• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4800607)   Today's Articles (5784)
For: Wang R, Kim JH, Li MH. Predicting stream water quality under different urban development pattern scenarios with an interpretable machine learning approach. Sci Total Environ 2021;761:144057. [PMID: 33373848 DOI: 10.1016/j.scitotenv.2020.144057] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Number Cited by Other Article(s)
1
Zhao M, Ma C, Zhang H, Li H, Huo S. Long-term water quality simulation and driving factors identification within the watershed scale using machine learning. JOURNAL OF CONTAMINANT HYDROLOGY 2025;273:104604. [PMID: 40393303 DOI: 10.1016/j.jconhyd.2025.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/05/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
2
Patel A, Bortolini DG, Souza ADO, Lima MXD, Trevisan AP, Mymrin V, Nagalli A, Passig FH, Carvalho KQD. Intensifying Nutrient Removal in Hybrid-Constructed Wetlands Treating Urban Streamwater. ACS OMEGA 2025;10:13943-13953. [PMID: 40256495 PMCID: PMC12004156 DOI: 10.1021/acsomega.4c10124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
3
Adedeji IC, Ahmadisharaf E, Clark CJ. A unified subregional framework for modeling stream water quality across watersheds of a hydrologic subregion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025;958:177870. [PMID: 39693657 DOI: 10.1016/j.scitotenv.2024.177870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
4
Wang H, Guan Y, Hu M, Hou Z, Ping Y, Zhang Z, Zhang Q, Shang F, Lin K, Feng C. Enhancing pollution management in watersheds: A critical review of total maximum daily load (TMDL) implementation. ENVIRONMENTAL RESEARCH 2025;264:120394. [PMID: 39571706 DOI: 10.1016/j.envres.2024.120394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/02/2024]
5
Dou J, Xia R, Zhang K, Xu C, Chen Y, Liu X, Hou X, Yin Y, Li L. Landscape fragmentation of built-up land significantly impact on water quality in the Yellow River Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024;371:123232. [PMID: 39531767 DOI: 10.1016/j.jenvman.2024.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/12/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
6
Elsayed A, Rixon S, Levison J, Binns A, Goel P. Machine learning models for prediction of nutrient concentrations in surface water in an agricultural watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024;372:123305. [PMID: 39561445 DOI: 10.1016/j.jenvman.2024.123305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
7
Huang Y, Chen S, Tang X, Sun C, Zhang Z, Huang J. Dynamic patterns and potential drivers of river water quality in a coastal city: Insights from a machine-learning-based framework and water management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024;370:122911. [PMID: 39405891 DOI: 10.1016/j.jenvman.2024.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
8
Lee DH, Lee SI, Kang JH. Machine learning approaches to identify spatial factors and their influential distances for heavy metal contamination in downstream sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;948:174755. [PMID: 39025146 DOI: 10.1016/j.scitotenv.2024.174755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
9
El Bilali A, Brouziyne Y, Attar O, Lamane H, Hadri A, Taleb A. Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024;31:47237-47257. [PMID: 38987519 DOI: 10.1007/s11356-024-34245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
10
Singh S, Das A, Sharma P, Sudheer AK, Gaddam M, Ranjan R. Spatiotemporal variations, sources, pollution status and health risk assessment of dissolved trace elements in a major Arabian Sea draining river: insights from multivariate statistical and machine learning approaches. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024;46:130. [PMID: 38483703 DOI: 10.1007/s10653-024-01885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
11
Jeong H, Park S, Choi B, Yu CS, Hong JY, Jeong TY, Cho KH. Machine learning-based water quality prediction using octennial in-situ Daphnia magna biological early warning system data. JOURNAL OF HAZARDOUS MATERIALS 2024;465:133196. [PMID: 38141299 DOI: 10.1016/j.jhazmat.2023.133196] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
12
Kovačević M, Jabbarian Amiri B, Lozančić S, Hadzima-Nyarko M, Radu D, Nyarko EK. Application of Machine Learning in Modeling the Relationship between Catchment Attributes and Instream Water Quality in Data-Scarce Regions. TOXICS 2023;11:996. [PMID: 38133397 PMCID: PMC10747677 DOI: 10.3390/toxics11120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
