1
|
Uppuluri NST, Ran X, Guo J, Müller J. Enhanced phosphorus recovery from digestate via solid-liquid separation using Mg 2+ and Ca 2+ modified biochar. BIORESOURCE TECHNOLOGY 2025; 427:132409. [PMID: 40122352 DOI: 10.1016/j.biortech.2025.132409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/04/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Phosphorus (P) reserves are depleting globally, making P recovery from alternative sources imperative. The study investigates using Mg2+ and Ca2+ modified biochar and metal salts - kieserite (MgSO4·H2O) and CaCl2 - for enhanced P recovery from biogas digestate. Separation trials at varying concentrations and treatment times were performed in a laboratory setting. Modified biochar increased P recovery to 52%, while metal salts achieved 65%, compared to 35% in the control. P fractionation revealed that metal ions promoted the formation of non-labile P, reducing nutrient run off and improving long-term nutrient availability. The methods presented here highlight the potential of modified biochar and metal salts for sustainable P recovery from digestate, enabling existing biogas plants to improve nutrient management, reduce environmental impact, and contribute to circular economy practices in agriculture.
Collapse
Affiliation(s)
- Naga Sai Tejaswi Uppuluri
- State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Stuttgart 70599, Germany.
| | - Xueling Ran
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, Department of Agricultural Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jianbin Guo
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, Department of Agricultural Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Joachim Müller
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart 70599, Germany
| |
Collapse
|
2
|
Kaur P, Szlachta M, Xu J, Vepsäläinen J, Lappalainen R, Hussin F, Aroua MK. Advancements and feasibility of synergistic approaches in phosphorus recovery from wastewater: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125786. [PMID: 40359863 DOI: 10.1016/j.jenvman.2025.125786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/27/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
This review explores the potential and challenges of synergetic approaches, such as coupling, hybrid, and sequential methods, to enhance phosphorus recovery while minimizing environmental impacts. It emphasizes phosphorus recovery's economic and ecological dimensions, stressing the imperative for ongoing research and development to bolster economic viability and scalability. This review also discusses factors for improvement and outlines the exploration of innovative technologies and comprehensive techno-economic assessments to bridge the gap between advancements and real-world implementation. Its highlights include global efforts for phosphorus recovery, the need for synergetic approaches, an understanding of the difference between efficiency and performance approaches, required innovation in the future, and the environmental and economic implications.
Collapse
Affiliation(s)
- Parminder Kaur
- Circular Economy Solutions Unit, Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| | - Małgorzata Szlachta
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33104, Tampere, Finland.
| | - Junhua Xu
- Circular Economy Solutions Unit, Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Reijo Lappalainen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Farihahusnah Hussin
- School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Mohamed Kheireddine Aroua
- School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; School of Engineering, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| |
Collapse
|
3
|
Bolujoko N, Duling A, Shashvatt U, Mangalgiri K. The fate of antibiotics during phosphate recovery processes - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178829. [PMID: 39970556 DOI: 10.1016/j.scitotenv.2025.178829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The principles of circular economy encourage the recovery of phosphorus from nutrient-rich waste streams such as animal manure, domestic wastewater, and urine to supplement existing sources of raw phosphorus. However, these waste streams also contain a wide variety of contaminants of emerging concern including antibiotics, and the recovery of phosphorus from these waste streams results in the co-occurrence of antibiotics with the recovered phosphorus products. This paper provides a comprehensive overview of the fate of environmentally relevant antibiotics in three major existing and upcoming phosphorus recovery processes: precipitation-, membrane-, and adsorption-based treatment. In general, the co-occurrence of antibiotics in recovered phosphorus increases with the presence of dissolved organic matter (DOM) and cations due to π-π interaction and cationic bridge formation, respectively. Additionally, antibiotics display pH-based speciation resulting in electrostatic interactions with recovered phosphorus at pH > 7.0. Furthermore, this critical review establishes a new metric, the relative antibiotic-to‑phosphorus (RAP), defined as the ratio of the concentration of antibiotics to phosphorus in recovered phosphorus to that of the phosphorus-rich waste. Precipitation-based methods, particularly struvite, demonstrated the lowest RAP, while the RAP in carbon-based adsorbents was 1.8 × 108 times higher than in membrane-based processes. In reviewing literature on the fate of antibiotics in phosphorus recovery processes, several research needs are also highlighted: the fate of non-tetracycline antibiotics, simultaneous investigation of phosphorus and antibiotic fate in membrane- and adsorption-based methods, treatment methods to mitigate the co-occurrence of antibiotics in recovered phosphorus product, and the release of antibiotics from recovered phosphate products.
Collapse
Affiliation(s)
- Nathaniel Bolujoko
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA
| | - Addison Duling
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA
| | - Utsav Shashvatt
- Department of Civil and Environmental Engineering, University of California, Berkeley, 760 Davis Hall, Berkeley, CA 94720, USA
| | - Kiranmayi Mangalgiri
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA; Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA.
| |
Collapse
|
4
|
Tran AT, Hoang NT, Dat ND. Phosphate pre-concentration from wastewater by a continuous flow bench-scale forward osmosis membrane: A circular economy approach on nutrient recovery. RESULTS IN ENGINEERING 2024; 24:103247. [DOI: 10.1016/j.rineng.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Qu H, An D, Li G, Xu W, Ma C, Zhang H, Bahojb Noruzi E, Cheng J, Zhou C, Periyasami G, Li H. Covalent Organic Framework Packed Nanoporous Membrane for Continuous Removal of Bisphenol A from Agricultural Irrigation Wastewater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62925-62933. [PMID: 39494942 DOI: 10.1021/acsami.4c12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BPA, a typical endocrine disruptor, poses a significant threat to the growth of crops and thereby jeopardizes sustainable agriculture products and human health. In this work, a water-stabilized imine covalent organic framework (TpBD-COF) packed nanochannel membrane was constructed. The TpBD-COF membrane achieves high selective removal of BPA attributed to the subdivision of the pores by the filled COF, which further reduces the porous size and effectively eliminates the distance barrier between the selective sites of TpBD-COF membranes and BPA. The selective removal ratio of BPA was 5.79 times higher than that of the bare membrane, while the removal capacity reached 6.78 nM cm-2 min-1. It can eliminate BPA from irrigation wastewater and ensure crop growth. The application of COF-filled nanoporous membrane provides not only a size-matching strategy for the development of specific continuous removal of BPA but also a theoretical reference for membrane removal of other organic pollutants in agricultural irrigation water environment.
Collapse
Affiliation(s)
- Haonan Qu
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Defu An
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang Li
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiwei Xu
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cuiguang Ma
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haifan Zhang
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ehsan Bahojb Noruzi
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing Cheng
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haibing Li
- State Key Laboratory of Green Pesticide, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
6
|
Gebreslassie G, Desta HG, Dong Y, Zheng X, Zhao M, Lin B. Advanced membrane-based high-value metal recovery from wastewater. WATER RESEARCH 2024; 265:122122. [PMID: 39128331 DOI: 10.1016/j.watres.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Considering the circular economy and environmental protection, sustainable recovery of high-value metals from wastewater has become a prominent concern. Unlike conventional methods featuring extensive chemicals or energy consumption, membrane separation technology plays a crucial role in facilitating the sustainable and efficient recovery of valuable metals from wastewater due to its attractive features. In this review, we first briefly summarize the sustainable supply chain and significance of sustainable recovery of aqueous high-value metals. Then, we review the most recent advances and application potential in promising state-of-the-art membrane-based technologies for recovery of high-value metals (silver, gold, rhenium, platinum, ruthenium, palladium, iridium, osmium, and rhodium) from wastewater effluents. In particular, pressure-based membranes, liquid membranes, membrane distillation, forward osmosis, electrodialysis and membrane-based hybrid technologies and their mechanism of high-value metal recovery is thoroughly discussed. Then, engineering application and economic sustainability are also discussed for membrane-based high-value metal recovery. The review finally concludes with a critical and insightful overview of the techno-economic viability and future research direction of membrane technologies for efficient high-value metal recovery from wastewater.
