The CB at the high substitution level was the best measure for stabilizing carbon sequestration in the sweet maize cropping system. This experiment provides valuable information for ensuring the clean production of sweet maize in a typical subtropical area in East Asia.
Collapse
|
27
|
Wang Q, Huang Q, Wang J, Li H, Qin J, Li X, Gouda SG, Liu Y, Liu Q, Guo G, Khan MA, Su X, Lin L, Qin J, Lu W, Zhao Y, Hu S, Wang J. Ecological circular agriculture: A case study evaluating biogas slurry applied to rice in two soils. CHEMOSPHERE 2022; 301:134628. [PMID: 35447213 DOI: 10.1016/j.chemosphere.2022.134628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
In the context of carbon peak, neutrality, and circular agricultural economy, the use of renewable resources from agricultural processing for plant cultivation still needs to be explored to clarify material flow and its ecological effects. Paddy-upland rotation is an effective agricultural strategy to improve soil quality. This study evaluated the effects of biogas slurry application against those of chemical fertilisers in these two typical Chinese cropping soils. The application of biogas slurry increased total carbon content in paddy soil by 73.4%, and that in upland soil by 65.8%. Conversely, application of chemical fertiliser reduced total carbon in both soil types. There were significant positive correlations between total carbon and Zn, Cu, and Pb in rice husks grown in paddy soil (R2 = 0.95, 0.996, 0.95; p < 0.05). The content of amylose in biogas slurry treatment of paddy soil increased by 35.9%, while that in upland soil decreased by 19.2%. After biogas slurry was applied, the contents of fulvic acid- and humic acid-like substances in paddy soil average increased by 40.9% and 45.6%, while the contents of protein-like components were enhanced by 46.8% in upland soil. This result was consistent with predictions of microbial community function. Microorganisms in paddy soil generally preferred carbon fixation, while those in upland soil preferred hydrocarbon degradation and chemoheterotrophy. Understanding the changes in soil carbon stock and microbial function after biogas slurry application will contribute to sustainable agricultural development and food security.
Collapse
Affiliation(s)
- Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jiaxin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou, Hainan, 570100, China
| | - Shaban G Gouda
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, Benha, 13736, Egypt
| | - Yin Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Quan Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Genmao Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Muhammad Amjad Khan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Xuesong Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Linyi Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Jiemin Qin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Wenkang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Yang Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Shan Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Junfeng Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
28
|
Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14137924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diverse soil phosphorus (P)-leaching phenomena induced by environmental disturbance have gained increasing attention. Two kinds of typical organic materials, biochar and biogas slurry, (BS) are widely utilized to amend agricultural soil, but there is little research that gives insight into their co-effects on soil P-leaching and corresponding mechanisms. Herein, a total of six treatments (viz., control, 2% (w/w) biochar, low ratio BS with or without 2% (w/w) biochar, high ratio BS with or without 2% (w/w) biochar) were conducted to investigate the P-leaching and fraction transformation mechanisms. The column experiment results showed that compared to control, sole BS application or biochar both can slightly enhance the soil-P loss by 134.8% and 39.8%. High ratios of BS induced higher P loss than the low ratios of BS by 125.1%. In comparison with the sole BS treatment, combined BS and biochar application increase P loss but result in less soil leaching of basic cations. The incubation experiment results showed that the enhanced P-leaching in combined BS and biochar treatment is probably attributable to the enhanced soil pH, decreased DPS, soil P adsorption capacity, and transformation of moderately labile Fe–P into labile P. This research helps in understanding the abiotic process of biochar and BS in promoting soil P-leaching and soil-P management using biochar and biogas slurry.
