1
|
Duan Z, Huang K, Huang W, Wang B, Shi J, Xia H, Li F. Bacterial dispersal enhances the elimination of active fecal coliforms during vermicomposting of fruit and vegetable wastes: The overlooked role of earthworm mucus. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134280. [PMID: 38636233 DOI: 10.1016/j.jhazmat.2024.134280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.
Collapse
Affiliation(s)
- Zihao Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Wenqi Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bangchi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiwei Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Mandal M, Roy A, Das S, Rakwal R, Agrawal GK, Singh P, Awasthi A, Sarkar A. Food waste-based bio-fertilizers production by bio-based fermenters and their potential impact on the environment. CHEMOSPHERE 2024; 353:141539. [PMID: 38417498 DOI: 10.1016/j.chemosphere.2024.141539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Increasing food waste is creating a global waste (and management) crisis. Globally, ∼1.6 billion tons of food is wasted annually, worth ∼$1.2 trillion. By reducing this waste or by turning it into valuable products, numerous economic advantages can be realized, including improved food security, lower production costs, biodegradable products, environmental sustainability, and cleaner solutions to the growing world's waste and garbage management. The appropriate handling of these detrimental materials can significantly reduce the risks to human health. Food waste is available in biodegradable forms and, with the potential to speed up microbial metabolism effectively, has immense potential in improving bio-based fertilizer generation. Synthetic inorganic fertilizers severely affect human health, the environment, and soil fertility, thus requiring immediate consideration. To address these problems, agricultural farming is moving towards manufacturing bio-based fertilizers via utilizing natural bioresources. Food waste-based bio-fertilizers could help increase yields, nutrients, and organic matter and mitigate synthetic fertilizers' adverse effects. These are presented and discussed in the review.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, Global Sport Innovation Bldg., Room 403, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan; GRADE Academy (Pvt.) Ltd., Birgunj, Nepal
| | | | - Pardeep Singh
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, 110065, India
| | - Amit Awasthi
- Department of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India.
| |
Collapse
|
3
|
Boruah T, Deka H. Comparative investigation on synergistic changes in enzyme activities during vermicomposting of cereal grain processing industry sludge employing three epigeic earthworm species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123324-123334. [PMID: 37985586 DOI: 10.1007/s11356-023-31043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
The management of cereal grain processing industry sludge through vermicomposting is an emerging prospect for researchers interested in the green economy. This work is designed to enumerate the enzymatic influence of three epigeic earthworm species - Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus on the industrial sludge. The vermicomposting experiment was conducted in plastic pots by blending the waste materials with 5% cow dung. The dynamics in activities of cellulase, amylase, invertase, phosphatase, protease, dehydrogenase, and urease were studied on 15 days intervals till the harvesting period. The periodical observations confirmed that the enzyme activities (in terms of μg reducing sugar/g/hr) of cellulase (26.45-128.09) amylase (205.43-878.96), invertase (105.32-841.65), phosphatase (85.29-435.54), protease (64.21-359.47), dehydrogenase (111.17-587.72), and urease (94.16-476.71) was low in the first 15 days of the vermicomposting experiment followed by a sharp increase in the next 45 days accompanied by a steady decline until the harvesting is carried out. Emerging statistical tools such as principal component analysis were employed to study the synergistic deviations of the enzymes during the vermicomposting process. The results confirmed that the enzyme activity efficiently influences the bio-oxidation of industrial waste at an individual level as well as synergistic level thereby allowing the vermicompost to mature much before the appearance of any physical symptoms on the surface of the vermireactors.
Collapse
Affiliation(s)
- Tridip Boruah
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati-14, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati-14, Assam, India.