13
Xu Q, Guo S, Zhai L, Wang C, Yin Y, Liu H. Guiding the landscape patterns evolution is the key to mitigating river water quality degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;901:165869. [PMID: 37527709 DOI: 10.1016/j.scitotenv.2023.165869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
14
Elsayed A, Rixon S, Levison J, Binns A, Goel P. Application of classification machine learning algorithms for characterizing nutrient transport in a clay plain agricultural watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;345:118924. [PMID: 37678017 DOI: 10.1016/j.jenvman.2023.118924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
15
Sáinz-Pardo Díaz J, Castrillo M, López García Á. Deep learning based soft-sensor for continuous chlorophyll estimation on decentralized data. WATER RESEARCH 2023;246:120726. [PMID: 37871375 DOI: 10.1016/j.watres.2023.120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
16
Luo L, Li B, Wang X, Cui L, Liu G. Interpretable spatial identity neural network-based epidemic prediction. Sci Rep 2023;13:18159. [PMID: 37875546 PMCID: PMC10598274 DOI: 10.1038/s41598-023-45177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]  Open
17
Wang S, Li Y, Li F, Zheng D, Yang J, Yu E. Spatialization and driving factors of carbon budget at county level in the Yangtze River Delta of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28917-8. [PMID: 37495813 DOI: 10.1007/s11356-023-28917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
18
Tarek MH, Hubbart J, Garner E. Microbial source tracking to elucidate the impact of land-use and physiochemical water quality on fecal contamination in a mixed land-use watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;872:162181. [PMID: 36775177 DOI: 10.1016/j.scitotenv.2023.162181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
19
Ding H, Niu X, Zhang D, Lv M, Zhang Y, Lin Z, Fu M. Spatiotemporal analysis and prediction of water quality in Pearl River, China, using multivariate statistical techniques and data-driven model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;30:63036-63051. [PMID: 36952164 DOI: 10.1007/s11356-023-26209-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/26/2023] [Indexed: 05/10/2023]
20
Sheikholeslami R, Hall JW. Global patterns and key drivers of stream nitrogen concentration: A machine learning approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;868:161623. [PMID: 36657680 PMCID: PMC10933795 DOI: 10.1016/j.scitotenv.2023.161623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
21
Zheng H, Liu Y, Wan W, Zhao J, Xie G. Large-scale prediction of stream water quality using an interpretable deep learning approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;331:117309. [PMID: 36657204 DOI: 10.1016/j.jenvman.2023.117309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
22
Sushanth K, Mishra A, Mukhopadhyay P, Singh R. Real-time streamflow forecasting in a reservoir-regulated river basin using explainable machine learning and conceptual reservoir module. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;861:160680. [PMID: 36481148 DOI: 10.1016/j.scitotenv.2022.160680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
23
Narita K, Matsui Y, Matsushita T, Shirasaki N. Screening priority pesticides for drinking water quality regulation and monitoring by machine learning: Analysis of factors affecting detectability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;326:116738. [PMID: 36375426 DOI: 10.1016/j.jenvman.2022.116738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
24
Wang Y, Li B, Yang G. Stream water quality optimized prediction based on human activity intensity and landscape metrics with regional heterogeneity in Taihu Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;30:4986-5004. [PMID: 35978234 DOI: 10.1007/s11356-022-22536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
25
Wang R, Ma Y, Zhao G, Zhou Y, Shehab I, Burton A. Investigating water quality sensitivity to climate variability and its influencing factors in four Lake Erie watersheds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;325:116449. [PMID: 36252329 DOI: 10.1016/j.jenvman.2022.116449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
26