Collapse
Affiliation(s)
- Gebrehiwot Gebreslassie
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Halefom G Desta
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Sharker T, Gamaethiralalage JG, Qu Q, Xiao X, Dykstra JE, de Smet LCPM, Muff J. Iron-loaded activated carbon cloth as CDI electrode material for selective recovery of phosphate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63734-63746. [PMID: 39503936 PMCID: PMC11602819 DOI: 10.1007/s11356-024-35444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
This study investigated the efficacy of oxidised iron-loaded activated carbon cloth (Fe-ACC) for selective recovery of phosphorous. The capacitive deionisation (CDI) technology was employed, for rapid removal of phosphate, with the aim of reducing the reliance on high alkalinity environment for the regeneration of Fe-ACC electrode. Multiple experimental parameters, including applied potential, pH, and co-existing ions, were studied. Additionally, the CDI system was tested on a real water matrix (Lake Ormstrup, Denmark) to elucidate the electrodes' performance on selective recovery of phosphate. About 69 ± 10% of the adsorbed phosphate were released at pH 12 via pure chemical desorption, which was ~ 50% higher than that at pH 9. The CDI system successfully demonstrated the selective removal of phosphate from the lake water. It reduced the concentration of phosphate from 1.69 to 0.49 mg/L with a 71% removal efficiency, while the removal percentages of other anions, namely chloride, sulphate, bromide, nitrite, nitrate, and fluoride, were 10%, 7%, 1%, 1.5%, 4%, and 7%, respectively.
Collapse
Affiliation(s)
- Tanzila Sharker
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Jayaruwan G Gamaethiralalage
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Qiyang Qu
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Xinxin Xiao
- Department Department of Chemistry & Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Jouke E Dykstra
- Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Louis C P M de Smet
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jens Muff
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
8
|
Zhao M, Li X, Yu JX, Li F, Guo L, Song G, Xiao C, Zhou F, Chi R, Feng G. Highly efficient recovery of phosphate and fluoride from phosphogypsum leachate: Selective precipitation and adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122064. [PMID: 39098065 DOI: 10.1016/j.jenvman.2024.122064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Phosphogypsum, a typical by-product in the phosphorus chemical industry, could generate a large amount of leachate containing phosphate and fluoride in the process of rainfall and long-term stacking, which not only causes serious environmental pollution, but also leads to a waste of resources. In this study, a united treatment of calcium hydroxide precipitation and lanthanum zeolite (La-ZFA) adsorption was proposed to achieve the recovery of phosphate and fluoride from phosphogypsum leachate. In phosphogypsum, most phosphorus could be leached except P in the residual occurrence form, while for fluoride, only water-soluble F could be effectively leached. The optimum leaching amounts of phosphate and fluoride were 22.59 and 4.64 mg/g, respectively, at liquid-solid ratio of 400:1, leaching time of 120 min, pH of 6.0, particle size of >200 mesh (<0.075 mm), and leaching temperature of 25°C. Using Ca(OH)2 as the precipitant, the phosphate could be precipitated selectively from phosphogypsum leachate by controlling pH and time, and the concentrations of it decreased significantly to 0.29 mg/L at pH 10.0, with a removal efficiency of 99.48%. XRD, SEM and Visual MINTEQ software analysis proved that the main component of the precipitate was hydroxyapatite (Ca5(PO4)3(OH)). After P precipitation, a series of sorbents for fluoride were investigated, and La-ZFA sorbent was chosen and utilized to recover the fluoride from the leachate through a cyclic fixed-bed column. The efficiency of La-ZFA was basically not affected by the high concentration sulfate, and it can selectively adsorb fluoride from phosphogypsum leachate, leading to a final fluoride concentration of 0.29 mg/L in the effluent. The characterization demonstrated that fluoride might be adsorbed onto the La-ZFA via ligand exchange with hydroxy groups. The proposed method in this study is expected to sequentially recover phosphate and fluorine from the leachate of phosphogypsum, and it has great guiding significance for resource utilization and management of phosphogypsum.
Collapse
Affiliation(s)
- Mengxuan Zhao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xiaodi Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China.
| | - Jun-Xia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China.
| | - Fei Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Li Guo
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Song
- Bureau of Ecology and Environment of Xiaogan City, Yingcheng Branch, Wuhan, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China; Hubei Three Gorges Laboratory, Yichang, Hubei, China
| | - Guoqing Feng
- Hubei Fuxing Environmental Protection Engineering Co. LTD, Hanchuan, Hubei, China
| |
Collapse
|
9
|
Grossmann L. Sustainable media feedstocks for cellular agriculture. Biotechnol Adv 2024; 73:108367. [PMID: 38679340 DOI: 10.1016/j.biotechadv.2024.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The global food system is shifting towards cellular agriculture, a second domestication marked by cultivating microorganisms and tissues for sustainable food production. This involves tissue engineering, precision fermentation, and microbial biomass fermentation to establish food value chains independent of traditional agriculture. However, these techniques rely on growth media sourced from agricultural, chemical (fossil fuels), and mining supply chains, raising concerns about land use competition, emissions, and resource depletion. Fermentable sugars, nitrogen, and phosphates are key ingredients derived from starch crops, energy-intensive fossil fuel based processes, and finite phosphorus resources, respectively. This review explores sustainable alternatives to reduce land use and emissions associated with cellular agriculture media ingredients. Sustainable alternatives to first generation sugars (lignocellulosic substrates, sidestreams, and gaseous feedstocks), sustainable nitrogen sources (sidestreams, green ammonia, biological nitrogen fixation), and efficient use of phosphates are reviewed. Especially cellulosic sugars, gaseous chemoautotrophic feedstocks, green ammonia, and phosphate recycling are the most promising technologies but economic constraints hinder large-scale adoption, necessitating more efficient processes and cost reduction. Collaborative efforts are vital for a biotechnological future grounded in sustainable feedstocks, mitigating competition with agricultural land and emissions.
Collapse
Affiliation(s)
- Lutz Grossmann
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
10
|
Wang F, Ma S, Han X, Liu S, Sun K. Enhancing Phosphorus Release from Sewage Sludge in Anaerobic Digestion via Thermal Hydrolysis Pretreatment: Insights from Phosphorus Speciation and Molecular Biological Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10828-10838. [PMID: 38831418 DOI: 10.1021/acs.est.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This study explores the mechanisms enhancing phosphorus (P) release from sludge in anaerobic digestion (AD) with thermal hydrolysis pretreatment (THP) using sequential chemical extraction, X-ray absorption near-edge structure spectroscopy (XANES), 31P NMR, and multiomics. THP-treated sludge notably increased liquid-phase P by 53.8% over 3 days compared to sewage sludge (SS), identifying solid-phase Fe-P as the primary P source. The THP+AD also provided a higher abundance of bacteria that contributed to P release through multiple pathways (MPRPB), whereas SS+AD enriched some microbial species with single P release pathway. Moreover, species co-occurrence network analysis underlined the pivotal role of P-releasing bacteria in THP+AD, with 8 out of 16 keystones being P-releasers. Among the 63 screened genes that were related to P transformations and release, the poly beta-hydroxybutyrate (PHB) synthesis genes associated with polyphosphate bacteria-mediated P release were more abundant in THP+AD than in SS+AD. Furthermore, the upregulation of genes involved in methyl phosphonate metabolism in the THP-treated sludge enhanced the methane production potential of the AD process. These findings suggested that MPRPB were indeed the main contributors to P release, and enrichment in the THP+AD process enhanced their capability for P liberation.
Collapse
Affiliation(s)
- Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xiaomin Han
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuhu Liu
- Laboratory of Synchrotron Radiation, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
11
|
Molitor H, Kim GY, Hartnett E, Gincley B, Alam MM, Feng J, Avila NM, Fisher A, Hodaei M, Li Y, McGraw K, Cusick RD, Bradley IM, Pinto AJ, Guest JS. Intensive Microalgal Cultivation and Tertiary Phosphorus Recovery from Wastewaters via the EcoRecover Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8803-8814. [PMID: 38686747 PMCID: PMC11112746 DOI: 10.1021/acs.est.3c10264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Mixed community microalgal wastewater treatment technologies have the potential to advance the limits of technology for biological nutrient recovery while producing a renewable carbon feedstock, but a deeper understanding of their performance is required for system optimization and control. In this study, we characterized the performance of a 568 m3·day-1 Clearas EcoRecover system for tertiary phosphorus removal (and recovery as biomass) at an operating water resource recovery facility (WRRF). The process consists of a (dark) mix tank, photobioreactors (PBRs), and a membrane tank with ultrafiltration membranes for the separation of hydraulic and solids residence times. Through continuous online monitoring, long-term on-site monitoring, and on-site batch experiments, we demonstrate (i) the importance of carbohydrate storage in PBRs to support phosphorus uptake under dark conditions in the mix tank and (ii) the potential for polyphosphate accumulation in the mixed algal communities. Over a 3-month winter period with limited outside influences (e.g., no major upstream process changes), the effluent total phosphorus (TP) concentration was 0.03 ± 0.03 mg-P·L-1 (0.01 ± 0.02 mg-P·L-1 orthophosphate). Core microbial community taxa included Chlorella spp., Scenedesmus spp., and Monoraphidium spp., and key indicators of stable performance included near-neutral pH, sufficient alkalinity, and a diel rhythm in dissolved oxygen.
