1
|
Raczkiewicz M, Akachukwu D, Oleszczuk P. Sustainable soil remediation using nano-biochar for improved food safety and resource recovery. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138537. [PMID: 40378743 DOI: 10.1016/j.jhazmat.2025.138537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025]
Abstract
The contamination of agricultural soils with potentially toxic elements (PTEs) poses serious environmental and health risks due to their persistence and adverse effects on crop productivity. The main objective of this study was to evaluate the potential of nano-biochar (n-BC) to immobilize PTEs in contaminated soil and its effect on PTEs bioaccumulation in lettuce (Lactuca sativa L.), with the hypothesis that n-BC-due to their unique and improved physicochemical properties-are more effective than bulk forms in reducing PTEs mobility and bioavailability. Biochars (BCs) were obtained from palm bunch (PB), rice husk (RH) and sewage sludge (SSL) at 550°C and subsequently processed into nanoscale forms. A six-week pot experiment demonstrated that n-BC amendments significantly reduced the bioavailable (extracted with H2O and CaCl2) fractions of Cr, Cu, Fe, Mn, Ni, Zn, and Pb in soil, with higher immobilization efficiencies by 4.2 % to even 305 % than corresponding bulk biochars (b-BC). According to NICA-Donnan modelling, the main immobilization mechanisms were precipitation and ion exchange. Application of n-BC also resulted in a notable decrease in PTEs concentrations in lettuce leaves (ranging from 29.7 % to 100 %), thereby reducing both the bioaccumulation factor and health risk index. Among the different BCs, SSL-derived n-BC demonstrated the highest immobilization capacity and the most substantial reduction in PTEs uptake by plants. These findings highlight the potential of n-BC as a highly effective and low-cost amendment for rapid mitigation PTEs contamination in agricultural soils, enhancing food safety, and supporting circular economy principles by utilizing organic waste materials.
Collapse
Affiliation(s)
- Monika Raczkiewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, Lublin 20-031, Poland
| | - Doris Akachukwu
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, Lublin 20-031, Poland; Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, Lublin 20-031, Poland.
| |
Collapse
|
2
|
Kwon CW, Tae S, Mandal S. Comparative Analysis of CO 2 Adsorption Performance of Bamboo and Orange Peel Biochars. Molecules 2025; 30:1607. [PMID: 40286218 PMCID: PMC11990419 DOI: 10.3390/molecules30071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Carbon capture and sequestration (CCS) is an essential strategy for mitigating greenhouse gas emissions and addressing climate change. In this study, the biochar of bamboo and orange peel (BB and OPB) are synthesized and appraised as potential CO2 adsorbents. Comprehensive characterizations viz. sorption isotherm, FTIR spectroscopy, and SEM-EDS reveal substantial differences in their structural and functional properties. OPB exhibits a significantly higher BET surface area (40.13 m2/g) compared to BBs (7.38 m2/g). FTIR and EDS analyses further demonstrate more amine, carboxylic, ester, and ether functional groups in OPB, indicating its affinity for CO2 molecules. The CO2 adsorption isotherm shows a higher adsorption capacity (22.83 cm3/g) in OPB than BB (14.12 cm3/g) at 273 K and 1 bar. The adsorption process is augmented by mesoporous structures and interactions between surface functional groups and CO2 molecules. The thermogravimetric analysis further reveals the higher CO2 uptake capability of OPB than BB. This result also shows that the CO2 uptake stabilizes after 48 h for both the biochars. These results highlight the potential of OPB as an efficient CCS material, demonstrating the importance of specific biochar properties in the development of CO2 capture.
Collapse
Affiliation(s)
- Choul Woong Kwon
- Department of Smart City Engineering, Graduate School, Hanyang University ERICA, 1271 Sa-3-dong, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sungho Tae
- School of Architecture and Architectural Engineering, Hanyang University ERICA, 1271 Sa-3-dong, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Soumen Mandal
- Industry-University Cooperation Foundation, Hanyang University ERICA, 1271 Sa-3-dong, Sangnok-gu, Ansan 15588, Republic of Korea;
| |
Collapse
|
3
|
Uppalapati S, Paramasivam P, Kilari N, Chohan JS, Kanti PK, Vemanaboina H, Dabelo LH, Gupta R. Precision biochar yield forecasting employing random forest and XGBoost with Taylor diagram visualization. Sci Rep 2025; 15:7105. [PMID: 40016391 PMCID: PMC11868558 DOI: 10.1038/s41598-025-91450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
Waste-to-energy conversion via pyrolysis has attracted increasing attention recently owing to its multiple uses. Among the products of this process, biochar stands out for its versatility, with its yield influenced by various factors. Extensive and labor-intensive experimental testing is sometimes necessary to properly grasp the output distribution from various feedstocks. Nonetheless, data-driven predictive models using large-scale historical experiment records can provide insightful analysis of projected yields from a variety of biomass materials, hence overcoming the challenges of empirical modeling. As such, five modern approaches available in modern machine learning are employed in this study to develop the biochar yield prediction models. The Lasso regression, Tweedie regression, random forest, XGBoost, and Gradient boosting regression were employed. Out of these five XGBoost was superior with a training mean squared error (MSE) of 1.17 and a test MSE of 2.94. The XGBoost-based biochar yield model shows excellent performance with a strong predictive accuracy of the R2 values as 0.9739 (training) and 0.8875 (test). The mean absolute percentage error value was only 2.14% in the training phase and 3.8% in the testing phase. Precision prognostic technologies have broad effects on sectors including biomass logistics, conversion technologies, and effective biomass utilization as renewable energy. Leveraging SHAP based on cooperative game theory, the study shows that while ash and moisture lower biochar yield, FPT, nitrogen, and carbon content significantly boost it. Small variables like heating rate and volatile matter have a secondary impact on production efficiency.
Collapse
Affiliation(s)
- Sudhakar Uppalapati
- Department of Mechanical Engineering, Marri Laxman Reddy Institute of Technology and Management, Hyderabad, 500043, India
| | - Prabhu Paramasivam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India.
| | - Naveen Kilari
- VEMU Institute of Technology, Chittoor, Andra Pradesh, 517112, India
| | - Jasgurpreet Singh Chohan
- School of Mechanical Engineering, Rayat Bahra University, Mohali, 140104, India
- Faculty of Engineering, Sohar University, 7119, Sohar, Oman
| | - Praveen Kumar Kanti
- University Center for Research and Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India
| | | | - Leliso Hobicho Dabelo
- Department of Mechanical Engineering, Mattu University, P.O. Box 318, Mettu, Ethiopia.
| | - Rupesh Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
4
|
Shahzad K, Hasan A, Hussain Naqvi SK, Parveen S, Hussain A, Ko KC, Park SH. Recent advances and factors affecting the adsorption of nano/microplastics by magnetic biochar. CHEMOSPHERE 2025; 370:143936. [PMID: 39667528 DOI: 10.1016/j.chemosphere.2024.143936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The increase in nano/microplastics (NPs/MPs) from various everyday products entering aquatic environments highlights the urgent need to develop mitigation strategies. Biochar (BC), known for its excellent adsorption capabilities, can effectively target various harmful organic and inorganic pollutants. However, traditional methods involving powdered BC necessitate centrifugation and filtration, which can lead to the desorption of pollutants and subsequent secondary pollution. Magnetic biochar (MBC) offers a solution that facilitates straightforward and rapid separation from water through magnetic techniques. This review provides the latest insights into the progress made in MBC applications for the adsorption of NPs/MPs. This review further discusses how external factors such as pH, ionic strength, temperature, competing ions, dissolved organic matter, aging time, and particle size impact the MBC adsorption efficiency of MPs. The use of machine learning (ML) for optimizing the design and properties of BC materials is also briefly addressed. Finally, this review addresses existing challenges and future research directions aimed at improving the large-scale application of MBC for NPs/MPs removal.