| |
Collapse
|
4
|
Keniya B, Patel H, Patel K, Bhatt S, Patel T. Vermistabilization of mango tree pruning waste with five earthworm species: A biochemical and heavy metal assessment. Heliyon 2023; 9:e19908. [PMID: 37810132 PMCID: PMC10559316 DOI: 10.1016/j.heliyon.2023.e19908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Mango tree pruning results in high biomass output, which is a serious agricultural and environmental problem. Vermicomposting is a potential, fast and sustainable tool to address these challenges. For sixty days, the experiment was carried out in six vermireactors containing five earthworm species by Eudrilus eugeniae, Eisenia fetida, Aporrectodea rosea, Lumbricus rubellus, and Lampito mauritii, as well as composting (without earthworm) using mango tree pruning waste biomass along with cattle dung as an instant preferred feeding material for earthworms. The pH, TOC, C/N and C/P ratios of the waste were substantially reduced by the earthworm activity. However, after vermicomposting, the levels of macronutrients (N, P, K, Ca, Mg, S) and micronutrients (Fe, Mn, Zn, and Cu) and microbial count substantially increased. The TOC content of waste was reduced by 42-55%, and the C/N of vermicompost ranged from 5.58 to 11.38. The results showed that earthworm fecundity was highest in vermireactors containing Eudrilus eugeniae and Eisenia fetida. The current study was ultimately determine that vermicomposting using Eudrilus eugeniae or Eisenia fetida is an effective strategy for utilising mango tree pruning waste, ensuring environmental sustainability and improving farmer revenue.
Collapse
Affiliation(s)
- Bhavik Keniya
- N.M. College of Agriculture, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Hemant Patel
- ASPEE College of Horticulture , Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Ketan Patel
- ASPEE College of Horticulture , Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Shivam Bhatt
- ASPEE College of Horticulture , Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Tushar Patel
- College of Agriculture, Navsari Agricultural University, Bharuch, 393010, Gujarat, India
| |
Collapse
|
5
|
Wongkiew S, Polprasert C, Noophan PL, Koottatep T, Kanokkantapong V, Surendra KC, Khanal SK. Effects of vermicompost leachate on nitrogen, phosphorus, and microbiome in a food waste bioponic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117860. [PMID: 37086642 DOI: 10.1016/j.jenvman.2023.117860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Food waste is rich in nutrients, such as nitrogen and phosphorus, and can be integrated with bioponics, a closed-loop agricultural system that combines hydroponics with biological nutrient recovery. Vermicompost leachate (VCL) supplementation has been shown to improve the co-composting of organic waste (i.e., compost quality) and the biodegradation of organic compounds. Thus, VCL has high potential for enhancing nutrient availability in bioponics from food waste. However, the understanding of nitrogen and phosphorus availability in food waste-based bioponics is limited, both with and without VCL. In this study, food waste derived from cafeteria vegetable waste was used as the substrate (500 g dry wt./system) in bioponics to grow lettuce (Lactuca sativa L.) for two consecutive cycles (35 days/cycle) without substrate replacement. VCL was applied weekly (1-5% v/v) and compared to the control without VCL. The results showed that the food waste in bioponics provided nitrogen and phosphorus for plant growth (15.5-65.8 g/lettuce head). Organic-degrading and nutrient-transforming bacteria (Hydrogenispora, Clostridium_sensu_stricto_1, Ruminiclostridium_1, Cellvibrio, Thauera, Hydrogenophaga, and Bacillus) were predominantly found in plant roots and residual food waste. VCL addition significantly increased nitrate, phosphate, and chemical oxygen demand levels in bioponics, owing to the nutrients in VCL and the enhancement of keystone microorganisms responsible for organic degradation and nutrient cycling (e.g., Ellin6067, Actinomyces, and Pirellula). These findings suggest that nitrogen, phosphorus, and organic carbon concentrations in an ecosystem of nutrient-transforming and organic-degrading microbes are key in managing nutrient recovery from food waste in bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600, Kathmandu, Nepal
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
6
|
Alsamhary K. Vermi-cyanobacterial remediation of cadmium-contaminated soil with rice husk biochar: An eco-friendly approach. CHEMOSPHERE 2023; 311:136931. [PMID: 36273604 DOI: 10.1016/j.chemosphere.2022.136931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Present study is aimed to evaluate the influence of earthworm (Eisenia fetida), Cyanobacteria (Cylindrospermum stagnale), and rice husk biochar (BC) on cadmium (Cd) detoxification in artificially contaminated soil. The Cd content was kept at 10 mg/kg in factorial design I, coupled with 2% and 0% BC. E. fetida and C. stagnale un-inoculated and inoculated experiments were maintained respectively as negative and positive controls. In factorial design II, E. fetida and C. stagnale were inoculated, along with BC (0% and 2%, denoted as B), without BC (WB), along with four different Cd concentrations (Cd-0, Cd-5, Cd-10, and Cd-20 mg/kg). Results suggest a substantial amount of Cd removal in BC-assisted treatments when compared to negative control-1. Cd (mg/g) in E. fetida tissue ranged from 0.019 (WB2) to 0.0985 (B4). C. stagnale of WB4 (0.036) bioaccumulated the most Cd (mg/g), while B2 showed the least (0.018). The maximum quantity of metallothionein (5.34 μM/mg) was detected in E. fetida of B4 (factorial design - II) and the minimum was claimed in WB1 (0.48 μM/mg) at the end. Earthworm metallothionein protein is a key component in Cd removal from soil by playing an important role in detoxification process. Microbial communities and humic substances were observed in BC-assisted treatments, which aided in Cd-contaminated soil remediation. The present findings suggest that BC (2%) + earthworms + algae could be a suitable remediation strategy for Cd contaminated soil. BC + earthworm + algal-based investigation on heavy metal remediation will be a valuable platform for detoxifying harmful metals in soils.
Collapse
Affiliation(s)
- Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
7
|
Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJM, Gibberd M, Nevill P. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157556. [PMID: 35882340 DOI: 10.1016/j.scitotenv.2022.157556] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.
Collapse
Affiliation(s)
- Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia.
| | - David L Field
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Philip W Bateman
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Behavioural Ecology Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Anna J M Hopkins
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Mark Gibberd
- Centre for Crop Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
8
|
Tondello A, Fasolo A, Marcato S, Treu L, Bonato T, Zanardi W, Concheri G, Squartini A, Baldan B. Characterization of bacterial communities isolated from municipal waste compost and screening of their plant-interactive phenotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150592. [PMID: 34592304 DOI: 10.1016/j.scitotenv.2021.150592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Four batches of commercial compost obtained from the organic fraction of municipal solid waste were analyzed from chemical and microbiological standpoints. The working hypothesis was that, being this type of compost derived partly from plant waste, it could contain plant-growth promoting bacterial endophytes, prone to be active again upon its usual delivery as fertilizer. Culturable bacteria were isolated at different temperatures, quantified by colony morphology, identified taxonomically by 16S sequencing and screened for plant-growth promoting phenotypes including auxin and siderophore production, phosphate solubilization and peptide mineralization to ammonia. In parallel, the total community was assessed by culture independent DNA metabarcoding. The capability of plants to select, uptake and internally multiply bacteria from these compost samples was analyzed using grapevine in-vitro rooting cuttings from which acquired bacteria were reisolated, quantified and their identities determined as above. Major differences in compost bacterial composition were observed as function of the season, with the winter sample being rather distinct from the summer ones. Bacillales and Actinomycetales dominated the culturable communities while Alteromonadales, Oceanospirillales and Flavobacteriales prevailed in the total community. In spite of the challenging composting cycle conditions, the plant nature of the main input substrates appeared determinant in guaranteeing that 82% of the culturable bacteria were found endowed with one or more of the plant growth-promoting phenotypes tested. Beside its fertilization role, compost proved to be also a potential inoculant carrier for the in-soil delivery of plant beneficial microorganisms. Furthermore, upon an in vitro passage through grapevine plants under axenic conditions, the subsequently recoverable endophyte community yielded also members of the Rhizobiales order which had not been detectable when culturing directly from compost. This observation further suggests that compost-borne plant-interacting taxa could be also rescued from non-culturable states and/or enriched above detectability levels by a contact with their potential host plants.
Collapse
Affiliation(s)
- Alessandra Tondello
- Department of Biology, UniPD, Padova, Italy; Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), UniPD, Legnaro, PD, Italy
| | | | | | - Laura Treu
- Department of Biology, UniPD, Padova, Italy
| | - Tiziano Bonato
- Società Estense Servizi Ambientali S.E.S.A., Este, PD, Italy
| | - Werner Zanardi
- Società Estense Servizi Ambientali S.E.S.A., Este, PD, Italy
| | - Giuseppe Concheri
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), UniPD, Legnaro, PD, Italy
| | - Andrea Squartini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), UniPD, Legnaro, PD, Italy
| | - Barbara Baldan
- Department of Biology, UniPD, Padova, Italy; Botanical Garden, UniPD, Padova, Italy.
| |
Collapse
|
9
|
Bianco A, Fancello F, Garau M, Deroma M, Atzori AS, Castaldi P, Zara G, Budroni M. Microbial and chemical dynamics of brewers' spent grain during a low-input pre-vermicomposting treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149792. [PMID: 34464790 DOI: 10.1016/j.scitotenv.2021.149792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The eco-sustainability of industrial processes relies on the proper exploitation of by-products and wastes. Recently, brewers' spent grain (BSG), the main by-product of brewing, was successfully recycled through vermicomposting to produce an organic soil conditioner. However, the pre-processing step there applied (oven-drying) resulted in high costs and the suppression of microbial species beneficial for soil fertility. To overcome these limitations, a low-input pre-processing step was here applied to better exploit BSG microbiota and to make BSG suitable for vermicomposting. During 51 days of pre-treatment, the bacterial and fungal communities of BSG were monitored by denaturing gradient gel electrophoresis (DGGE). Chemical (carbon, nitrogen, ammonium, nitrate content, dissolved organic carbon) and biochemical (dehydrogenase activity) parameters were also evaluated. Mature vermicompost obtained from pre-processed BSG was characterized considering its legal requirements (e.g., absence of pathogens and mycotoxins, lack of phytotoxicity on seeds), microbiota composition, and chemical properties. Results obtained showed that throughout the pre-process, the BSG microbiota was enriched in bacterial and fungal species of significant biotechnological and agronomic potential, including lactic acid bacteria (Weissella, Pediococcus), plant growth-promoting bacteria (Bacillus, Pseudomonas, Pseudoxhantomonas), and biostimulant yeasts (Pichia fermentans, Trichoderma reesei, Beauveria bassiana). Pre-processing increased the suitability of BSG for earthworms' activity to produce high-quality mature vermicompost.
Collapse
Affiliation(s)
- Angela Bianco
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy - Associated Member of the JRU MIRRI-IT
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Matteo Garau
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Mario Deroma
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Alberto S Atzori
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Paola Castaldi
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy - Associated Member of the JRU MIRRI-IT.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy - Associated Member of the JRU MIRRI-IT
| |
Collapse
|
10
|
Chen Y, Zhang Y, Shi X, Xu L, Zhang L, Zhang L. The succession of GH 6 cellulase-producing microbial communities and temporal profile of GH 6 gene abundance during vermicomposting of maize stover and cow dung. BIORESOURCE TECHNOLOGY 2022; 344:126242. [PMID: 34744029 DOI: 10.1016/j.biortech.2021.126242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Vermicomposting eco-friendly converts lignocellulosic wastes into bio-organic fertilizer. Cellulose is the most abundant carbohydrate in lignocellulose. Glycoside hydrolase family 6 (GH6) plays a key role in the early step of cellulose degradation, which is essential for stabilizing lignocellulose. This study intends to quantify the abundance of GH6 gene and to clarify the succession of GH6 cellulase-producing microbial communities during vermicomposting. 100% of maize stover (A) and maize stover and cow dung at 60:40 ratio (B) were used. The results showed that different native genera were observed in the starting materials. Cellulomonas and Cellulosimicrobium were dominant genera harboring GH6 gene. The peak relative abundance of Cellulomonas was 76% and 30% in B and A during vermicomposting phase, and the corresponding values of Cellulosimicrobium was 36% and 37%. Earthworms increased the abundance of GH6 gene, which reached 1.51E + 09 from 3.46E + 08 copies/g in B. The results partially interpreted promoting effect of earthworms.
Collapse
Affiliation(s)
- Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, MS 39567, United States
| | - Xiong Shi
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Lixin Xu
- College of Life Science, Jilin University, Changchun 130012, China
| | - Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Luwen Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
11
|
Tortosa G, Fernández-González AJ, Lasa AV, Aranda E, Torralbo F, González-Murua C, Fernández-López M, Benítez E, Bedmar EJ. Involvement of the metabolically active bacteria in the organic matter degradation during olive mill waste composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147975. [PMID: 34082203 DOI: 10.1016/j.scitotenv.2021.147975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
RNA-based high-throughput sequencing is a valuable tool in the discernment of the implication of metabolically active bacteria during composting. In this study, "alperujo" composting was used as microbial model for the elucidation of structure-function relationships with physicochemical transformation of the organic matter. DNA and RNA, subsequently retrotranscribed into cDNA, were isolated at the mesophilic, thermophilic and maturation phases. 16S rRNA gene was amplified by quantitative PCR (qPCR) and Illumina MiSeq platform to assess bacterial abundance and diversity, respectively. The results showed that the abundance of active bacteria assessed by qPCR was maximum at thermophilic phase, which confirm it as the most active stage of the process. Concerning diversity, Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the main phyla presented in composts. Concomitantly, three different behaviours were observed for bacterial dynamics: some genera decreased during the whole process meanwhile others proliferated only at thermophilic or maturation phase. Statistical correlation between physicochemical transformations of the organic matter and bacterial diversity revealed bacterial specialisation. This result indicated that specific groups of bacteria were only involved in the organic matter degradation during bio-oxidative phase or humification at maturation. Metabolic functions predictions confirmed that active bacteria were mainly involved in carbon (C) and nitrogen (N) cycles transformations, and pathogen reduction.
Collapse
Affiliation(s)
- Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, c/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Antonio J Fernández-González
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, c/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Ana V Lasa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, c/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Elisabet Aranda
- Institute of Water Research, University of Granada, Edificio Fray Luis, c/ Ramón y Cajal, 4, 18071 Granada, Spain; Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Fernando Torralbo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain
| | - Manuel Fernández-López
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, c/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Emilio Benítez
- Department of Environmental Protection, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, c/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, c/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
12
|
Kumar R, Pandit P, Kumar D, Patel Z, Pandya L, Kumar M, Joshi C, Joshi M. Landfill microbiome harbour plastic degrading genes: A metagenomic study of solid waste dumping site of Gujarat, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146184. [PMID: 33752005 DOI: 10.1016/j.scitotenv.2021.146184] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 05/21/2023]
Abstract
Globally, environmental pollution by plastic waste has become a severe ecological and social problem worldwide. The present study aimed to analyse the bacterial community structure and functional potential of the landfill site using high throughput shotgun metagenomic approach to understand plastic degrading capabilities present in the municipal solid waste (MSW) dumping site. In this study, soil, leachate and compost samples were collected from various locations (height and depth) of the Pirana landfill site in Ahmedabad city Gujarat, India. In total 30 phyla, 58 class, 125 order, 278 families, 793 genera, and 2468 species were predicted. The most dominant phyla detected were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria in the soil and compost samples. Whereas, in leachate samples, the predominant phyla belonged to Firmicutes (54.24%) followed by Actinobacteria (43.67%) and Proteobacteria (1.02%). The functional profiling revealed the presence of enzymatic groups and pathways involved in biodegradation of xenobiotics. The results also demonstrated the presence of potential genes that is associated with the biodegradation of different types of plastics such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS). Present study extablishes the relationship between microbial community structure and rich sources of gene pool, which are actively involved in biodegradation of plastic waste in landfill sites.
Collapse
Affiliation(s)
- Raghawendra Kumar
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Priti Pandit
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Zarna Patel
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Labdhi Pandya
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| |
Collapse
|
13
|
Das SR, Basak N. Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess Biosyst Eng 2020; 44:1-25. [PMID: 32785789 DOI: 10.1007/s00449-020-02422-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023]
Abstract
Changing lifestyle is increasing the energy demand. Fossil fuel is unable to deliver such huge energy. Clean energy from renewable source can solve this problem. Hydrogen is a clean and energy-efficient fuel and used for electricity generation by fuel cells or can be used in combustion engine. Easy availability of starch wastes from different industrial food processing wastes makes it a potential source for hydrogen (H2) generation. Among various processes such as steam reforming, electrolysis, biophotolysis of water and anaerobic fermentation, anaerobic fermentation technique is environmentally friendly and requires less external energy, making it a preferred process for H2 generation. Dark fermentation process can use wide range of substrates including agricultural and industrial starchy waste with low level of undesirable compounds. Application of both anaerobic dark and photofermentation can improve H2 yield and production rate. H2 production from wastes containing starch serves dual benefit of waste reduction and energy generation. As starch is a polymer and all hydrogen-producing bacteria cannot produce amylase to hydrolyze it, a pretreatment step is required to convert starch into glucose and maltose. In this present review paper, we have summarized: (i) potential of various types of starch-containing wastes as feedstock, (ii) various fermentation techniques, (iii) optimization of external process parameter, (iv) application of bioreactor and simulation in fermentation technique and (v) advancement in H2 production from starchy wastes.
Collapse
Affiliation(s)
- Satya Ranjan Das
- Department of Biotechnology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|