Collapse
Affiliation(s)
- Hannah
R. Molitor
- Department
of Civil & Environmental Engineering, Newmark Civil Engineering
Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ga-Yeong Kim
- Department
of Civil & Environmental Engineering, Newmark Civil Engineering
Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Elaine Hartnett
- Clearas
Water Recovery, Inc., Missoula, Montana 59808, United States
| | - Benjamin Gincley
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Md Mahbubul Alam
- Department
of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jianan Feng
- Department
of Civil & Environmental Engineering, Newmark Civil Engineering
Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Nickolas M. Avila
- Department
of Civil & Environmental Engineering, Newmark Civil Engineering
Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Autumn Fisher
- Clearas
Water Recovery, Inc., Missoula, Montana 59808, United States
| | - Mahdi Hodaei
- Department
of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yalin Li
- Institute
for Sustainability, Energy and Environment, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kevin McGraw
- Clearas
Water Recovery, Inc., Missoula, Montana 59808, United States
| | - Roland D. Cusick
- Department
of Civil & Environmental Engineering, Newmark Civil Engineering
Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ian M. Bradley
- Department
of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research
and Education in Energy, Environmental and Water (RENEW) Institute, University at Buffalo, The State University of New
York, Buffalo, New York 14260, United States
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeremy S. Guest
- Department
of Civil & Environmental Engineering, Newmark Civil Engineering
Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute
for Sustainability, Energy and Environment, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Akfas F, Elghali A, Toubri Y, Samrane K, Munoz M, Bodinier JL, Benzaazoua M. Environmental assessment of phosphogypsum: A comprehensive geochemical modeling and leaching behavior study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120929. [PMID: 38669878 DOI: 10.1016/j.jenvman.2024.120929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Understanding the variations in the geochemical composition of phosphogypsum (PG) destined for storage or valorization is crucial for assessing the safety and operational efficacy of waste management. The present study aimed to investigate the environmental behavior of PG using different leaching tests and to evaluate its geochemical behavior using geochemical modeling. Regarding the chemical characterization, the PG samples were predominantly composed of Ca (23.03-23.35 wt%), S (17.65-17.71 wt%), and Si (0.75-0.82 wt%). Mineralogically, the PG samples were primarily composed of gypsum (94.2-95.9 wt%) and quartz (1.67-1.76 wt%). Moreover, the automated mineralogy revealed the presence of apatite, fluorine and malladrite phases. The overall findings of the leaching tests showed that PG could be considered as non-hazardous material according to US Environmental Protection Agency limitations. However, a high leachability of elements at a L/S of 2 under acidic conditions ([Ca] = 166.52-199.87 mg/L, [S] = 207.9-233.59 mg/L, [F] = 248.62-286.65 mg/L) is observed. The weathering cell test revealed a considerable cumulative concentration over 90 days indicating potential adverse effects on the nearby environment (S: 8000 mg/kg, F: 3000 mg/kg, P: 700 mg/kg). Based on these results, it could be estimated that the surface storage of PG could have a serious impact on the environment. In this context, a simulation model was developed based on weathering cell results showed encouraging results for treating PG leachate using CaO before its disposal. Additionally, PHREEQC was used to analyze the speciation of major elements and calculate mineral phase saturation indices in PG leaching solutions. The findings revealed pH-dependent speciation for Ca, S, P, and F. The study identified gypsum, anhydrite, and bassanite as the key phases governing the dissolution of these elements.
Collapse
Affiliation(s)
- Fatima Akfas
- Geology & Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot-660, Benguerir 43150, Morocco
| | - Abdellatif Elghali
- Geology & Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot-660, Benguerir 43150, Morocco.
| | - Youssef Toubri
- Geology & Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot-660, Benguerir 43150, Morocco
| | - Kamal Samrane
- Sustainability & Green Industrial Development, OCP Group S.A, Morocco
| | - Manuel Munoz
- Geoscience Montpellier, University of Montpellier, Montpellier- Cedex 5- 34095, France
| | - Jean-Louis Bodinier
- Geology & Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot-660, Benguerir 43150, Morocco; Geoscience Montpellier, University of Montpellier, Montpellier- Cedex 5- 34095, France
| | - Mostafa Benzaazoua
- Geology & Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot-660, Benguerir 43150, Morocco
| |
Collapse
|
13
|
Loganathan P, Kandasamy J, Ratnaweera H, Vigneswaran S. Use of wastewater alum-coagulation sludge as a phosphorus fertiliser - a mini review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18412-18421. [PMID: 38367108 PMCID: PMC10924021 DOI: 10.1007/s11356-024-32497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The use of aluminium (Al) salts, particularly alum, in coagulation is a widespread and conventional treatment method for eliminating pollutants, including phosphorus (P) which can cause eutrophication, from wastewater. However, a significant challenge of this process is the substantial amount of sludge generated, necessitating proper disposal. Historically, land disposal has been a common practice, but it poses potential issues for plant life on these lands. Despite the associated drawbacks, sludge contains elevated concentrations of vital plant nutrients like P and nitrogen, presenting an opportunity for beneficial use in agriculture. Given the imminent scarcity of P fertilizers due to the eventual depletion of high-grade P ores, this review explores the potential advantages and challenges of utilizing Al sludge as a P source for plants and proposes measures for its beneficial application. One primary concern with land application of Al sludge is its high levels of soluble Al, known to be toxic to plants, particularly in acidic soils. Another issue arises from the elevated Al concentration is P fixation and subsequently reducing P uptake by plants. To address these issues, soil treatment options such as lime, gypsum, and organic matter can be employed. Additionally, modifying the coagulation process by substituting part of the Al salts with cationic organic polymers proves effective in reducing the Al content of the sludge. The gradual release of P from sludge into the soil over time proves beneficial for plants with extended growth periods.
Collapse
Affiliation(s)
- Paripurnanda Loganathan
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2127, Australia
| | - Jaya Kandasamy
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2127, Australia
| | - Harsha Ratnaweera
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2127, Australia.
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| |
Collapse
|
14
|
Wu X, Wang Y, Qin B, Shao G, Wang Z, Wang T, Fu Y. A nanocellulose molecularly imprinted membrane: Preparation, characterization and application in targeted separation of taxane 10-deacetylbaccatin III. Int J Biol Macromol 2023; 253:126794. [PMID: 37699463 DOI: 10.1016/j.ijbiomac.2023.126794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Targeted separation of active phytochemicals is urgently needed in the natural medicine field. In this paper, due to the natural porosity and high biocompatibility of cellulose, a nanocellulose membrane combined with surface molecular imprinting was successfully prepared; the efficient nanocellulose-based molecular imprinted membrane (NC-MIM) provided good adsorption for the targeted separation of phytochemicals such as 10-deacetylbaccatin III (10-DAB), an essential intermediate in the synthesis of the anticancer drug paclitaxel. Through a series of characterization and adsorption experiments, the adsorption mechanism of NC-MIM was determined. At pH 8.0 and temperatures of 20 °C-40 °C, the maximum capacity of NC-MIM for adsorption of 10-DAB reached 66.90 mg g - 1, and the content of 10-DAB was dramatically increased 17.5-fold after adsorption. The specific adsorption results showed that NC-MIM had excellent capacity for targeted separation of 10-DAB from among taxane structural analogues. Even after ten cycles, NC-MIM demonstrated a remarkable adsorption capacity of 86.43%, thereby indicating exceptional selectivity and stability. The successful implementation of NC-MIM for green, safe, and efficient enrichment of phytochemicals from plants provides a promising new approach and valuable insights into its practical application.