Collapse
|
29
|
Zeng W, Qiu J, Wang D, Wu Z, He L. Ultrafiltration concentrated biogas slurry can reduce the organic pollution of groundwater in fertigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151294. [PMID: 34756907 DOI: 10.1016/j.scitotenv.2021.151294] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Biogas slurry has the problems of having a low concentration, having a large production volume, and containing many small-molecule organic pollutants. During the fertigation process of biogas slurry, many small-molecule organic pollutants may pose potential pollution risks to groundwater. In this study, the ultrafiltration membrane technology was used to separate small-molecule organics in the biogas slurry to prepare ultrafiltration concentrated biogas slurry (UCBS). To research the impact of UCBS and raw biogas slurry (RBS) on the small-molecule organic pollution of groundwater, a laboratory soil column simulation leaching device was used to conduct leaching experiments with 4 types of UCBS and RBS in acric ferralsols and hydragric anthrosols for two quarters (8 fertilization periods). The results of the study show that both UCBS and RBS caused nitrate pollution to groundwater. UCBS has a lower risk of organic pollution to groundwater than RBS. Irrigating UCBS in hydragric anthrosols has a higher risk of organic pollution of groundwater than that in acric ferralsols. Analysis of the molecular weight distribution of dissolved organic matter (DOM) in the leaching solution showed that the organic pollutants were mainly small molecules <10 kDa. According to 3D excitation-emission matrix (3D-EEM) analysis, the main organic pollutants in the leaching solution were fulvic acid, microbial protein metabolites and humic acid organic compounds. The research results show that the pretreatment of biogas slurry by ultrafiltration can reduce the risk of small-molecule organic pollution of groundwater in land application, which can provide a new scientific basis to standardize biogas slurry land application technical guidelines and reduce groundwater pollution.
Collapse
Affiliation(s)
- Weishen Zeng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510642, China
| | - Dehan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China.
| | - Zhaoyun Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Lintong He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China
| |
Collapse
|
30
|
Kumar A, Verma LM, Sharma S, Singh N. Overview on agricultural potentials of biogas slurry (BGS): applications, challenges, and solutions. BIOMASS CONVERSION AND BIOREFINERY 2022; 13:1-41. [PMID: 35004124 PMCID: PMC8725965 DOI: 10.1007/s13399-021-02215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 06/01/2023]
Abstract
The residual slurry obtained from the anaerobic digestion (AD) of biogas feed substrates such as livestock dung is known as BGS. BGS is a rich source of nutrients and bioactive compounds having an important role in establishing diverse microbial communities, accelerating nutrient use efficiency, and promoting overall soil and plant health management. However, challenges such as lower C/N transformation rates, ammonia volatilization, high pH, and bulkiness limit their extensive applications. Here we review the strategies of BGS valorization through microbial and organomineral amendments. Such cohesive approaches can serve dual purposes viz. green organic inputs for sustainable agriculture practices and value addition of biomass waste. The literature survey has been conducted to identify the knowledge gaps and critically analyze the latest technological interventions to upgrade the BGS for potential applications in agriculture fields. The major points are as follows: (1) Bio/nanotechnology-inspired approaches could serve as a constructive platform for integrating BGS with other organic materials to exploit microbial diversity dynamics through multi-substrate interactions. (2) Advancements in next-generation sequencing (NGS) pave an ideal pathway to study the complex microflora and translate the potential information into bioprospecting of BGS to ameliorate existing bio-fertilizer formulations. (3) Nanoparticles (NPs) have the potential to establish a link between syntrophic bacteria and methanogens through direct interspecies electron transfer and thereby contribute towards improved efficiency of AD. (4) Developments in techniques of nutrient recovery from the BGS facilities' negative GHGs emissions and energy-efficient models for nitrogen removal. (5) Possibilities of formulating low-cost substrates for mass-multiplication of beneficial microbes, bioprospecting of such microbes to produce bioactive compounds of anti-phytopathogenic activities, and developing BGS-inspired biofertilizer formulations integrating NPs, microbial inoculants, and deoiled seed cakes have been examined.