Collapse
Affiliation(s)
- Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Areej Hasan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Syed Kumail Hussain Naqvi
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Saima Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34113, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Shezi M, Kiambi SL. Isothermal Pyrolysis of Bamboo and Pinewood Biomass: Product Characterization and Comparative Study in a Fluidized Bed Reactor. Bioengineering (Basel) 2025; 12:99. [PMID: 40001620 PMCID: PMC11852079 DOI: 10.3390/bioengineering12020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 02/27/2025] Open
Abstract
Fast pyrolysis of biomass is crucial for sustainable biofuel production, necessitating thorough characterization of feedstocks to optimize thermal conversion technologies. This study investigated the isothermal pyrolysis of bamboo and pinewood biomass in a sand-fluidized bed reactor, aiming to assess biomass suitability for commercial bio-oil production. The pyrolysis products and biomass species were characterized through proximate and ultimate analyses, along with GCMS, FTIR, SEM/EDX, and structural analysis to assess their chemical and physical properties. Results indicated that pine bio-oil possesses superior energy density, with a higher calorific value (20.38 MJ/kg) compared to bamboo (18.70 MJ/kg). Pine biomass yielded greater organic phase bio-oil (BOP) at 13 wt%, while bamboo produced 9 wt%. Energy yields were also notable, with pine exhibiting an energy yield of 15% for bio-oil organic phase (EBOP), compared to 11% for bamboo. The fibrous nature of bamboo biomass resulted in less-reacted biomass at constant reaction time due to flow resistance during pyrolysis. Pine bio-oil organic phase (P-BOP) demonstrated a higher heating value (23.90 MJ/kg) than bamboo (B-BOP). The findings suggest that while both biomass types are viable renewable energy sources, pine biomass is more favorable for commercialization due to its superior energy properties and efficiency in pyrolysis.
Collapse
Affiliation(s)
- Manqoba Shezi
- Green Energy Research Group, Department of Chemical Engineering, Durban University of Technology, Durban 4000, South Africa
| | - Sammy Lewis Kiambi
- Chemical Engineering Department, Vaal University of Technology, Vanderbilpark 1911, South Africa
| |
Collapse
|
6
|
Kumar A, Bhattacharya T, Shaikh WA, Roy A. Sustainable soil management under drought stress through biochar application: Immobilizing arsenic, ameliorating soil quality, and augmenting plant growth. ENVIRONMENTAL RESEARCH 2024; 259:119531. [PMID: 38960358 DOI: 10.1016/j.envres.2024.119531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Rise in climate change-induced drought occurrences have amplified pollution of metal(loid)s, deteriorated soil quality, and deterred growth of crops. Rice straw-derived biochars (RSB) and cow manure-enriched biochars (CEB) were used in the investigation (at doses of 0%, 2.5%, 5%, and 7.5%) to ameliorate the negative impacts of drought, improve soil fertility, minimize arsenic pollution, replace agro-chemical application, and maximize crop yields. Even in soils exposed to severe droughts, 3 months of RSB and CEB amendment (at 7.5% dose) revealed decreased bulk density (13.7% and 8.9%), and increased cation exchange capacity (6.0% and 6.3%), anion exchange capacity (56.3% and 28.0%), porosity (12.3% and 7.9%), water holding capacity (37.5% and 12.5%), soil respiration (17.8% and 21.8%), and nutrient contents (especially N and P). Additionally, RSB and CEB decreased mobile (30.3% and 35.7%), bio-available (54.7% and 45.3%), and leachable (55.0% and 56.5%) fractions of arsenic. Further, pot experiments with Bengal gram and coriander plants showed enhanced growth (62-188% biomass and 90-277% length) and reduced arsenic accumulation (49-54%) in above ground parts of the plants. Therefore, biochar application was found to improve physico-chemical properties of soil, minimize arsenic contamination, and augment crop growth even in drought-stressed soils. The investigation suggests utilisation of cow manure for eco-friendly fabrication of nutrient-rich CEB, which could eventually promote sustainable agriculture and circular economy. With the increasing need for sustainable agricultural practices, the use of biochar could provide a long-term solution to enhance soil quality, mitigate the effects of climate change, and ensure food security for future generations. Future research should focus on optimizing biochar application across various soil types and climatic conditions, as well as assessing its long-term effectiveness.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India; Department of Land, Air, and Water Resources, University of California, Davis, CA, 95616, United States
| | - Tanushree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Diamond Harbour Road, West Bengal, 743368, India
| | - Arpita Roy
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
7
|
Fučík J, Jarošová R, Baumeister A, Rexroth S, Navrkalová J, Sedlář M, Gargošová HZ, Mravcová L. Assessing earthworm exposure to a multi-pharmaceutical mixture in soil: unveiling insights through LC-MS and MALDI-MS analyses, and impact of biochar on pharmaceutical bioavailability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48351-48368. [PMID: 39028457 PMCID: PMC11297825 DOI: 10.1007/s11356-024-34389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
In the European circular economy, agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, posing a potential risk to earthworms. This study aimed to assess earthworm bioaccumulation factors (BAFs), the ecotoxicological effects of PhACs, the impact of biochar on PhAC bioavailability to earthworms, and their persistence in soil and investigate earthworm uptake mechanisms along with the spatial distribution of PhACs. Therefore, earthworms were exposed to contaminated soil for 21 days. The results revealed that BAFs ranged from 0.0216 to 0.329, with no significant ecotoxicological effects on earthworm weight or mortality (p > 0.05). Biochar significantly influenced the uptake of 14 PhACs on the first day (p < 0.05), with diminishing effects over time, and affected significantly the soil-degradation kinetics of 16 PhACs. Moreover, MALDI-MS analysis revealed that PhAC uptake occurs through both the dermal and oral pathways, as pharmaceuticals were distributed throughout the entire earthworm tissue without specific localization. In conclusion, this study suggests ineffective PhAC accumulation in earthworms, highlights the influence of biochar on PhAC degradation rates in soil, and suggests that uptake can occur through both earthworm skin and oral ingestion.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Rea Jarošová
- Veterinary Research Institute Brno, Hudcova 296/70, 621 00, Brno, Czech Republic
| | | | - Sascha Rexroth
- Shimadzu Europa GmbH, Albert-Hahn-Straße 6, 472 69, Duisburg, Germany
| | - Jitka Navrkalová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
8
|
He D, Luo Y, Zhu B. Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171259. [PMID: 38417524 DOI: 10.1016/j.scitotenv.2024.171259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The use of biochar for soil improvement and emission reduction has been widely recognized for its excellent performance. However, the choice of feedstock and pyrolysis temperature for biochar production significantly affects its surface parameters and interactions with soil substances. In this study, we retrieved 465 peer-reviewed papers on the application of biochar in reducing greenhouse gas emissions and nutrient losses in soil and analyzed the changes in biochar physicochemical parameters from different feedstock and pyrolytic temperatures. Molecular simulation computing technology was also used to explore the impacts of these changes on the interaction between biochar and soil substances. The statistical results from the peer-reviewed papers indicated that biochar derived from wood-based feedstock exhibits superior physical characteristics, such as increased porosity and specific surface area. Conversely, biochar derived from straw-based feedstock was found to contain excellent element content, such as O, N, and H, and biochar derived from straw and produced at low pyrolysis temperatures contains a significant number of functional groups that enhance the charge transfer potential and adsorption stability by increasing surface charge density, charge distribution and bonding orbitals. However, it should be noted that this enhancement may also activate certain recalcitrant C compounds and promote biochar decomposition. Taken together, these results have significant implications for biochar practitioners when selecting suitable feedstock and pyrolysis temperatures based on agricultural needs and increasing their understanding of the interaction mechanism between biochar and soil substances.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Luo
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Vieira Firmino M, Trémier A, Couvert A, Szymczyk A. New insights into biochar ammoniacal nitrogen adsorption and its correlation to aerobic degradation ammonia emissions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:257-266. [PMID: 38417311 DOI: 10.1016/j.wasman.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
One of the technical barriers to the wider use of biochar in the composting practices is the lack of accurate quantification linking biochar properties to application outcomes. To address this issue, this paper investigates the use of ammonia nitrogen adsorption capacity by biochar as a predictor of ammonia emission during composting in the presence of biochar. With this in mind, this work investigated the use of ammonia nitrogen adsorption capacity of biochar when mixed with solid digestate, and the reduction in ammonia emissions resulting from the addition of biochar during aerobic degradation of solid digestate. A biochar synthesized at 900 °C, another synthesized at 450 °C, and two derivatives of the latter biochar, one chemically modified with nitric acid and the other with potassium hydroxide, were tested. This study concluded that the chemical characteristics of the biochar, including pH and oxygen/carbon atomic ratio, had a greater influence on the adsorption of ammonia nitrogen than physical attributes such as specific surface area. In this regard, nitric acid modification had superior performance compared to hydroxide potassium modification to increase biochar chemical attributes and reduce ammonia emissions when applied to aerobic degradation. Finally, a significant linear correlation (p-value < 0.05, r2 = 0.79) was found between biochar ammonia nitrogen adsorption capacity and ammonia emissions along composting, showing the potential of this variable as a predictive parameter. This study provides insights for future explorations aiming to develop predictive tests for biochar performance.