Collapse
Affiliation(s)
- Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Bingyang Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Guansong Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Zihan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China.
| |
Collapse
|
15
|
Zhao Q, Ying H, Liu Y, Wang H, Xu J, Wang W, Ren J, Meng S, Wang N, Mu R, Wang S, Li J. Towards low energy-carbon footprint: Current versus potential P recovery paths in domestic wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118653. [PMID: 37478716 DOI: 10.1016/j.jenvman.2023.118653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
With the unprecedented exhaustion of natural phosphorus (P) resource and the high eutrophication potential of the associated-P discharge, P recovery from the domestic wastewater is a promising way and has been putting on agenda of wastewater industry. To address the concern of P resource recovery in an environmentally sustainable way is indispensable especially in the carbon neutrality-oriented wastewater treatment plants (WWTPs). Therefore, this review aims to offer a critical view and a holistic analysis of different P removal/recovery process in current WWTPs and more P reclaim options with the focus on the energy consumption and greenhouse gas (GHG) emission. Unlike P mostly flowing out in the planned/semi-planned P removal/recovery process in current WWTPs, P could be maximumly sequestered via the A-2B- centered process, direct reuse of P-bearing permeate from anaerobic membrane bioreactor, nano-adsorption combined with anaerobic membrane and electrochemical P recovery process. The A-2B- centered process, in which the anaerobic fixed bed reactor was designated for COD capture for energy efficiency while P was enriched and recovered with further P crystallization treating, exhibited the lowest specific energy consumption and GHG emission on the basis of P mass recovered. P resource management in WWTPs tends to incorporate issues related to environmental protection, energy efficiency, GHG emission and socio-economic benefits. This review offers a holistic view with regard to the paradigm shift from "simple P removal" to "P reuse/recovery" and offers in-depth insights into the possible directions towards the P-recovery in the "water-energy-resource-GHG nexus" plant.
Collapse
Affiliation(s)
- Qian Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Hao Ying
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China.
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Wei Wang
- Shandong Institute of Geological Sciences, Jinan, 250013, Shandong, China; Key Laboratory of Gold Mineralization Processes and Resources Utilization and Key Laboratory of Metallogenic-Geologic Processes and Comprehensive Utilization of Minerals Resources in Shandong Province, Jinan, 250013, China
| | - Juan Ren
- Jinan Urban Planning and Design Institute, Jinan, 250001, China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China
| | - Shasha Wang
- Shandong Survey and Design Institute of Water Conservancy Co. LTD, Jinan, 250013, China
| | - Jingjing Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| |
Collapse
|
16
|
Guo YS, Zuo TT, Chen AZ, Wang Z, Jin HY, Wei F, Li P, Ma SC. Progress in quality control, detection techniques, speciation and risk assessment of heavy metals in marine traditional Chinese medicine. Chin Med 2023; 18:73. [PMID: 37328891 DOI: 10.1186/s13020-023-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
Marine traditional Chinese medicines (MTCMs) hold a significant place in the rich cultural heritage in China. It plays an irreplaceable role in addressing human diseases and serves as a crucial pillar for the development of China's marine economy. However, the rapid pace of industrialization has raised concerns about the safety of MTCM, particularly in relation to heavy metal pollution. Heavy metal pollution poses a significant threat to the development of MTCM and human health, necessitating the need for detection analysis and risk assessment of heavy metals in MTCM. In this paper, the current research status, pollution situation, detection and analysis technology, removal technology and risk assessment of heavy metals in MTCM are discussed, and the establishment of a pollution detection database and a comprehensive quality and safety supervision system for MTCM is proposed. These measures aim to enhance understanding of heavy metals and harmful elements in MTCM. It is expected to provide a valuable reference for the control of heavy metals and harmful elements in MTCM, as well as the sustainable development and application of MTCM.
Collapse
Affiliation(s)
- Yuan-Sheng Guo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
- China Pharmaceutical University, Nanjing, 211198, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - An-Zhen Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Feng Wei
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Ping Li
- China Pharmaceutical University, Nanjing, 211198, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
17
|
Sun Y, Wang Z, Chen J, Fang Y, Wang L, Pan W, Zou B, Qian G, Xu Y. Phosphorus recovery from incinerated sewage sludge ash using electrodialysis coupled with plant extractant enhancement technology. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:57-65. [PMID: 37031513 DOI: 10.1016/j.wasman.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Phosphorus (P) is an integral mineral nutrient for the growth of plants and animals. As the increasing population worldwide, the demand for P resources keeps increasing. Therefore, it is necessary to recover P from secondary resources. Unlike conventional P recovery processes, this work focused on the recovery of P from incinerated sewage sludge ash (ISSA) using electrodialysis as the main technology coupled with plant extractants. In this study, Amaranthus and hydrolyzed polymaleic anhydride (HPMA) were used as P extractants, investigating the effects of HPMA concentration and pH of the compound agent on the migration of P and heavy metals from ISSA. The results showed that the concentration of HPMA and pH of the compound agent had a significant influence on the mobility of P and heavy metals. Meanwhile, the impacts of eggshell additions and voltage on the recovery efficiency of P was also studied by using waste eggshells as calcium sources. We found that when eggshells were added at 10 g/L and the voltage was 10 V, the recovery efficiency of P reached 96.05%. Moreover, XRD patterns revealed that the mineral phase of recovered P-containing products was predominantly hydroxyapatite, which had good environmental benefits. Generally, the favorable results have been achieved in the recovery efficiency of P and has practical implications for P recovery from ISSA.
Collapse
Affiliation(s)
- Ying Sun
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China
| | - Zexu Wang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China
| | - Jingyan Chen
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China
| | - Yangfan Fang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China
| | - Lihua Wang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China
| | - Wei Pan
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China
| | - Boyuan Zou
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China.
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China.
| |
Collapse
|
18
|
Hu S, Yi K, Li C, Ma S, Liu J, Yang W. Efficient and selective recovery of iron phosphate from the leachate of incinerated sewage sludge ash by thermally induced precipitation. WATER RESEARCH 2023; 238:120024. [PMID: 37156102 DOI: 10.1016/j.watres.2023.120024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Phosphorus recovery from incinerated sewage sludge ash (ISSA) is important but hindered by low selectivity. Here, a novel strategy of acid leaching followed by thermally induced precipitation was proposed for the efficient and selective recovery of FePO4 from ISSA samples. A high phosphorus leaching efficiency of ∼ 99.6% was achieved with 0.2 mol/L H2SO4 and liquid to solid (L/S) ratio of 50 mL/g. Without removing various co-existing ions (Al3+, Ca2+, SO42-, etc.), high-purity FePO4 of ∼ 92.9% could be facilely produced from this highly acidic H2SO4 leachate (pH = 1.2) by simple addition of Fe(III) at a molar ratio of 1:1 to the phosphorus and reacted at 80 °C for thermally induced precipitation. The remained acid leachate could be further reused for five times to continue leaching phosphorus from the ISSA samples and produce the FePO4 precipitates with a high phosphorus recovery efficiency of 81.1 ± 1.8%. The selective recovery of FePO4 from the acid leachate was demonstrated more thermodynamically favorable compared to other precipitates at this acidic pH of 1.2, and elevated temperature of 80 °C towards thermally induced precipitation. The estimated cost of this strategy was ∼$26.9/kg-P and lower than that of other existing technologies. The recovered FePO4 precipitates could be used as a phosphate fertilizer to promote the growth of ryegrass, and also as a precursor to synthesize high-value LiFePO4 battery material, demonstrating the high-value application potential of the phosphorus from the ISSA.
Collapse
Affiliation(s)
- Shaogang Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Kexin Yi
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chao Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shengqiang Ma
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Juan Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
19
|
Butylskii D, Troitskiy V, Chuprynina D, Kharchenko I, Ryzhkov I, Apel P, Pismenskaya N, Nikonenko V. Selective Separation of Singly Charged Chloride and Dihydrogen Phosphate Anions by Electrobaromembrane Method with Nanoporous Membranes. MEMBRANES 2023; 13:membranes13050455. [PMID: 37233516 DOI: 10.3390/membranes13050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl- (always present in phosphorus-containing waters) and H2PO4- anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides.