Collapse
Affiliation(s)
- Ajay Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
- Department of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, UP 201012 India
| | - Lahur Mani Verma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - Satyawati Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - Neetu Singh
- Department of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, UP 201012 India
| |
Collapse
|
31
|
Wang Q, Huang Q, Wang J, Khan MA, Guo G, Liu Y, Hu S, Jin F, Wang J, Yu Y. Dissolved organic carbon drives nutrient cycling via microbial community in paddy soil. CHEMOSPHERE 2021; 285:131472. [PMID: 34265723 DOI: 10.1016/j.chemosphere.2021.131472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Microbial mediated iron cycling drives the biogeochemical cycling of carbon, nitrogen, sulfur, and phosphorus. However, the fate of the microbial community and the relative metabolic pathways in paddy soil after the addition of biogas slurry are poorly understood. In this study, the response of functional genes was investigated by growing one-season rice in paddy soils in a pot experiment. Seven treatments were prepared: 1) control (CK); 2) organic carbon (OC); 3) fertilizer (F); 4) 5% of biogas slurry (B05); 5) 10% of biogas slurry (B10); 6) 15% of biogas slurry (B15); 7) 20% of biogas slurry (B20). In the biogas slurry treatments, Geobacter increased more than in the other treatments during rice growth, which were structured by TOC. Particularly, in the B10 treatment, the relative abundance of Geobacter was 1.6 and 14.8 times higher than that of CK at the heading and mature stages, respectively. At the heading stage, the addition of biogas slurry and OC shifted the microbial phosphorus-transformation communities differently. There were no significant differences in the carbon, nitrogen, and sulfur metabolic pathways between the two treatments. At the mature stage, the carbon: nitrogen: phosphorus balance was significantly influenced by the regulation of functional gene expression and metabolic activities. These findings provide insight into the key factors affecting carbon, nitrogen, sulfur, phosphorus, and iron during rice growth after carbon inputs.
Collapse
Affiliation(s)
- Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jiaxin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Muhammad Amjad Khan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Genmao Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Yin Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Shan Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Fangming Jin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Junfeng Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Yunbo Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| |
Collapse
|
32
|
Zhao Y, Duan FA, Cui Z, Hong J, Ni SQ. Insights into the vertical distribution of the microbiota in steel plant soils with potentially toxic elements and PAHs contamination after 60 years operation: Abundance, structure, co-occurrence network and functionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147338. [PMID: 33971607 DOI: 10.1016/j.scitotenv.2021.147338] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 05/14/2023]
Abstract
Both potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) are widely present in soil contaminated by steel industries. This study assessed the vertical variation (at 20 cm, 40 cm, 60 cm, 80 cm, 120 cm, and 150 cm depth) of bacterial abundance, community structure, functional genes related to PAHs degradation, and community co-occurrence patterns in an old steel plant soils which contaminated by PTEs and PAHs for 60 years. The excessive PAHs and PTEs in steel plant soils were benzo (a) pyrene, benzo (b) fluoranthene, dibenzo (a, h) anthracene, indeno (1,2,3-c, d) pyrene, and lead (Pb). The abundance and composition of bacterial community considerably changed with soil depth in two study areas with different pollution degrees. The results of co-occurrence network analysis indicated that the top genera in blast furnace zone identified as the potential keystone taxa were Haliangium, Blastococcus, Nitrospira, and Sulfurifustis. And in coking zone, the top genera were Gaiella. The predictions of bacterial metabolism function using PICRUSt showed that the PAHs-PTEs contaminated soil still had the potential for PAHs degradation, but most PTEs negatively correlated with PAHs degradation genes. The total sulfur (TS), acenaphthene (ANA), and Zinc (Zn) were the key factors to drive development of bacterial communities in the steel plant soils. As far as we know, this is the first investigation of vertical distribution and interaction of the bacterial microbiota in the aging soils of steel plant contaminated with PTEs and PAHs.