Collapse
Affiliation(s)
| | | | - Annabelle Couvert
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Anthony Szymczyk
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR, 6226 Rennes, France.
| |
Collapse
|
10
|
Hassaan MA, Elkatory MR, El-Nemr MA, Ragab S, Yi X, Huang M, El Nemr A. Synthesis, characterization, optimization and application of Pisum sativum peels S and N-doping biochars in the production of biogas from Ulva lactuca. RENEWABLE ENERGY 2024; 221:119747. [DOI: 10.1016/j.renene.2023.119747] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
11
|
Neve S, Sarkar D, Warke M, Bandosz T, Datta R. Valorization of Spent Vetiver Roots for Biochar Generation. Molecules 2023; 29:63. [PMID: 38202646 PMCID: PMC10779468 DOI: 10.3390/molecules29010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Vetiver root is widely used to produce essential oils in the aromatherapy industry. After the extraction of oil, the roots are disposed of as waste. The central objective of this research was to explore the conversion of this waste into a resource using a circular economy framework. To generate biochar, vetiver roots were pyrolyzed at different temperatures (300, 500, and 700 °C) and residence times (30, 60, and 120 min). Analysis showed the root biochar generated at 500 °C and held for 60 min had the highest surface area of 308.15 m2/g and a yield of 53.76%, in addition to other favorable characteristics. Comparatively, the surface area and the yield of shoot biochar were significantly lower compared to those of the roots. Repurposing the spent root biomass for environmental and agronomic benefits, our circular economy concept prevents the plant tissue from entering landfills or the waste stream.
Collapse
Affiliation(s)
- Sameer Neve
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Dibyendu Sarkar
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Manas Warke
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (M.W.); (R.D.)
| | - Teresa Bandosz
- Department of Chemistry, City College of New York, New York, NY 10031, USA;
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (M.W.); (R.D.)
| |
Collapse
|
12
|
Kumar K, Kumar R, Kaushal S, Thakur N, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. CHEMOSPHERE 2023; 345:140419. [PMID: 37848104 DOI: 10.1016/j.chemosphere.2023.140419] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India.
| | - Ravi Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
13
|
Gusiatin MZ, Rouhani A. Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7342. [PMID: 38068085 PMCID: PMC10707613 DOI: 10.3390/ma16237342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2025]
Abstract
Soil contamination through heavy metals (HMs) is a serious environmental problem that needs to be addressed. One of the methods of remediating soils contaminated with HMs and reducing the environmental risks associated with them is to immobilize these HMs in the soil using specific amendment(s). The use of biochar as an organic amendment can be an environmentally friendly and practically feasible option, as (i) different types of biomass can be used for biochar production, which contributes to environmental sustainability, and (ii) the functionality of biochar can be improved, enabling efficient immobilization of HMs. Effective use of biochar to immobilize HMs in soil often requires modification of pristine biochar. There are various physical, chemical, and biological methods for modifying biochar that can be used at different stages of pyrolysis, i.e., before pyrolysis, during pyrolysis, and after pyrolysis. Such methods are still being intensively developed by testing different modification approaches in single or hybrid systems and investigating their effects on the immobilization of HMs in the soil and on the properties of the remediated soil. In general, there is more information on biochar modification and its performance in HM immobilization with physical and chemical methods than with microbial methods. This review provides an overview of the main biochar modification strategies related to the pyrolysis process. In addition, recent advances in biochar modification using physical and chemical methods, biochar-based composites, and biochar modified with HM-tolerant microorganisms are presented, including the effects of these methods on biochar properties and the immobilization of HMs in soil. Since modified biochar can have some negative effects, these issues are also addressed. Finally, future directions for modified biochar research are suggested in terms of scope, scale, timeframe, and risk assessment. This review aims to popularize the in situ immobilization of HMs with modified biochar.
Collapse
Affiliation(s)
- Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Abdulmannan Rouhani
- Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic;
| |
Collapse
|
14
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
15
|
Zhao S, Wang X, Wang Q, Sumpradit T, Khan A, Zhou J, Salama ES, Li X, Qu J. Application of biochar in microbial fuel cells: Characteristic performances, electron-transfer mechanism, and environmental and economic assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115643. [PMID: 37944462 DOI: 10.1016/j.ecoenv.2023.115643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xu Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Qiutong Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tawatchai Sumpradit
- Microbiolgy and Parasitology Department, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aman Khan
- Pakistan Agricultural Research Council, 20-Attaturk Avenue, Sector G-5/1, Islamabad, Pakistan
| | - Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - El-Sayed Salama
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Sharma AK, Ghodke PK, Goyal N, Bobde P, Kwon EE, Lin KYA, Chen WH. A critical review on biochar production from pine wastes, upgradation techniques, environmental sustainability, and challenges. BIORESOURCE TECHNOLOGY 2023; 387:129632. [PMID: 37562491 DOI: 10.1016/j.biortech.2023.129632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Pine wastes, including pine needles, cones, and wood, are abundantly produced as an agroforestry by-product globally and have shown tremendous potential for biochar production. Various thermochemical conversion technologies have exhibited promising results in converting pine wastes to biochar, displaying impressive performance. Hence, this review paper aims to investigate the possibilities and recent technological advancements for synthesizing biochar from pine waste. Furthermore, it explores techniques for enhancing the properties of biochar and its integrated applications in various fields, such as soil and water remediation, carbon sequestration, battery capacitor synthesis, and bio-coal production. Finally, the paper sheds light on the limitations of current strategies, emphasizing the need for further research and study to address the challenges in pine waste-based biochar synthesis. By promoting sustainable and effective utilization of pine wastes, this review contributes to environmental conservation and resource management.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemistry, Applied Sciences Cluster, School of Advance Engineering, and Centre for Alternate Energy Research (CAER), R&D, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Praveen Kumar Ghodke
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Nishu Goyal
- School of Health Sciences, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Prakash Bobde
- R & D, University of Petroleum and Energy Studies, P.O. Bidholi Via-Prem Nagar, Dehradun 248007, India
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
17
|
Rosik J, Łyczko J, Marzec Ł, Stegenta-Dąbrowska S. Application of Composts' Biochar as Potential Sorbent to Reduce VOCs Emission during Kitchen Waste Storage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6413. [PMID: 37834550 PMCID: PMC10573545 DOI: 10.3390/ma16196413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
It is expected that due to the new European Union regulation focus on waste management, managing kitchen waste will become more important in the future, especially in households. Therefore, it is crucial to develop user-friendly and odour-free containers to store kitchen waste. The study aimed to test the effectiveness of composts' biochar in reducing noxious odours and volatile organic compounds (VOCs) released during kitchen waste storage. Various amounts of compost biochar (0%, 1%, 5%, and 10%) were added to food waste samples and incubated for seven days at 20 °C. The released VOCs were analysed on days 1, 3, and 7 of the storage simulation process. The results indicated that adding 5-10% of composts' biochar to kitchen waste significantly reduced the emissions in 70% of the detected VOCs compounds. Furthermore, composts' biochar can be used to eliminate potential odour components and specific dangerous VOCs such as ethylbenzene, o-xylene, acetic acid, and naphthalene. A new composts' biochar with a unique composition was particularly effective in reducing VOCs and could be an excellent solution for eliminating odours in kitchen waste containers.