Collapse
Affiliation(s)
- Dmitrii Butylskii
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Vasiliy Troitskiy
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Daria Chuprynina
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Ivan Kharchenko
- Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ilya Ryzhkov
- Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia
- Siberian Federal University, 79 Svobodny, 660041 Krasnoyarsk, Russia
| | - Pavel Apel
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
20
|
Hidayat I, Paredes L, Binder PM, Guerra-Gorostegi N, Mora M, Ponsá S, Oatley-Radcliffe DL, Llenas L. A Novel Hybrid Membrane Process Coupled with Freeze Concentration for Phosphorus Recovery from Cheese Whey. MEMBRANES 2023; 13:450. [PMID: 37103876 PMCID: PMC10147047 DOI: 10.3390/membranes13040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
The ever-increasing demand for phosphorus fertilisers for securing global food production, coupled with finite phosphate rock reserves, is one of the emerging problems in the world. Indeed, phosphate rock is listed as an EU critical raw material, triggering attention to find an alternative source to substitute the use of this limited resource. Cheese whey, characterized by a high content of organic matter and phosphorus, represents a promising feedstock for phosphorus recovery and recycling. An innovative application of a membrane system coupled with freeze concentration was assessed to recover phosphorus from cheese whey. The performances of a microfiltration membrane (0.2 µm) and an ultrafiltration (200 kDa) membrane were evaluated and optimized under different transmembrane pressures and crossflow velocities. Once the optimal operating conditions were determined, a pre-treatment including lactic acid acidification and centrifugation was applied to increase the permeate recovery. Finally, the efficiency of progressive freeze concentration for the treatment of the permeate obtained from the optimum conditions (UF 200 kDa with TMP of 3 bar, CFV of 1 m/s and lactic acid acidification) was evaluated at specific operating conditions (-5 °C and 600 rpm of stirring speed). Finally, 70% of phosphorus could be recovered from cheese whey using the coupled technology of the membrane system and freeze concentration. A phosphorus-rich product was obtained with high agronomic value, which constitutes a further step towards establishing a broader circular economy framework.
Collapse
Affiliation(s)
- Ipan Hidayat
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
| | - Lidia Paredes
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
| | - Pablo M. Binder
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
| | - Nagore Guerra-Gorostegi
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
| | - Mabel Mora
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
| | - Sergio Ponsá
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
| | - Darren L. Oatley-Radcliffe
- Energy Safety Research Institute (ESRI), College of Engineering, Swansea University, Bay Campus, Swansea, Wales SA1 8EN, UK
| | - Laia Llenas
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
| |
Collapse
|
21
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Mining phosphorus from waste streams at wastewater treatment plants: a review of enrichment, extraction, and crystallization methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28407-28421. [PMID: 36680723 DOI: 10.1007/s11356-023-25388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.
Collapse
Affiliation(s)
- Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Yuye Xu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Ting Guo
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Hongliang Dai
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
22
|
Zeng C, Hu H, Wang C, Shi Q, Zhang Q, Chen M, Wang Q, Zhang T. New insight into the changes in metal-phosphonate complexes from the addition of CaCO 3 to enhance ferric flocculation for efficient phosphonate removal. CHEMOSPHERE 2023; 311:137078. [PMID: 36328319 DOI: 10.1016/j.chemosphere.2022.137078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Due to the stable chelating effect of organic phosphonates in wastewater, phosphonates with increasing emission are difficult to be removed effectively by traditional ferric salt flocculation, which has posed tough challenges for reducing total phosphorus pollution in recent years. In this work, calcium carbonate (CaCO3) was introduced to work together with the widely investigated flocculant of ferric chloride (FeCl3) to realize an efficient removal of nitrilotrismethylenephosphonic acid (NTMP) at much lower dosage of FeCl3. With an aid of synergy effect from together use of CaCO3 and FeCl3, the remaining concentration as low as 0.16 mg-P/L, far below the sewage discharge limit (0.5 mg-P/L), was simply obtained with a significantly reduced Fe/P molar ratio at only 4, resulting from calcium source donor to form more stable Fe-Ca-P tridentate bridging complexes, high affinity towards ferric ions on CaCO3 surface and slow-release alkaline from CaCO3. A comparison among sodium hydroxide (NaOH), calcium hydroxide (Ca(OH)2) and CaCO3 as additives, was carried out to highlight the advantages of using CaCO3 and clarify the mechanism for the greatly improved performance by a set of characterizations including XRD, FTIR, Zeta potential, XPS, SEM-EDS and TG analyses. The addition of CaCO3 in ferric flocculation resulted in further obvious advantages such as 75% shortened settling time and only one-third of sludge volume of the precipitant, beneficial to the sample handling in engineering application. The proposed new approach has been further confirmed to work efficiently on real phosphonate-containing wastewater. Discussion on the interaction between CaCO3 and ferric salts in phosphonate solutions shed new insights into the working mechanism of using CaCO3 for the treatment of phosphonates-containing wastewater.
Collapse
Affiliation(s)
- Chaocheng Zeng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Huimin Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Chao Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Qing Shi
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Mengfei Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Qian Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tingting Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| |
Collapse
|
23
|
Zheng H, Mou Z, Lim YJ, Liu B, Wang R, Zhang W, Zhou K. Incorporating ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and antifouling performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. FERMENTATION 2022. [DOI: 10.3390/fermentation8120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recycling bioresources is the only way to sustainably meet a growing world population’s food and energy needs. One of the ways to do so is by using agro-industry wastewater to cultivate microalgae. While the industrial production of microalgae requires large volumes of water, existing agro-industry processes generate large volumes of wastewater with eutrophicating nutrients and organic carbon that must be removed before recycling the water back into the environment. Coupling these two processes can benefit the flourishing microalgal industry, which requires water, and the agro-industry, which could gain extra revenue by converting a waste stream into a bioproduct. Microalgal biomass can be used to produce energy, nutritional biomass, and specialty products. However, there are challenges to establishing stable and circular processes, from microalgae selection and adaptation to pretreating and reclaiming energy from residues. This review discusses the potential of agro-industry residues for microalgal production, with a particular interest in the composition and the use of important primary (raw) and secondary (digestate) effluents generated in large volumes: sugarcane vinasse, palm oil mill effluent, cassava processing waster, abattoir wastewater, dairy processing wastewater, and aquaculture wastewater. It also overviews recent examples of microalgae production in residues and aspects of process integration and possible products, avoiding xenobiotics and heavy metal recycling. As virtually all agro-industries have boilers emitting CO2 that microalgae can use, and many industries could benefit from anaerobic digestion to reclaim energy from the effluents before microalgal cultivation, the use of gaseous effluents is also discussed in the text.
Collapse
|
25
|
Wu X, Cai W, Fu Y, Liu Y, Ye X, Qian Q, Van der Bruggen B. Separation and Concentration of Nitrogen and Phosphorus in a Bipolar Membrane Electrodialysis System. MEMBRANES 2022; 12:1116. [PMID: 36363671 PMCID: PMC9695792 DOI: 10.3390/membranes12111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Struvite crystallization is a successful technique for simultaneously recovering PO43- and NH4+ from wastewater. However, recovering PO43- and NH4+ from low-concentration solutions is challenging. In this study, PO43-, NH4+, and NO3- were separated and concentrated from wastewater using bipolar membrane electrodialysis, PO43- and NH4+ can then be recovered as struvite. The separation and concentration of PO43- and NH4+ are clearly impacted by current density, according to experimental findings. The extent of separation and migration rate increased with increasing current density. The chemical oxygen demand of the feedwater has no discernible impact on the separation and recovery of ions. The migration of PO43-, NH4+, and NO3- fits zero-order migration kinetics. The concentrated concentration of NH4+ and PO43- reached 805 mg/L and 339 mg/L, respectively, which demonstrates that BMED is capable of effectively concentrating and separating PO43- and NH4+. Therefore, BMED can be considered as a pretreatment method for recovering PO43- and NH4+ in the form of struvite from wastewater.
Collapse
Affiliation(s)
- Xiaoyun Wu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Wanling Cai
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Yaoxing Liu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Xin Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, ProcESS—Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
26
|
Xiao H, Wang Y, Hao B, Cao Y, Cui Y, Huang X, Shi B. Collagen Fiber-Based Advanced Separation Materials: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107891. [PMID: 34894376 DOI: 10.1002/adma.202107891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.