Collapse
Affiliation(s)
- Yiyi Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Fu-Ang Duan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhaojie Cui
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Jinglan Hong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
33
|
Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. High-throughput sequencing clarifies the spatial structures of microbial communities in cadmium-polluted rice soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47086-47098. [PMID: 33886056 DOI: 10.1007/s11356-021-13993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Soil microbial communities are affected by environmental factors. Contamination with heavy metals such as cadmium (Cd) can decrease soil microbial species richness and substantially alter soil microbial species composition. Investigations of the microbial communities in Cd-contaminated soils are necessary to obtain data for soil bioremediation efforts. However, depth-associated variations in microbial community composition and structure in Cd-contaminated paddy soils are not well understood. Here, the effects of various degrees of long-term Cd pollution on soil microorganisms were investigated at different soil depths within the plough layer using 16S rRNA gene amplicon sequencing. We found that, in Cd-polluted soils, microbial communities were more similar between the surface soil and the underlying soil. In addition, microbial community richness and/or diversity were significantly reduced in the Cd-polluted underlying soil as compared with the non-polluted underlying soil. However, species richness in the surface layer was significantly greater in the mildly and severely Cd-polluted soils. The soil microbial communities in the same soil layer differed significantly between the non-polluted and polluted soils. Furthermore, Cd contamination affected the microbial communities of different soil layers differently. Soil pH had a synergistic effect on microbial community abundance and composition. The potential functions of the soil microbiota were mainly related to environmental processing, genetic processing, and metabolic pathways. Notably, our identification of the phyla that were differently abundant among sites with different levels of Cd pollution will provide experimental guidance for further explorations of the effects of Cd on soil microbes in natural environments. Our results not only demonstrate that long-term Cd pollution leads to a marked reduction in microbial richness and diversity in the underlying soil layer, but they also help to clarify how long-term heavy metal contamination affects the soil bacterial community.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Zhenzhi Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Qilin Liao
- Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
34
|
Wang S, Huang B, Fan D, Agathokleous E, Guo Y, Zhu Y, Han J. Hormetic responses of soil microbiota to exogenous Cd: A step toward linking community-level hormesis to ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125760. [PMID: 33836329 DOI: 10.1016/j.jhazmat.2021.125760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
We investigated hormetic responses of soil microbial communities to exogenous Cd by assessing microbial count, bacterial and fungal abundance, and microbial community diversity. We found that the bacterial count (BC) decreased (3-40%) by 0.2-40 mg Cdkg-1. Addition of 0.6-2.0 mgkg-1 significantly increased fungal count (FC) by 7-42%, while addition of 4.0-40 mgkg-1 Cd decreased FC by 29-51%, indicating a hormetic dose response. We also found that the FC/BC ratio increased by 0.6-2.0 mg Cdkg-1, with a maximum stimulation of 51%, and decreased (18-27%) by 4.0-40 mg Cdkg-1. Cd had no adverse effect on the α-diversity of bacterial or fungal communities. For relative abundances (RAs) of bacteria and fungi at phylum level, Bacteroidetes RA exhibited a biphasic dose-response curve, with an 18-24% increase at 0.6-4.0 mgkg-1 and a 10% decrease at 40 mgkg-1 compared with control. The results of FC, FC/BC, and Bacteroidetes RAs suggest that hormesis occurred at microbial community level, with positive effects occurring at 0.6-2.0 mgkg-1. This study can contribute to incorporating microbial community hormesis into the ecological risk assessments in the future.
Collapse
Affiliation(s)
- Shengyan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Bin Huang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, Jiangsu, China.
| | - Yanhui Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Yongli Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| |
Collapse
|
35
|
Studying Microbial Communities through Co-Occurrence Network Analyses during Processes of Waste Treatment and in Organically Amended Soils: A Review. Microorganisms 2021; 9:microorganisms9061165. [PMID: 34071426 PMCID: PMC8227910 DOI: 10.3390/microorganisms9061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Organic wastes have the potential to be used as soil organic amendments after undergoing a process of stabilization such as composting or as a resource of renewable energy by anaerobic digestion (AD). Both composting and AD are well-known, eco-friendly approaches to eliminate and recycle massive amounts of wastes. Likewise, the application of compost amendments and digestate (the by-product resulting from AD) has been proposed as an effective way of improving soil fertility. The study of microbial communities involved in these waste treatment processes, as well as in organically amended soils, is key in promoting waste resource efficiency and deciphering the features that characterize microbial communities under improved soil fertility conditions. To move beyond the classical analyses of metataxonomic data, the application of co-occurrence network approaches has shown to be useful to gain insights into the interactions among the members of a microbial community, to identify its keystone members and modelling the environmental factors that drive microbial network patterns. Here, we provide an overview of essential concepts for the interpretation and construction of co-occurrence networks and review the features of microbial co-occurrence networks during the processes of composting and AD and following the application of the respective end products (compost and digestate) into soil.
Collapse
|