Collapse
Affiliation(s)
- Joanna Rosik
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37a, 51-630 Wroclaw, Poland; (J.R.); (Ł.M.)
| | - Jacek Łyczko
- Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Łukasz Marzec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37a, 51-630 Wroclaw, Poland; (J.R.); (Ł.M.)
| | - Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37a, 51-630 Wroclaw, Poland; (J.R.); (Ł.M.)
| |
Collapse
|
18
|
Wang Y, Lin G, Li X, Tai MH, Song S, Tan HTW, Leong K, Yip EYB, Lee GYC, Dai Y, Wang CH. Meeting the heavy-metal safety requirements for food crops by using biochar: An investigation using sunflower as a representative plant under different atmospheric CO 2 concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161452. [PMID: 36623649 DOI: 10.1016/j.scitotenv.2023.161452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Global warming impacts on plant growth and food safety are emerging topics of concern, while biochar as a soil additive benefits plants. This study investigates (1) sunflower plant growth at various biochar concentrations in a soil-compost growing substrate under both ambient (420 ppm) and elevated (740 ppm) atmospheric CO2 concentrations, and (2) concentrations of heavy metals in the growing substrates and organs of the plants. The elevated CO2 concentration benefits the vegetative parts but harms the reproductive parts of the plants. Additionally, the elevated CO2 concentration inhibits the beneficial effects that biochar confers on the plants at the ambient concentration. The optimum biochar concentration at both CO2 levels was found to be 15%. At the time of harvest, most of the heavy-metal concentrations in the growing substrate increased. It was demonstrated that biochar can reduce the amount of heavy metals that accumulate in the roots and seeds whose heavy-metal concentrations complied with Singapore food safety regulations, while those for the biochar met the proposed Singapore biochar standard's thresholds. Our results show that the proposed Singapore biochar standard is practical and sound.
Collapse
Affiliation(s)
- Yiying Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guiying Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xian Li
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Ming Hang Tai
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Hugh Tiang Wah Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Ken Leong
- Mursun PTE. LTD, 14 Robinson Road, Singapore 048545, Singapore
| | - Elvis Yew Boon Yip
- Sentosa Development Corporation, 39 Artillery Avenue, Singapore 099958, Singapore
| | - Grace Yoke Chin Lee
- Sentosa Development Corporation, 39 Artillery Avenue, Singapore 099958, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
19
|
Zhou Q, Liu G, Hu Z, Zheng Y, Lin Z, Li P. Impact of different structures of biochar on decreasing methane emissions from sewage sludge composting. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:723-732. [PMID: 36196850 DOI: 10.1177/0734242x221122586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Methane (CH4) emissions from sewage sludge composting can be reduced by using biochar more effectively. This study investigates the impact of different structure of biochar on CH4 emissions during sewage sludge composting. Corncob biochar (CB, pore size = 35.3990 nm), rice husk biochar (RB, pore size = 3.4242 nm) and wood biochar (WB, pore size = 1.6691 nm) were applied to the composting. The results showed that biochar decreased CH4 emissions, mainly through the indirect effect of improving the pile environment. Compared with the control group (CK), the biochars with smaller pore structures, WB and RB, reduced CH4 emissions by 41.83% and 33.59%, respectively, compared to only 8.20% for CB, which has a larger pore structure. In addition, RB and WB increased the free air space (FAS) by more than 10% and CB improved the microbial diversity. Methanothermobacter was reported in WB and RB, with an abundance of 45.45% in WB. Redundancy analysis (RDA) showed that pore size was positively correlated with the CH4 emission rate. The results of this study can provide a theoretical reference for CH4 reduction from biochar co-composting of sewage sludge.
Collapse
Affiliation(s)
- Qian Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Guoying Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Zhanbo Hu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yukai Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Zeshuai Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Peiyi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
20
|
"Green" nZVI-Biochar as Fenton Catalyst: Perspective of Closing-the-Loop in Wastewater Treatment. Molecules 2023; 28:molecules28031425. [PMID: 36771092 PMCID: PMC9921900 DOI: 10.3390/molecules28031425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
In the framework of wastewater treatment plants, sewage sludge can be directed to biochar production, which when coupled with an external iron source has the potential to be used as a carbon-iron composite material for treating various organic pollutants in advanced oxidation processes. In this research, "green" synthesized nano zero-valent iron (nZVI) supported on sewage sludge-based biochar (BC)-nZVI-BC was used in the Fenton process for the degradation of the recalcitrant organic molecule. In this way, the circular economy principles were supported within wastewater treatment with immediate loop closing; unlike previous papers, where only the water treatment was assessed, the authors proposed a new approach to wastewater treatment, combining solutions for both water and sludge. The following phases were implemented: synthesis and characterization of nano zero-valent iron supported on sewage sludge-based biochar (nZVI-BC); optimization of organic pollutant removal (Reactive Blue 4 as the model pollutant) by nZVI-BC in the Fenton process, using a Definitive Screening Design (DSD) model; reuse of the obtained Fenton sludge, as an additional catalytic material, under previously optimized conditions; and assessment of the exhausted Fenton sludge's ability to be used as a source of nutrients. nZVI-BC was used in the Fenton treatment for the degradation of Reactive Blue 4-a model substance containing a complex and stable anthraquinone structure. The DSD model proposes a high dye-removal efficiency of 95.02% under the following optimal conditions: [RB4] = 50 mg/L, [nZVI] = 200 mg/L, [H2O2] = 10 mM. pH correction was not performed (pH = 3.2). Afterwards, the remaining Fenton sludge, which was thermally treated (named FStreated), was applied as a heterogeneous catalyst under the same optimal conditions with a near-complete organic molecule degradation (99.56% ± 0.15). It could be clearly noticed that the cumulative amount of released nutrients significantly increased with the number of leaching experiments. The highest cumulative amounts of released K, Ca, Mg, Na, and P were therefore observed at the fifth leaching cycle (6.40, 1.66, 1.12, 0.62, 0.48 and 58.2 mg/g, respectively). According to the nutrient release and toxic metal content, FStreated proved to be viable for agricultural applications; these findings illustrated that the "green" synthesis of nZVI-BC not only provides innovative and efficient Fenton catalysts, but also constitutes a novel approach for the utilization of sewage sludge, supporting overall process sustainability.
Collapse
|
21
|
Foong SY, Chan YH, Lock SSM, Chin BLF, Yiin CL, Cheah KW, Loy ACM, Yek PNY, Chong WWF, Lam SS. Microwave processing of oil palm wastes for bioenergy production and circular economy: Recent advancements, challenges, and future prospects. BIORESOURCE TECHNOLOGY 2023; 369:128478. [PMID: 36513306 DOI: 10.1016/j.biortech.2022.128478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The valorization and conversion of biomass into various value-added products and bioenergy play an important role in the realization of sustainable circular bioeconomy and net zero carbon emission goals. To that end, microwave technology has been perceived as a promising solution to process and manage oil palm waste due to its unique and efficient heating mechanism. This review presents an in-depth analysis focusing on microwave-assisted torrefaction, gasification, pyrolysis and advanced pyrolysis of various oil palm wastes. In particular, the products from these thermochemical conversion processes are energy-dense biochar (that could be used as solid fuel, adsorbents for contaminants removal and bio-fertilizer), phenolic-rich bio-oil, and H2-rich syngas. However, several challenges, including (1) the lack of detailed study on life cycle assessment and techno-economic analysis, (2) limited insights on the specific foreknowledge of microwave interaction with the oil palm wastes for continuous operation, and (3) effects of tunable parameters and catalyst's behavior/influence on the products' selectivity and overall process's efficiency, remain to be addressed in the context of large-scale biomass valorization via microwave technology.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Kin Wai Cheah
- Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
| | | | - Peter Nai Yuh Yek
- Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, No.1, Jalan Universiti, Sibu, Sarawak, Malaysia
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Johor, Malaysia
| | - Su Shiung Lam
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
22
|
Grandsir C, Falagán N, Alamar MC. Application of novel technologies to reach net‐zero greenhouse gas emissions in the fresh pasteurised milk supply chain: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Natalia Falagán
- Plant Science Laboratory Cranfield University Cranfield MK43 0AL UK
| | - M. Carmen Alamar
- Plant Science Laboratory Cranfield University Cranfield MK43 0AL UK
| |
Collapse
|
23
|
Life Cycle Assessment (LCA) of Biochar Production from a Circular Economy Perspective. Processes (Basel) 2022. [DOI: 10.3390/pr10122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Climate change and environmental sustainability are among the most prominent issues of today. It is increasingly fundamental and urgent to develop a sustainable economy, capable of change the linear paradigm, actively promoting the efficient use of resources, highlighting product, component and material reuse. Among the many approaches to circular economy and zero-waste concepts, biochar is a great example and might be a way to push the economy to neutralize carbon balance. Biochar is a solid material produced during thermochemical decomposition of biomass in an oxygen-limited environment. Several authors have used life cycle assessment (LCA) method to evaluate the environmental impact of biochar production. Based on these studies, this work intends to critically analyze the LCA of biochar production from different sources using different technologies. Although these studies reveal differences in the contexts and characteristics of production, preventing direct comparison of results, a clear trend appears. It was proven, through combining life cycle assessment and circular economy modelling, that the application of biochar is a very promising way of contributing to carbon-efficient resource circulation, mitigation of climate change, and economic sustainability.
Collapse
|
24
|
Baronti S, Magno R, Maienza A, Montagnoli A, Ungaro F, Vaccari FP. Long term effect of biochar on soil plant water relation and fine roots: Results after 10 years of vineyard experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158225. [PMID: 35998720 DOI: 10.1016/j.scitotenv.2022.158225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Biochar is widely suggested to improve soil physical properties and soil-water-plant interactions. Furthermore, the application of biochar to the soil can alter the dynamics of the roots and, in turn, affect the performance of the plant. Nevertheless, the long-term evolution of these effects is unknown and of critical importance because biochar persists in soil for centuries. The results of this work are part of a long-term study in the vineyard started in 2009 and still ongoing. In this work, the effect of applying biochar to soil on the plant-water relationships of Vitis vinifera, soil properties and fine root traits is evaluated 10 years after application. Even after 10 years, the ecophysiological measurements indicated an increase in soil water content and a significant increase in the water status of the plants in the plots treated with biochar. Independently of the diameter class considered, both doses of biochar led in the entire 40 cm of soil to a general reduction of the fine-root standing biomass and length, which is probably due to the lower need for fine root foraging. Moreover, the SRL did not show differences among different treatments. When fine-root traits were analysed along the soil depth at 10 cm intervals, we noted that both length and biomass were significantly higher in the control plant only in the upper soil layers (20 cm) and SRL was significantly higher only in the upper 10 cm of soil. These findings underscore how control plants plastically respond to the lower content of water in the soil by decreasing the fine-root cost-to-benefit ratio, especially in the topsoil layer. Research on the effect of biochar in viticulture can provide an effective contribution to the mitigation of climate change by increasing the water status of the soil and plants even 10 years after its application.
Collapse
Affiliation(s)
- S Baronti
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy.
| | - R Magno
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy
| | - A Maienza
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy
| | - A Montagnoli
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy; Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100 Varese, Italy
| | - F Ungaro
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy
| | - F P Vaccari
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10 Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
25
|
Shaikh WA, Kumar A, Chakraborty S, Naushad M, Islam RU, Bhattacharya T, Datta S. Removal of toxic dye from dye-laden wastewater using a new nanocomposite material: Isotherm, kinetics and adsorption mechanism. CHEMOSPHERE 2022; 308:136413. [PMID: 36103924 DOI: 10.1016/j.chemosphere.2022.136413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, (hemi)cellulosic biochar-based environment-friendly non-toxic nanocomposite (nAg-AC) was fabricated for an inordinate overlook of toxic dye-laden wastewater depollution. This hybrid nanocomposite grafted with silver nanoparticles, numerous hydroxyl and π-bond containing functional groups exhibited outstanding physicochemical properties. FESEM images indicated the heterogeneous porous structure of nAg-AC, while BET analysis revealed mesoporous property with a significant increment of overall surface area (132%). Imbedding of silver nanoparticles and the presence of multiple hydroxyl groups was evident from the XRD and XPS spectrum. Further, the TGA result indicated excellent thermal stability, and FTIR analysis suggested the involvement of surface functional groups like -OH, =C = O, =NH, =C = C = , and -CH in Rhodamine B (RhB) adsorption. The adsorbent matrix provided the overall mechanical strength and facilitated recycling, while the functional matrix (biochar) provided the adsorptive locus for augmented RhB adsorption efficiency (92.77%). Experiments pertaining to adsorption isotherms and kinetics modeling suggested that RhB was removed through multilayer chemisorption on the heterogeneous nAg-AC surface. The main RhB adsorption mechanism included cumulative efforts of H-bindings, π-π stacking interaction, pore-filling, and electrostatic interactions. The nAg-AC maintained mechanical robustness with significant RhB adsorption even after three consecutive regeneration cycles signifying facile recycling. The nAg-AC displayed an outstanding efficacy for the real industrial wastewater depollution, indicating high effectiveness for practical environmental applications. Finally, the cost analysis (incorporating economic, environmental, and social dimensions) suggested a significant role of the nAg-AC in promoting and establishing sustainable development with the circular economy.
Collapse
Affiliation(s)
- Wasim Akram Shaikh
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Jharkhand, 835215, India; Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, 743368, India.
| | - Abhishek Kumar
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Jharkhand, 835215, India
| | - Sukalyan Chakraborty
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Jharkhand, 835215, India.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rafique Ul Islam
- Department of Chemistry, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Tanushree Bhattacharya
- Department of Civil & Environmental Engineering, Birla Institute of Technology, Jharkhand, 835215, India
| | - Saugata Datta
- Department of Geology, Kansas State University, 104 Thompson Hall, Manhattan, KS, 66506, USA
| |
Collapse
|
26
|
Seo JY, Tokmurzin D, Lee D, Lee SH, Seo MW, Park YK. Production of biochar from crop residues and its application for biofuel production processes - An overview. BIORESOURCE TECHNOLOGY 2022; 361:127740. [PMID: 35934249 DOI: 10.1016/j.biortech.2022.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A sustainable carbon-neutral society is imperative for future generations, and biochars and biofuels are inevitable choice to achieve this goal. Crop residues (CR) such as sugarcane bagasse, corn stover, and rice husk are promising sustainable resources as a feedstock for biochars and biofuels. Extensive research has been conducted on CR-based biochar production not only in environmental remediation areas but also in application for biofuel production. Here, the distribution and resource potential of major crop residues are presented. The production of CR-biochar and its applications in biofuel production processes, focusing on the latest research are discussed. Finally, the challenges and areas of opportunity for future research in terms of CR supply, CR-biochar production, and CR-biochar utilization for biofuel production are proposed. Compared with other literature reviews, this study can serve as a guide for the establishment of sustainable, economical, commercial CR-based biorefineries.
Collapse
Affiliation(s)
- Jung Yoon Seo
- National Climate Technology Center, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Diyar Tokmurzin
- Clean Fuel Research Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea; Department of Environment & Energy, Jeonbuk National University 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea
| | - Myung Won Seo
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Marmiroli M, Caldara M, Pantalone S, Malcevschi A, Maestri E, Keller AA, Marmiroli N. Building a risk matrix for the safety assessment of wood derived biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156265. [PMID: 35643132 DOI: 10.1016/j.scitotenv.2022.156265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Biochar is recognized as an efficient amendment and soil improver. However, environmental and quality assessments are needed to ensure the sustainability of its use in agriculture. This work considers the biochar's chemical-physical characterization and its potential phyto- and geno-toxicity, assessed with germination and Ames tests, obtaining valuable information for a safe field application. Three biochar types, obtained from gasification at different temperatures of green biomasses from the Tuscan-Emilian Apennines (in Italy), were compared through a broad chemical, physical and biological evaluation. The results obtained showed the relevance of temperature in determining the chemical and morphological properties of biochar, which was shown with several analytical techniques such as the elemental composition, water holding capacity, ash content, but also with FTIR and X-ray spectroscopies. These techniques showed the presence of different relevant surface aliphatic and aromatic groups. The procedures for evaluating the potential toxicity using seeds germination and Ames genotoxicity assay highlights that biochar does not cause detrimental effects when it enters in contact with soil, micro- and macro-organisms, and plants. The genotoxicity test provided a new highlight in evaluating biochar environmental safety.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Serena Pantalone
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Alessio Malcevschi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106-5131, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy.
| |
Collapse
|
28
|
Mao W, Wu P, Zhang Y, Lai K, Dong L, Qian X, Zhang Y, Zhu J. Manganese oxide-modified biochar derived from discarded mushroom-stick for the removal of Sb(III) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49322-49334. [PMID: 35220532 DOI: 10.1007/s11356-021-18276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
In this study, discarded mushroom-stick, which is widely available, was selected as a precursor to prepare MnO2-modified biochar (MBC) for Sb(III) removal. Several characterisation methods (SEM, BET, XPS, FT-IR, and XRD) were used to explore the mechanisms of antimony adsorption onto MBC. The results showed that MBC is a mesoporous material with a fluffy structure and a higher specific surface area (23.56 and 32.09 m2·g-1) than PBC600 (13.62 m2·g-1), exhibiting superior and stable adsorption capacities for Sb(III) (50.30 mg·g-1 for 1/30MBC600 and 64·12 mg·g-1 for 1/20MBC600) across a wide pH range (pH 4-8). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy analyses indicated that the main oxides and functional groups involved in the adsorption were manganese oxides and hydroxyl groups. Forty-four per cent of the adsorbed Sb(III) was oxidised to Sb(V) by manganese oxides or hydroxyl groups both on the surface of biochar and in solution. According to adsorption kinetics and isotherms, the adsorption process of Sb(III) is chemisorption, which includes monolayer and multilayer heterogeneous chemisorption processes. To sum up, MBC is an excellent adsorbent for the capture of Sb(III) from contaminated water with strong potential for future application.
Collapse
Affiliation(s)
- Wenjian Mao
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Pan Wu
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, People's Republic of China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, People's Republic of China
| | - Yuqin Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Kaidi Lai
- Guizhou Environment and Engineering Appraisal Center, Guiyang, 550002, People's Republic of China
| | - Lisha Dong
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xufeng Qian
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuntao Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jian Zhu
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, People's Republic of China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
29
|
Wang C, Zou R, Qian M, Kong X, Huo E, Lin X, Wang L, Zhang X, Ruan R, Lei H. Improvement of the carbon yield from biomass carbonization through sulfuric acid pre-dehydration at room temperature. BIORESOURCE TECHNOLOGY 2022; 355:127251. [PMID: 35504425 DOI: 10.1016/j.biortech.2022.127251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The pre-dehydration of a woody biomass waste (Douglas fir, DF) with 4.6-32 wt% of diluted sulfuric acid solutions was carried out mainly at room temperature aimed to improve the carbon yield from the thermal carbonization of pre-dehydrated biomass at 500 °C. By comparison (based on the raw DF), the pre-dehydration at room temperature increased the biochar yield and carbon retention up to about 32 wt% and 54%, respectively from that of about 22 wt% and 39% without pre-dehydration. When the pre-dehydration temperature increased to 90 °C, the biochar yield and carbon retention were sharply promoted to about 44 wt% and 76%, which was about two times higher than that of the biochar obtained without pre-treatment. This work for the first time proved the effectiveness of improving the carbon yield from lignocellulosic biomass via diluted sulfuric acid-assisted pre-dehydration at low or even room temperature.
Collapse
Affiliation(s)
- Chenxi Wang
- Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| | - Rongge Zou
- Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| | - Moriko Qian
- Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| | - Xiao Kong
- Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA; School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Erguang Huo
- Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA; School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaona Lin
- Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA; School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xuesong Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA.
| |
Collapse
|
30
|
Zhang L, Yao D, Tsui TH, Loh KC, Wang CH, Dai Y, Tong YW. Plastic-containing food waste conversion to biomethane, syngas, and biochar via anaerobic digestion and gasification: Focusing on reactor performance, microbial community analysis, and energy balance assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114471. [PMID: 35026716 DOI: 10.1016/j.jenvman.2022.114471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
To manage the mixture of food waste and plastic waste, a hybrid biological and thermal system was investigated for converting plastic-containing food waste (PCFW) into renewable energy, focusing on performance evaluation, microbial community analysis, and energy balance assessment. The results showed that anaerobic digestion (AD) of food waste, polyethylene (PE)-containing food waste, polystyrene (PS)-containing food waste, and polypropylene (PP)-containing food waste generated a methane yield of 520.8, 395.6, 504.2, and 479.8 mL CH4/gVS, respectively. CO2 gasification of all the plastic-containing digestate produced more syngas than pure digestate gasification. Syngas from PS-digestate reached the maximum yield of 20.78 mol/kg. During the digestate-derived-biochar-amended AD of PCFW, the methane yields in the biochars-amended digesters were 6-30% higher than those of the control digesters. Bioinformatic analysis of microbial communities confirmed the significant difference between control and biochar-amended digesters in terms of bacterial and methanogenic compositions. The enhanced methane yields in biochars-amended digesters could be partially ascribed to the selective enrichment of genus Methanosarcina, leading to an improved equilibrium between hydrogenotrophic and acetoclastic methanogenesis pathways. Moreover, energy balance assessment demonstrated that the hybrid biological and thermal conversion system can be a promising technical option for the treatment of PCFW and recovery of renewable biofuels (i.e., biogas and syngas) and bioresource (i.e., biochar) on an industrial scale.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Dingding Yao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chi-Hwa Wang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
31
|
El-Shafie AS, Ahsan I, Radhwani M, Al-Khangi MA, El-Azazy M. Synthesis and Application of Cobalt Oxide (Co3O4)-Impregnated Olive Stones Biochar for the Removal of Rifampicin and Tigecycline: Multivariate Controlled Performance. NANOMATERIALS 2022; 12:nano12030379. [PMID: 35159724 PMCID: PMC8839773 DOI: 10.3390/nano12030379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023]
Abstract
Cobalt oxide (Co3O4) nanoparticles supported on olive stone biochar (OSBC) was used as an efficient sorbent for rifampicin (RIFM) and tigecycline (TIGC) from wastewater. Thermal stabilities, morphologies, textures, and surface functionalities of two adsorbents; OSBC and Co-OSBC were compared. BET analysis indicated that Co-OSBC possesses a larger surface area (39.85 m2/g) and higher pore-volume compared to the pristine OSBC. FT-IR analysis showed the presence of critical functional groups on the surface of both adsorbents. SEM and EDX analyses showed the presence of both meso- and macropores and confirmed the presence of Co3O4 nanoparticles on the adsorbent surface. Batch adsorption studies were controlled using a two-level full-factorial design (2k-FFD). Adsorption efficiency of Co-OSBC was evaluated in terms of the % removal (%R) and the sorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dose (AD), drug concentration, and contact time (CT). A %R of 95.18% and 75.48% could be achieved for RIFM and TIGC, respectively. Equilibrium studies revealed that Langmuir model perfectly fit the adsorption of RIFM compared to Freundlich model for TIGC. Maximum adsorption capacity (qmax) for RIFM and TIGC was 61.10 and 25.94 mg/g, respectively. Adsorption kinetics of both drugs could be best represented using the pseudo-second order (PSO) model.
Collapse
Affiliation(s)
- Ahmed S. El-Shafie
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.E.-S.); (I.A.)
| | - Insharah Ahsan
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.E.-S.); (I.A.)
| | - Mohamed Radhwani
- Al Jazeera Academy, Doha P.O. Box 22250, Qatar; (M.R.); (M.A.A.-K.)
| | | | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.E.-S.); (I.A.)
- Correspondence:
| |
Collapse
|
32
|
Rossi MM, Matturro B, Amanat N, Rossetti S, Petrangeli Papini M. Coupled Adsorption and Biodegradation of Trichloroethylene on Biochar from Pine Wood Wastes: A Combined Approach for a Sustainable Bioremediation Strategy. Microorganisms 2022; 10:microorganisms10010101. [PMID: 35056550 PMCID: PMC8779034 DOI: 10.3390/microorganisms10010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Towards chlorinated solvents, the effectiveness of the remediation strategy can be improved by combining a biological approach (e.g., anaerobic reductive dechlorination) with chemical/physical treatments (e.g., adsorption). A coupled adsorption and biodegradation (CAB) process for trichloroethylene (TCE) removal is proposed in a biofilm-biochar reactor (BBR) to assess whether biochar from pine wood (PWB) can support a dechlorinating biofilm by combining the TCE (100 µM) adsorption. The BBR operated for eight months in parallel with a biofilm reactor (BR)-no PWB (biological process alone), and with an abiotic biochar reactor (ABR)-no dechlorinating biofilm (only an adsorption mechanism). Two flow rates were investigated. Compared to the BR, which resulted in a TCE removal of 86.9 ± 11.9% and 78.73 ± 19.79%, the BBR demonstrated that PWB effectively adsorbs TCE and slows down the release of its intermediates. The elimination of TCE was quantitative, with 99.61 ± 0.79% and 99.87 ± 0.51% TCE removal. Interestingly, the biomarker of the reductive dechlorination process, Dehalococcoides mccartyi, was found in the BRR (9.2 × 105 16S rRNA gene copies/g), together with the specific genes tceA, bvcA, and vcrA (8.16 × 106, 1.28 × 105, and 8.01 × 103 gene copies/g, respectively). This study suggests the feasibility of biochar to support the reductive dechlorination of D. mccartyi, opening new frontiers for field-scale applications.
Collapse
Affiliation(s)
- Marta M. Rossi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (N.A.); (M.P.P.)
- Correspondence:
| | - Bruna Matturro
- Water Research Institute (IRSA—CNR), Via Salaria km 29.300, 00015 Monterotondo, Italy; (B.M.); (S.R.)
| | - Neda Amanat
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (N.A.); (M.P.P.)
| | - Simona Rossetti
- Water Research Institute (IRSA—CNR), Via Salaria km 29.300, 00015 Monterotondo, Italy; (B.M.); (S.R.)
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (N.A.); (M.P.P.)
| |
Collapse
|
33
|
Hussin F, Aroua MK, Szlachta M. Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review. CHEMOSPHERE 2022; 287:132250. [PMID: 34547565 DOI: 10.1016/j.chemosphere.2021.132250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Water pollution is one of the most concerning global environmental problems in this century with the severity and complexity of the issue increases every day. One of the major contributors to water pollution is the discharge of harmful heavy metal wastes into the rivers and water bodies. Without proper treatment, the release of these harmful inorganic waste would endanger the environment by contaminating the food chains of living organisms, hence, leading to potential health risks to humans. The adsorption method has become one of the cost-effective alternative treatments to eliminate heavy metal ions. Since the type of adsorbent material is the most vital factor that determines the effectiveness of the adsorption, continuous efforts have been made in search of cheap adsorbents derived from a variety of waste materials. Fruit waste can be transformed into valuable products, such as biochar, as they are composed of many functional groups, including carboxylic groups and lignin, which is effective in metal binding. The main objective of this study was to review the potential of various types of fruit wastes as an alternative adsorbent for Pb(II) removal. Following a brief overview of the properties and effects of Pb(II), this study discussed the equilibrium isotherms and adsorption kinetic by various adsorption models. The possible adsorption mechanisms and regeneration study for Pb(II) removal were also elaborated in detail to provide a clear understanding of biochar produced using the pyrolysis technique. The future prospects of fruit waste as an adsorbent for the removal of Pb(II) was also highlighted.
Collapse
Affiliation(s)
- Farihahusnah Hussin
- Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Mohamed Kheireddine Aroua
- Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Małgorzata Szlachta
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland; Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| |
Collapse
|
34
|
Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered 2021; 12:10269-10301. [PMID: 34709979 PMCID: PMC8809956 DOI: 10.1080/21655979.2021.1993536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, YanglingChina
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| |
Collapse
|
35
|
He M, Xu Z, Sun Y, Chan PS, Lui I, Tsang DCW. Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. BIORESOURCE TECHNOLOGY 2021; 341:125811. [PMID: 34454231 DOI: 10.1016/j.biortech.2021.125811] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Wood waste-derived biochar with tunable carbon structure and surface functionality has a great potential for various environmental applications and circular economy; however, a holistic understanding on the application-oriented production of high-efficacy biochar is lacking. Thus, the co-impacts of different pyrolysis conditions (temperature and duration) and activation methods (steam, CO2, and acid pretreatment) on the biochar properties were first investigated. A temperature of 650 ℃ was effective in forming carbonized structure in biochar, while 750 ℃ was critical for the porous structure development. A longer pyrolysis duration (>60 min) enhanced the pore volume without compromising the yield. The activated biochar exhibited a larger pore volume (2.1- to 2.9-fold of pristine biochar) for potential high-end emerging applications. The acid pretreatment effectively removed dissolved organic carbon and most metals from the biochar. This study provides an essential guidance on the fit-for-purpose designs of biochar production conditions for sustainable wood waste management.
Collapse
Affiliation(s)
- Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - P S Chan
- Environmental Protection Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Iris Lui
- Environmental Protection Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Abstract
Cities are producers of high quantities of secondary liquid and solid streams that are still poorly utilized within urban systems. In order to tackle this issue, there has been an ever-growing push for more efficient resource management and waste prevention in urban areas, following the concept of a circular economy. This review paper provides a characterization of urban solid and liquid resource flows (including water, nutrients, metals, potential energy, and organics), which pass through selected nature-based solutions (NBS) and supporting units (SU), expanding on that characterization through the study of existing cases. In particular, this paper presents the currently implemented NBS units for resource recovery, the applicable solid and liquid urban waste streams and the SU dedicated to increasing the quality and minimizing hazards of specific streams at the source level (e.g., concentrated fertilizers, disinfected recovered products). The recovery efficiency of systems, where NBS and SU are combined, operated at a micro- or meso-scale and applied at technology readiness levels higher than 5, is reviewed. The importance of collection and transport infrastructure, treatment and recovery technology, and (urban) agricultural or urban green reuse on the quantity and quality of input and output materials are discussed, also regarding the current main circularity and application challenges.
Collapse
|
37
|
A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar. SUSTAINABILITY 2021. [DOI: 10.3390/su132111760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbamazepine (CBZ), one of the most used pharmaceuticals worldwide and a Contaminant of Emerging Concern, represents a potential risk for the environment and human health. Wastewater treatment plants (WWTPs) are a significant source of CBZ to the environment, polluting the whole water cycle. In this review, the CBZ presence and fate in the urban water cycle are addressed, with a focus on adsorption as a possible solution for its removal. Specifically, the scientific literature on CBZ removal by activated carbon and its possible substitute Biochar, is comprehensively scanned and summed up, in view of increasing the circularity in water treatments. CBZ adsorption onto activated carbon and biochar is analyzed considering several aspects, such as physicochemical characteristics of the adsorbents, operational conditions of the adsorption processes and adsorption kinetics and isotherms models. WWTPs usually show almost no removal of CBZ (even negative), whereas removal is witnessed in drinking water treatment plants through advanced treatments (even >90%). Among these, adsorption is considered one of the preferable methods, being economical and easier to operate. Adsorption capacity of CBZ is influenced by the characteristics of the adsorbent precursors, pyrolysis temperature and modification or activation processes. Among operational conditions, pH shows low influence on the process, as CBZ has no charge in most pH ranges. Differently, increasing temperature and rotational speed favor the adsorption of CBZ. The presence of other micro-contaminants and organic matter decreases the CBZ adsorption due to competition effects. These results, however, concern mainly laboratory-scale studies, hence, full-scale investigations are recommended to take into account the complexity of the real conditions.
Collapse
|
38
|
Lan Y, Du Q, Tang C, Cheng K, Yang F. Application of typical artificial carbon materials from biomass in environmental remediation and improvement: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113340. [PMID: 34328868 DOI: 10.1016/j.jenvman.2021.113340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Artificial carbon materials (ACMs), notably hydrochar, pyrochar, and artificial humic substances, etc., are considered to be sustainable and eco-friendly materials for environmental remediation and improvement. At present, almost relevant literature mainly focuses on biochar, and it is necessary to systematically summarize and expand studies on ACMs. ACMs are widely used to solve pollution problems in water and soil environments, as well as to remediate and improve soil quality. This review focuses on the following issues: 1. Reveal the synthetic mechanisms and compositional reactions effects of the charring process; 2. Define artificial humus as a novel class of ACMs and discuss the application of environmental remediation and relative enhancement effects; 3. Research the relative mechanisms and significance of ACMs during remediation process, involving removal and fixation of heavy metal ions (HMs)/organic pollutants (OPs), modification of soil physicochemical properties, affecting microbial community effects, and improving fertility for crop growth. Finally, the cost-benefit analysis and security-risk evaluation of ACMs are pointed out.
Collapse
Affiliation(s)
- Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Qing Du
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Chunyu Tang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China.
| |
Collapse
|
39
|
Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review. Molecules 2021; 26:molecules26165063. [PMID: 34443648 PMCID: PMC8398246 DOI: 10.3390/molecules26165063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Over the past decade, biochar (BC) has received significant attention in many environmental applications, including water purification, since it is available as a low-cost by-product of the energetic valorisation of biomass. Biochar has many intrinsic characteristics, including its porous structure, which is similar to that of activated carbon (AC), which is the most widely used sorbent in water treatment. The physicochemical and performance characteristics of BCs are usually non-homogenously investigated, with several studies only evaluating limited parameters, depending on the individual perspective of the author. Within this review, we have taken an innovative approach to critically survey the methodologies that are generally used to characterize BCs and ACs to propose a comprehensive and ready-to-use database of protocols. Discussion about the parameters of chars that are usually correlated with adsorption performance in water purification is proposed, and we will also consider the physicochemical properties of pollutants (i.e., Kow). Uniquely, an adsorption efficiency index BC/AC is presented and discussed, which is accompanied by an economic perspective. According to our survey, non-homogeneous characterization approaches limit the understanding of the correlations between the pollutants to be removed and the physicochemical features of BCs. Moreover, the investigations of BC as an adsorption medium necessitate dedicated parallel studies to compare BC characteristics and performances with those of ACs.
Collapse
|
40
|
Arora S, Jung J, Liu M, Li X, Goel A, Chen J, Song S, Anderson C, Chen D, Leong K, Lim SH, Fong SL, Ghosh S, Lin A, Kua HW, Tan HTW, Dai Y, Wang CH. Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146573. [PMID: 33798876 DOI: 10.1016/j.scitotenv.2021.146573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Organic waste, the predominant component of global solid waste, has never been higher, resulting in increased landfilling, incineration, and open dumping that releases greenhouse gases and toxins that contribute to global warming and environmental pollution. The need to create and adopt sustainable closed-loop systems for waste reduction and valorization is critical. Using organic waste as a feedstock, gasification and pyrolysis systems can produce biooil, syngas, and thermal energy, while reducing waste mass by as much as 85-95% through conversion into biochar, a valuable byproduct with myriad uses from soil conditioning to bioremediation and carbon sequestration. Here, we present a novel case study detailing the circular economy of gasification biochar in Singapore's Gardens by the Bay. Biochar produced from horticultural waste within the Gardens was tested as a partial peat moss substitute in growing lettuce, pak choi, and pansy, and found to be a viable substitute for peat moss. At low percentages of 20-30% gasification biochar, fresh weight yields for lettuce and pak choi were comparable to or exceeded those of plants grown in pure peat moss. The biochar was also analyzed as a potential additive to concrete, with a 2% biochar mortar compound found to be of suitable strength for non-structural functions, such as sidewalks, ditches, and other civil applications. These results demonstrate the global potential of circular economies based on local biochar creation and on-site use through the valorization of horticultural waste via gasification, generating clean, renewable heat or electricity, and producing a carbon-neutral to -negative byproduct in the form of biochar. They also indicate the potential of scaled-up pyrolysis or gasification systems for a circular economy in waste management.
Collapse
Affiliation(s)
- Srishti Arora
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Janelle Jung
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, 018953, Singapore
| | - Ming Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Xian Li
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Abhimanyu Goel
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Jialing Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Carly Anderson
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, 018953, Singapore
| | - Dexiang Chen
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, 018953, Singapore
| | - Ken Leong
- Mursun PTE. LTD, 14 Robinson Road, 048545, Singapore
| | - Song Hau Lim
- Singapore Power, 2 Kallang Sector, 349277, Singapore
| | - Siew Lee Fong
- Agri-technology & Food Innovation Department, Singapore Food Agency, 10 Perahu Road, 718837, Singapore
| | - Subhadip Ghosh
- Centre for Urban Greenery and Ecology (Research), National Parks Board, 259569, Singapore; School of Environmental & Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Alexander Lin
- Department of Building, National University of Singapore, 4 Architecture Drive, 117566, Singapore
| | - Harn Wei Kua
- Department of Building, National University of Singapore, 4 Architecture Drive, 117566, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
41
|
Rossi MM, Dell’Armi E, Lorini L, Amanat N, Zeppilli M, Villano M, Petrangeli Papini M. Combined Strategies to Prompt the Biological Reduction of Chlorinated Aliphatic Hydrocarbons: New Sustainable Options for Bioremediation Application. Bioengineering (Basel) 2021; 8:bioengineering8080109. [PMID: 34436112 PMCID: PMC8389326 DOI: 10.3390/bioengineering8080109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Groundwater remediation is one of the main objectives to minimize environmental impacts and health risks. Chlorinated aliphatic hydrocarbons contamination is prevalent and presents particularly challenging scenarios to manage with a single strategy. Different technologies can manage contamination sources and plumes, although they are usually energy-intensive processes. Interesting alternatives involve in-situ bioremediation strategies, which allow the chlorinated contaminant to be converted into non-toxic compounds by indigenous microbial activity. Despite several advantages offered by the bioremediation approaches, some limitations, like the relatively low reaction rates and the difficulty in the management and control of the microbial activity, can affect the effectiveness of a bioremediation approach. However, those issues can be addressed through coupling different strategies to increase the efficiency of the bioremediation strategy. This mini review describes different strategies to induce the reduction dechlorination reaction by the utilization of innovative strategies, which include the increase or the reduction of contaminant mobility as well as the use of innovative strategies of the reductive power supply. Subsequently, three future approaches for a greener and more sustainable intervention are proposed. In particular, two bio-based materials from renewable resources are intended as alternative, long-lasting electron-donor sources (e.g., polyhydroxyalkanoates from mixed microbial cultures) and a low-cost adsorbent (e.g., biochar from bio-waste). Finally, attention is drawn to novel bio-electrochemical systems that use electric current to stimulate biological reactions.
Collapse
|
42
|
Lee JTE, Ok YS, Song S, Dissanayake PD, Tian H, Tio ZK, Cui R, Lim EY, Jong MC, Hoy SH, Lum TQH, Tsui TH, Yoon CS, Dai Y, Wang CH, Tan HTW, Tong YW. Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment. BIORESOURCE TECHNOLOGY 2021; 333:125190. [PMID: 33915456 DOI: 10.1016/j.biortech.2021.125190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
A wood waste-derived biochar was applied to food-waste anaerobic digestion to evaluate the feasibility of its utilisation to create a circular economy. This biochar was first purposed for the upgrading of the biogas from the said anaerobic digestion, before treating and recovering the nutrients in the solid fraction of the digestate, which was finally employed as a biofertilizer for the organic cultivation of three green leafy vegetables: kale, lettuce and rocket salad. Whilst the amount of CO2 the biochar could absorb from the biogas was low (11.17 mg g-1), it could potentially be increased by modifying through physical and chemical methods. Virgin as well as CO2-laden biochar were able to remove around 31% of chemical oxygen demand, 8% of the ammonia and almost 90% of the total suspended solids from the digestate wastewater, which was better than a dewatering process via centrifugation but worse than the industry standard of a polytetrafluoroethylene membrane bioreactor. Nutrients were recovered in the solid fraction of the digestate residue filtered by the biochar, and utilised as a biofertilizer that performed similarly to a commercial complete fertilizer in terms of aerial fresh weight growth for all three vegetables cultivated. Contingent on the optimal upgrading of biogas, the concept of a circular economy based on biochar and anaerobic digestion appears to be feasible.
Collapse
Affiliation(s)
- Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Hailin Tian
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Zhi Kai Tio
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Ruofan Cui
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Ee Yang Lim
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Mui-Choo Jong
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Sherilyn H Hoy
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Tiffany Q H Lum
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - To-Hung Tsui
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Chui San Yoon
- Sumitomo Electric Asia Pacific PTE LTD, 31 International Business Park, Singapore 609921, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yen Wah Tong
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore.
| |
Collapse
|
43
|
Zhang J, Cui Y, Zhang T, Hu Q, Wah Tong Y, He Y, Dai Y, Wang CH, Peng Y. Food waste treating by biochar-assisted high-solid anaerobic digestion coupled with steam gasification: Enhanced bioenergy generation and porous biochar production. BIORESOURCE TECHNOLOGY 2021; 331:125051. [PMID: 33812137 DOI: 10.1016/j.biortech.2021.125051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
A food waste treating system was proposed in this study by combining biochar-assisted high-solid anaerobic digestion and subsequent steam gasification of the digestate. The effect of solid level, biochar dosage in anaerobic digestion on the properties of biogas, syngas, and final biochar products were investigated. Results showed that at a high total solid level and biochar dosage of 25 g/L and 50 g/L, the accumulative methane yield reached 110.3 mL CH4/g VS and 126.7 mL CH4/g VS, respectively. From steam gasification of different digestates under 850 °C for 15 min, a maximum of 34.92 mmol/g for the hydrogen yield and 11.44 MJ/m3 for the higher heating value could be obtained for the syngas. Furthermore, the by-product produced from steam gasification was a nutrient-enriched porous biochar, which was suitable to be used as compost. This study demonstrated a pathway for food waste treating to produce methane-enriched biogas, hydrogen-enriched syngas, and nutrient-enriched biochar.
Collapse
Affiliation(s)
- Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Yuxuan Cui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Tengyu Zhang
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Qiang Hu
- NUS Environmental Research Institute, National University of Singapore, Singapore 138602, Singapore.
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yinghong Peng
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, Shanghai 200241, PR China
| |
Collapse
|