Collapse
Affiliation(s)
- Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Baicun Hao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiran Cao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiwen Cui
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
27
|
Sisay EJ, Veréb G, Pap Z, Gyulavári T, Ágoston Á, Kopniczky J, Hodúr C, Arthanareeswaran G, Sivasundari Arumugam GK, László Z. Visible-light-driven photocatalytic PVDF-TiO 2/CNT/BiVO 4 hybrid nanocomposite ultrafiltration membrane for dairy wastewater treatment. CHEMOSPHERE 2022; 307:135589. [PMID: 35803379 DOI: 10.1016/j.chemosphere.2022.135589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Enhancing the performance of polymeric membranes by nanomaterials has become of great interest in the field of membrane technology. The present work aimed to fabricate polyvinylidene fluoride (PVDF)-hybrid nanocomposite membranes and modify them with TiO2 and/or BiVO4 nanoparticles and/or carbon nanotubes (CNTs) in various ratios. Their photocatalytic performance under visible light was also investigated. All modified PVDF membranes exhibited higher hydrophilicity (lower contact angle of water droplets) than that of the neat membrane used as a reference. The membranes were characterized by using bovine serum albumin (BSA) as model dairy wastewater. The hybrid membranes had better antifouling properties as they had lower irreversible filtration resistance than that of the neat membrane. Hybrid PVDF membranes containing TiO2/CNT/BiVO4 showed the highest flux and lowest irreversible resistance during the filtration of the BSA solution. PVDF-TiO2/BiVO4 had the highest flux recovery ratio under visible light (70% for the PVDF mixed with 0.5% TiO2 and 0.5% BiVO4). The hydrophilicity of membrane surfaces increased with the incorporation of nanoparticles, preventing BSA to bind to the surface. This resulted in a slight decrease in BSA and chemical oxygen demand rejections, which were still above 97% in all cases.
Collapse
Affiliation(s)
- Elias Jigar Sisay
- Doctoral School of Environmental Sciences, University of Szeged, H-6720, Rerrich Béla Sqr. 1, Hungary; Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Moszkvai Blvd. 9, Hungary.
| | - Gábor Veréb
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Moszkvai Blvd. 9, Hungary.
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary.
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary.
| | - Áron Ágoston
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720, Szeged, Hungary.
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, Institute of Physics, University of Szeged, Szeged, H-6720, Dóm Sqr. 9., Hungary.
| | - Cecilia Hodúr
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Moszkvai Blvd. 9, Hungary.
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | | | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Moszkvai Blvd. 9, Hungary.
| |
Collapse
|
28
|
Missau J, Rodrigues MAS, Bertuol DA, Tanabe EH. Phosphate adsorption improvement using a novel adsorbent by CaFe/LDH supported onto CO 2 activated biochar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2396-2414. [PMID: 36378188 DOI: 10.2166/wst.2022.332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is imperative to remove phosphate from the aquatic system. This nutrient in excess can cause environmental problems such as eutrophication. Therefore, aiming to enhance phosphate removal, this work presents a novel adsorbent developed from the construction of Ca2+/Fe3+ layer double hydroxides (CaFe/LDH) supported onto biochar physically activated with CO2 [CaFe/biochar (CO2)]. Pristine biochar was produced from the pyrolysis of Eucalyptus saligna sawdust, activated with CO2, and then impregnated with CaFe/LDH. The CaFe/biochar (CO2) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET). The characterization confirmed a proper synthesis of the new adsorbent. Experiments were conducted in the form of batch adsorption. Results indicated that the optimum pH and adsorbent dosage were 2.15 and 0.92 g L-1, respectively. Adsorption kinetics, isotherms, and thermodynamics were also evaluated. Adsorption kinetics and isotherms were better fitted by the pseudo n order and Freundlich models, respectively. Results also indicated a better adsorption capacity (99.55 mg·g-1) at 55 °C. The thermodynamic indicators depicted that the adsorption process was favorable, spontaneous, and endothermic. Overall, CaFe/biochar (CO2) could be potentially applied for the adsorptive removal of phosphate from an aqueous solution.
Collapse
Affiliation(s)
- Juliano Missau
- Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria - UFSM, Avenida Roraima 1000, 97105-900, Santa Maria, RS, Brazil E-mail:
| | - Marco Antonio S Rodrigues
- Graduation Program in Technology of Materials and Industrial Processes, FEEVALE University, Novo Hamburgo, Brazil
| | - Daniel Assumpção Bertuol
- Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria - UFSM, Avenida Roraima 1000, 97105-900, Santa Maria, RS, Brazil E-mail:
| | - Eduardo Hiromitsu Tanabe
- Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria - UFSM, Avenida Roraima 1000, 97105-900, Santa Maria, RS, Brazil E-mail:
| |
Collapse
|
29
|
Zheng Y, Wan Y, Zhang Y, Huang J, Yang Y, Tsang DCW, Wang H, Chen H, Gao B. Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 53:1148-1172. [PMID: 37090929 PMCID: PMC10116781 DOI: 10.1080/10643389.2022.2128194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
Collapse
Affiliation(s)
- Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yongshan Wan
- National Health and Environmental Effects Research Laboratory, US EPA, Gulf Breeze, Florida, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Li X, Shen S, Xu Y, Guo T, Hongliang D, Lu X. Transformation and fate of non-reactive phosphorus (NRP) in enhanced biological phosphorus removal process with sidestream phosphorus recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156275. [PMID: 35644401 DOI: 10.1016/j.scitotenv.2022.156275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Recovery of phosphorus (P) from wastewater can help establish a new P cycle. However, there are many P forms in wastewater, not always in reactive forms, which are the most suitable for direct recovery. The enhanced biological phosphorus removal process with sidestream phosphorus recovery (EBPR-SPR) is an effective way to remove and recover P resources in wastewater, but there is a lack of research on the transformation and fate of non-reactive phosphorus (NRP) in it. This study selected four model NRP to investigate their transformation and fate in an EBPR-SPR process. The transformation of NRP in pure water and activated sludge under anaerobic and aerobic conditions were compared. The effects of Ca/P ratio and pH on NRP recovery were studied, and the recovery products of NRP were characterized. It was found that NRP containing phosphoanhydride and phosphoester bonds were more easily hydrolyzed to reactive P (RP) than that containing PC bonds. NRP will be adsorbed and accumulated by activated sludge, and activated sludge will accelerate the conversion of NRP to RP. Tripolyphosphate can form complex precipitation with Ca2+. When multiform P co-existed, Ca2+ preferably complexed with polyphosphate, which harmed RP recovery. The conversion of NRP should be strengthened to recover more P in wastewater. The effect of NRP should be considered when recovering P from wastewater.
Collapse
Affiliation(s)
- Xiang Li
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China.
| | - Shuting Shen
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China
| | - Yuye Xu
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China
| | - Ting Guo
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China
| | - Dai Hongliang
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, China.
| | - Xiwu Lu
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China.
| |
Collapse
|
31
|
Kamilya T, Gautam RK, Muthukumaran S, Navaratna D, Mondal S. Technical advances on current research trends and explore the future scope on nutrient recovery from waste-streams: a review and bibliometric analysis from 2000 to 2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49632-49650. [PMID: 35597831 DOI: 10.1007/s11356-022-20895-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
An exponentially growing global population has led to an increase in nutrient pollution in different aqueous bodies. Although different processes have successfully removed nutrients from wastewater on a large scale, a limited number of studies have been reported on efficiency, cost-effectiveness, and future potential of physical, chemical, and biological nutrient recovery methods to overcome the depletion of natural resources. Therefore, researchers need to understand current research trends by applying different approaches to investigate higher efficient nutrient recovery technologies. In this article, the research patterns and in-depth review of various nutrient recovery processes have been circumscribed with the application of bibliometric and attractive index (AAI) vs. activity index (AI) analysis. The performance, advantages, limitations, and future prospects of different nutrient recovery methods have also been addressed. More than 70% of study publications were published in the last decade in chemical and biological processes, which might be related to more rigorous effluent quality rules and increasing water pollution. The future prediction in the field of nutrient recovery has been predicted using S-curve analysis, and it was found that the number of publications in the saturated state in chemical methods was highest. However, the growth rate of the biological-based nutrient recovery methods is greater, which may be because of their huge research scope, cost-effectiveness, and easy operation methods. This study can assist researchers in understanding the current research scenario in nutrient recovery techniques and provide the research scope in nutrient recovery from wastewater in the future.
Collapse
Affiliation(s)
- Tuhin Kamilya
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, West Bengal, India
| | - Rajneesh Kumar Gautam
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Dimuth Navaratna
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Sandip Mondal
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, West Bengal, India.
| |
Collapse
|
32
|
Parasana N, Shah M, Unnarkat A. Recent advances in developing innovative sorbents for phosphorus removal-perspective and opportunities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38985-39016. [PMID: 35304717 DOI: 10.1007/s11356-022-19662-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus is an essential mineral for the growth of plants which is supplied in the form of fertilizers. Phosphorus remains an inseparable part of developing agrarian economics. Phosphorus enters waterways through three different sources: domestic, agricultural, and industrial sources. Rainfall is the main cause for washing away a large amount of phosphates from farm soils into nearby waterways. The surplus of phosphorus in the water sources cause eutrophication and degradation of the habitat with an adverse effect on aquatic life and plants. Phosphate elimination is necessary to control eutrophication in water sources. Among the different methods reported for the removal and recovery of phosphorus: ion exchange, precipitation, crystallization, and others, adsorption standout as a sustainable solution. The current review offers a comparative assessment of the literature on novel materials and techniques for the removal of phosphorus. Herein, different adsorbents, their behaviors, mechanisms, and capacity of materials are discussed in detail. The adsorbents are categorized under different heads: iron-based, silica-alumina-based, calcium-based, biochar-based wherein the metal and metal oxides are employed in phosphorus removal. The ideal attribute of adsorbent will be the utilization of spent adsorbents as a phosphate plant food and a soil conditioner in agriculture. The review provides the perspective on the current research with potential challenges and directives for possible research in the field.
Collapse
Affiliation(s)
- Nautam Parasana
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India
| | - Manan Shah
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India
| | - Ashish Unnarkat
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
33
|
Recovery of Nutrients from Residual Streams Using Ion-Exchange Membranes: Current State, Bottlenecks, Fundamentals and Innovations. MEMBRANES 2022; 12:membranes12050497. [PMID: 35629823 PMCID: PMC9145069 DOI: 10.3390/membranes12050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
The review describes the place of membrane methods in solving the problem of the recovery and re-use of biogenic elements (nutrients), primarily trivalent nitrogen NIII and pentavalent phosphorus PV, to provide the sustainable development of mankind. Methods for the recovery of NH4+ − NH3 and phosphates from natural sources and waste products of humans and animals, as well as industrial streams, are classified. Particular attention is paid to the possibilities of using membrane processes for the transition to a circular economy in the field of nutrients. The possibilities of different methods, already developed or under development, are evaluated, primarily those that use ion-exchange membranes. Electromembrane methods take a special place including capacitive deionization and electrodialysis applied for recovery, separation, concentration, and reagent-free pH shift of solutions. This review is distinguished by the fact that it summarizes not only the successes, but also the “bottlenecks” of ion-exchange membrane-based processes. Modern views on the mechanisms of NH4+ − NH3 and phosphate transport in ion-exchange membranes in the presence and in the absence of an electric field are discussed. The innovations to enhance the performance of electromembrane separation processes for phosphate and ammonium recovery are considered.
Collapse
|
34
|
Constructing visible-light-driven self-cleaning UF membrane by quaternary ammonium-functionalized Ti-MOFs for water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Witek-Krowiak A, Gorazda K, Szopa D, Trzaska K, Moustakas K, Chojnacka K. Phosphorus recovery from wastewater and bio-based waste: an overview. Bioengineered 2022; 13:13474-13506. [PMID: 36700471 PMCID: PMC9275867 DOI: 10.1080/21655979.2022.2077894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphorus is one of the most important macronutrients needed for the growth of plants. The fertilizer production market uses 80% of natural, non-renewable phosphorus resources in the form of phosphate rock. The depletion of those deposits forces a search for other alternatives, including biological waste. This review aims to indicate the most important ways to recover phosphorus from biowaste, with particular emphasis on wastewater, sewage sludge, manure, slaughter or food waste. A comparison of utilized methods and directions for future research based on the latest research is presented. Combining biological, chemical, and physical methods with thermal treatment appears to be the most effective way for the treatment of wastewater sludge in terms of phosphorus recovery. Hydrothermal, thermochemical, and adsorption on thermally treated adsorbents are characterized by a high phosphorus recovery rate (over 95%). For animal by-products and other biological waste, chemical methods seems to be the most optimal solution with a recovery rate over 96%. Due to its large volume and relatively low phosphorus content, wastewater is a resource that requires additional treatment to recover the highest possible amount of phosphorus. Pretreatment of wastewater with combined methods seems to be a possible way to improve phosphorus recovery. A compressive evaluation of combined methods is crucial for future research in this area.
Collapse
Affiliation(s)
- Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Gorazda
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland,CONTACT Daniel Szopa Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wrocław50-372, Poland
| | - Krzysztof Trzaska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
36
|
Kim S, Park YH, Choi YE. Amination of Non-Functional Polyvinyl Chloride Polymer Using Polyethyleneimine for Removal of Phosphorus from Aqueous Solution. Polymers (Basel) 2022; 14:polym14091645. [PMID: 35566815 PMCID: PMC9104884 DOI: 10.3390/polym14091645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The eutrophication of freshwater environments caused by an excess inflow of phosphorus has become a serious environmental issue because it is a crucial factor for the occurrence of harmful algal blooms (HABs) in essential water resources. The adsorptive removal of phosphorus from discharged phosphorus containing effluents has been recognized as one of the most promising solutions in the prevention of eutrophication. In the present study, a polyvinyl chloride (PVC)-polyethyleneimine (PEI) composite fiber (PEI-PVC) was suggested as a stable and recoverable adsorbent for the removal of phosphorus from aqueous phases. The newly introduced amine groups of the PEI-PVC were confirmed by a comparison between the FT-IR and XPS results of the PVC and PEI-PVC. The phosphorus sorption on the PEI-PVC was pH dependent. At the optimum pH for phosphorus adsorption (pH 5), the maximum adsorption capacity of the PEI-PVC fiber was estimated to be 11.2 times higher (19.66 ± 0.82 mg/g) than that of conventional activated carbon (1.75 ± 0.4 mg/g) using the Langmuir isotherm model. The phosphorus adsorption equilibrium of the PEI-PVC was reached within 30 min at pH 5. From the phosphorus-loaded PEI-PVC, 97.4% of the adsorbed amount of phosphorus on the PEI-PVC could be recovered by employing a desorption process using 1M HCl solution without sorbent destruction. The regenerated PEI-PVC through the desorption process maintained a phosphorus sorption capacity almost equal to that of the first use. In addition, consistently with the PVC fiber, the PEI-PVC fiber did not elute any toxic chlorines into the solution during light irradiation. Based on these results, the PEI-PVC fiber can be suggested as a feasible and stable adsorbent for phosphorus removal.
Collapse
Affiliation(s)
- Sok Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea; (S.K.); (Y.H.P.)
- OJeong Resilience Institute, Korea University, Seoul 02841, Korea
| | - Yun Hwan Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea; (S.K.); (Y.H.P.)
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea; (S.K.); (Y.H.P.)
- Correspondence:
| |
Collapse
|
37
|
Two mechanisms of H+/OH− ion generation in anion-exchange membrane systems with polybasic acid salt solutions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Kavitha E, Poonguzhali E, Nanditha D, Kapoor A, Arthanareeswaran G, Prabhakar S. Current status and future prospects of membrane separation processes for value recovery from wastewater. CHEMOSPHERE 2022; 291:132690. [PMID: 34715105 DOI: 10.1016/j.chemosphere.2021.132690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 05/05/2023]
Abstract
Resource constraints and deteriorating environment have made it necessary to look for intensification of the industrial processes, to recover value from spent streams for reuse. The development of reverse osmosis has already established that water can be recovered from aqueous streams in a cost-effective and beneficial manner to the industries. With the development of several membrane processes and membrane materials, the possibility of recovering value from the effluents looks like a workable proposition. In this context, the potentialities of the different membrane processes in value recovery are presented. Among the pressure-driven processes, reverse osmosis can be used for the recovery of water as value. Nanofiltration has been used for the recovery of several dyes including crystal violet, congo red, methyl blue, etc., while ultrafiltration has been used in the fractionation of different solute species using membranes of different pore-size characteristics. Diffusion dialysis is found useful in the separation of acids from its salt solutions. Bipolar membrane electrodialysis has the potential to regenerate acid and base from salt solutions. Thermally driven membrane distillation can provide desalinated water, besides reducing the temperature of hot discharge streams. Passive membrane processes such as supported liquid membranes and membrane-assisted solvent extraction have been found useful in separating minor components from the wastewater streams. The details are discussed to drive home that membrane processes can be useful to achieve the objectives of value recovery, in a cost-effective manner through process intensification, as they are more compact and individual streams can be treated and value used seamlessly.
Collapse
Affiliation(s)
- E Kavitha
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - E Poonguzhali
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - D Nanditha
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, Tamil Nadu, India
| | - S Prabhakar
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
39
|
Al-Mallahi J, Ishii K. Attempts to alleviate inhibitory factors of anaerobic digestate for enhanced microalgae cultivation and nutrients removal: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114266. [PMID: 34906810 DOI: 10.1016/j.jenvman.2021.114266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion is a well-established process that is applied to treat organic wastes and convert the carbon to valuable methane gas as a source of energy. The digestate that comes out as a by-product is of a great challenge due to its high nutrient content that can be toxic in case of improper disposal to the environment. Several attempts have been done to valorize this digestate. Digestate has been considered as an interesting medium to cultivate microalgae. The nutrients available in the digestate, mainly nitrogen and phosphorus, can be an interesting supplement for microalgae growth requirement. The main obstacles of using digestate as a medium to cultivate microalgae are the dark color and the high ammonium-nitrogen concentration. The focus of this review is to discuss in detail the major attempts in research to overcome inhibition and enhance microalgae cultivation in digestate. This review initially discussed the obstacles of digestate as a medium for microalgae cultivation. Different processes to overcome inhibition were discussed including dilution, supplying additional carbon source, favoring mixotrophic cultivation and pretreatment. More emphasis in this review was given to digestate pretreatment. Among the pretreatment methods, filtration, and centrifugation were of the most applied ones. These strategies were found to be effective for turbidity and chromaticity reduction. For ammonium nitrogen removal, ammonia stripping and biological pretreatment methods were found to play a vital role. Adsorption could work both ways depending on the material used. Combining different pretreatment methods as well as including selected microalgae stains were found interesting strategies to facilitate microalgae cultivation with no dilution. This study recommend that more study should investigate the optimization of microalgae cultivation in anaerobic digestate without the need for dilution.
Collapse
Affiliation(s)
- Jumana Al-Mallahi
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kazuei Ishii
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan
| |
Collapse
|
40
|
Meng J, Shi L, Hu Z, Hu Y, Lens P, Wang S, Zhan X. Novel electro-ion substitution strategy in electrodialysis for ammonium recovery from digested sludge centrate in coastal regions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Pismenskaya N, Rybalkina O, Moroz I, Mareev S, Nikonenko V. Influence of Electroconvection on Chronopotentiograms of an Anion-Exchange Membrane in Solutions of Weak Polybasic Acid Salts. Int J Mol Sci 2021; 22:ijms222413518. [PMID: 34948329 PMCID: PMC8708104 DOI: 10.3390/ijms222413518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Visualization of electroconvective (EC) vortices at the undulated surface of an AMX anion-exchange membrane (Astom, Osaka, Japan) was carried out in parallel with the measurement of chronopotentiograms. Weak polybasic acid salts, including 0.02 M solutions of tartaric (NaHT), phosphoric (NaH2PO4), and citric (NaH2Cit) acids salts, and NaCl were investigated. It was shown that, for a given current density normalized to the theoretical limiting current calculated by the Leveque equation (i/ilimtheor), EC vortex zone thickness, dEC, decreases in the order NaCl > NaHT > NaH2PO4 > NaH2Cit. This order is inverse to the increase in the intensity of proton generation in the membrane systems under study. The higher the intensity of proton generation, the lower the electroconvection. This is due to the fact that protons released into the depleted solution reduce the space charge density, which is the driver of EC. In all studied systems, a region in chronopotentiograms between the rapid growth of the potential drop and the attainment of its stationary values corresponds to the appearance of EC vortex clusters. The amplitude of the potential drop oscillations in the chronopotentiograms is proportional to the size of the observed vortex clusters.
Collapse
|
42
|
Ren L, Li Y, Wang K, Ding K, Sha M, Cao Y, Kong F, Wang S. Recovery of phosphorus from eutrophic water using nano zero-valent iron-modified biochar and its utilization. CHEMOSPHERE 2021; 284:131391. [PMID: 34328082 DOI: 10.1016/j.chemosphere.2021.131391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Effective removal and recovery of phosphorus (P) from the aquatic environment was of great significance for eutrophication control and P recovery. This study investigated the effects of different environmental conditions on P adsorption by biochar (BC) and the feasibility of applying the P-laden BC as a fertilizer for plant growth. The nano zero-valent iron (nZVI) modified reeds BC prepared at 700 °C (Fe-700-BC) had the maximum P adsorption capacity of 95.2 mg g-1, which was higher than those prepared at 300, 500, and 900 °C. The addition of Fe-700-BC reduced the concentration of total phosphorus (TP) in the overlying water, in which the soluble reactive phosphorus (SRP) almost completely removed, as well as had a certain inhibitory effect on the growth of algae. Simultaneously, Fe-700-BC reduced the contents of different fractions of P (weakly adsorbed inorganic phosphorus (WA-Pi), potential active inorganic phosphorus (PA-Pi), and Fe/Al-bound inorganic phosphorus (Fe/Al-Pi)) by adsorbing the soluble P released from the sediments, especially in the case of disturbance. Fe-700-BC had no significant effect on the diversity and richness of the microbial community in the sediment. Moreover, P-laden BC was safe and environmentally friendly for application in the soil and tended to increase stem and root length, fresh and dry weight at low doses (0.5 wt%) in wheat planting experiments. The present work could provide a reference for solving the problems related to eutrophication and P deficiency.
Collapse
Affiliation(s)
- Ling Ren
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Kang Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Kejia Ding
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Mengqiao Sha
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Yuan Cao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China.
| |
Collapse
|
43
|
Kamp J, Emonds S, Seidenfaden M, Papenheim P, Kryschewski M, Rubner J, Wessling M. Tuning the excess charge and inverting the salt rejection hierarchy of polyelectrolyte multilayer membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
|
45
|
Pei L, Yang F, Xu X, Nan H, Gui X, Zhao L, Cao X. Further reuse of phosphorus-laden biochar for lead sorption from aqueous solution: Isotherm, kinetics, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148550. [PMID: 34465039 DOI: 10.1016/j.scitotenv.2021.148550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Biochar and engineered biochar have been used for phosphorous recovery from wastewater, but the resulted phosphorous-laden (P-laden) biochar needs further disposal. In this study, the feasibility of reusing P-laden biochar for Pb immobilization as well as the underlying mechanism was explored. Three types of engineered biochar, i.e., Ca modified biochar, Mg modified biochar, and Fe modified biochar, were selected to sorb P and then the exhausted biochar was further used for Pb sorption. Results showed that Mg and Ca modified biochar exhibited considerable Pb sorption capacity after P sorption with the maximum value of 3.36-4.03 mmol/g and 5.49-6.58 mmol/g, respectively, while P-laden Fe modified biochar failed to sorb Pb due to its acidic pH. The removal of Pb by P-laden Mg modified biochar involved more precipitation including PbHPO4, Pb5(PO4)3(OH), and Pb3(CO3)2(OH)2 because of its higher P sorption capacity and more -OH group on the surface. Cation exchange with CaCO3 to form PbCO3 was the main mechanism for Pb removal by P-laden Ca modified biochar despite the formation of Pb5(PO4)3(OH) precipitate. Our results demonstrate that waste P-laden biochar can be further used for the effective removal of Pb, which provides a potential approach for waste adsorbent disposal.
Collapse
Affiliation(s)
- Lei Pei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongyan Nan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
46
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
47
|
Rybalkina OA, Solonchenko KV, Nikonenko VV, Pismenskaya ND. Investigation of Causes of Low Current Efficiency in Electrodialysis of Phosphate-Containing Solutions. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621040065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|