Kikuchi T, Anzai T, Ouchi T, Okamoto K, Terajima Y. Assessing the impact of watershed characteristics and management on nutrient concentrations in tropical rivers using a machine learning method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023;316:120599. [PMID: 36343855 DOI: 10.1016/j.envpol.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
27
Adedeji IC, Ahmadisharaf E, Sun Y. Predicting in-stream water quality constituents at the watershed scale using machine learning. JOURNAL OF CONTAMINANT HYDROLOGY 2022;251:104078. [PMID: 36206579 DOI: 10.1016/j.jconhyd.2022.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
28
Sadayappan K, Kerins D, Shen C, Li L. Nitrate concentrations predominantly driven by human, climate, and soil properties in US rivers. WATER RESEARCH 2022;226:119295. [PMID: 36323218 DOI: 10.1016/j.watres.2022.119295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
29
Virro H, Kmoch A, Vainu M, Uuemaa E. Random forest-based modeling of stream nutrients at national level in a data-scarce region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;840:156613. [PMID: 35700783 DOI: 10.1016/j.scitotenv.2022.156613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
30
Behrouz MS, Yazdi MN, Sample DJ. Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022;317:115412. [PMID: 35649331 DOI: 10.1016/j.jenvman.2022.115412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
31
Liu Q, Gui D, Zhang L, Niu J, Dai H, Wei G, Hu BX. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;831:154902. [PMID: 35364142 DOI: 10.1016/j.scitotenv.2022.154902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
32
Silva Ó, Cordera R, González-González E, Nogués S. Environmental impacts of autonomous vehicles: A review of the scientific literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;830:154615. [PMID: 35307440 DOI: 10.1016/j.scitotenv.2022.154615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
33
Chen S, Zhang Z, Lin J, Huang J. Machine learning-based estimation of riverine nutrient concentrations and associated uncertainties caused by sampling frequencies. PLoS One 2022;17:e0271458. [PMID: 35830456 PMCID: PMC9278742 DOI: 10.1371/journal.pone.0271458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]  Open
34
Zhu M, Wang J, Yang X, Zhang Y, Zhang L, Ren H, Wu B, Ye L. A review of the application of machine learning in water quality evaluation. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022;1:107-116. [PMID: 38075524 PMCID: PMC10702893 DOI: 10.1016/j.eehl.2022.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/31/2023]
35
Imputation of Ammonium Nitrogen Concentration in Groundwater Based on a Machine Learning Method. WATER 2022. [DOI: 10.3390/w14101595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
36
Wang Y, Yang G, Li B, Wang C, Su W. Measuring the zonal responses of nitrogen output to landscape pattern in a flatland with river network: a case study in Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022;29:34624-34636. [PMID: 35040055 DOI: 10.1007/s11356-021-15842-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
37
Kim T, Lee D, Shin J, Kim Y, Cha Y. Learning hierarchical Bayesian networks to assess the interaction effects of controlling factors on spatiotemporal patterns of fecal pollution in streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;812:152520. [PMID: 34953848 DOI: 10.1016/j.scitotenv.2021.152520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
38
Li L, Qiao J, Yu G, Wang L, Li HY, Liao C, Zhu Z. Interpretable tree-based ensemble model for predicting beach water quality. WATER RESEARCH 2022;211:118078. [PMID: 35066260 DOI: 10.1016/j.watres.2022.118078] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
39
Stocker MD, Pachepsky YA, Hill RL. Prediction of E. coli Concentrations in Agricultural Pond Waters: Application and Comparison of Machine Learning Algorithms. Front Artif Intell 2022;4:768650. [PMID: 35088045 PMCID: PMC8787305 DOI: 10.3389/frai.2021.768650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]  Open
40
Machine Learning-Based Prediction of Chlorophyll-a Variations in Receiving Reservoir of World’s Largest Water Transfer Project—A Case Study in the Miyun Reservoir, North China. WATER 2021. [DOI: 10.3390/w13172406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
41
Cha Y, Shin J, Go B, Lee DS, Kim Y, Kim T, Park YS. An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021;291:112719. [PMID: 33946026 DOI: 10.1016/j.jenvman.2021.112719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA