1
|
Chen L, Wang S, Li J, Hao M, Huang L, Wang G, Chai P, Chen C, Gao Y, Song L, Liang J. Mechanisms of diatom inhibition by a new antifouling biocide with broad-spectrum efficacy against bacteria, algae, and barnacles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179602. [PMID: 40347753 DOI: 10.1016/j.scitotenv.2025.179602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Marine biofouling, the accumulation of microorganisms, algae, and invertebrates on submerged surfaces, poses significant challenges for maritime industries. This study introduces a new biocide specifically designed to combat marine biofouling and assesses its efficacy and underlying algicidal mechanisms. The results showed that the biocide LaPT, synthesized by combining the rare-earth element Lanthanum (La) with pyrithione (PT), exhibited not only remarkable antibacterial properties but also strong algicidal activity against diatom species Amphora sp. and Thalassiosira pseudonana. Long-term field tests conducted in Xiamen Port, confirmed the effectiveness of LaPT-coated panels in reducing barnacle infestation. Algicidal mechanistic investigations through physiological, transgenic, and transcriptomic analyses revealed that LaPT disrupts cell wall and membrane integrity, interferes with calcium-dependent processes, and inhibits photosynthesis and energy metabolism, leading to diatom cell death. This study demonstrates the LaPT's effectiveness in preventing biofouling and reveal its unique mechanism of action, offering a promising solution for managing marine biofouling.
Collapse
Affiliation(s)
- Longnan Chen
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Shenglong Wang
- Xiamen Institute of Rare Earth Materials, Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jinlei Li
- Xiamen Institute of Rare Earth Materials, Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
| | - Mengyuan Hao
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Lu Huang
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Guangning Wang
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Pengpei Chai
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Changping Chen
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Yahui Gao
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Lijun Song
- Xiamen Institute of Rare Earth Materials, Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Junrong Liang
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Ibrahim MD, Nyelang G, Mahmod DSA, Alias AA, Sunami Y. Biofouling controls using air bubbles-a review of various applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12896-12912. [PMID: 40338429 DOI: 10.1007/s11356-025-36444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/20/2025] [Indexed: 05/09/2025]
Abstract
Biofouling poses a significant challenge in aquatic, marine, and maritime settings, leading to increased corrosion rates and functional impairments of structures and equipment. Conventional fouling control methods have limitations, prompting the exploration of unconventional approaches to manage biofouling and enhance corrosion resistance. This paper presents a review of employing air bubbles for fouling control in various applications, with a particular focus on marine industries and ecological considerations. By comparing different fouling control techniques, including the use of air bubbles, the paper offers valuable insights into their effectiveness and applicability. Suggestions for future research to develop more efficient techniques for biofouling control using air bubbles are also discussed. This review aims to contribute to the advancement of fouling control strategies and their impact on biofouling characteristics and mitigation efforts.
Collapse
Affiliation(s)
- Mohd Danial Ibrahim
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
- UNIMAS Water Center, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.
| | - Groffer Nyelang
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Dayang Salyani Abang Mahmod
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Aidil Asli Alias
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Yuta Sunami
- Department of Mechanical Engineering, Micro Nano Technology Centre, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
3
|
Sun H, Zhu Y, Bing W. Research on underwater air layer retention and antifouling ability of Salvinia-inspired biomimetic materials. Colloids Surf B Biointerfaces 2025; 253:114728. [PMID: 40311455 DOI: 10.1016/j.colsurfb.2025.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/03/2025]
Abstract
Marine biofouling not only increases the navigation resistance of ships, accelerates the corrosion of metal substrates, but also hinders the healthy development of the marine economy. Inspired by the unique structure and function of Salvinia, we designed and fabricated biomimetic surfaces with superhydrophobic hairs and hydrophilic patches (SHHPs) using silicone rubber-graphene (SR-GN) and SR modified with polyacrylic acid (SR-PAA) composites. SHHPs can generate pinning effects underwater, forming an air layer as an environmentally friendly physical antifouling barrier. SHHPs exhibit strong capability in maintaining the air layer and can resist the attachment of bacteria and algae under static and simulated marine dynamic conditions. These results indicated that the physical antifouling strategy based on air layer provides a platform with broad application prospects for the maritime industry.
Collapse
Affiliation(s)
- Hongbo Sun
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yetong Zhu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| |
Collapse
|
4
|
Takamura H, Yorisue T, Tanaka K, Kadota I. Antifouling Activity of Xylemin, Its Structural Analogs, and Related Polyamines. Chem Biodivers 2025; 22:e202403213. [PMID: 39920095 PMCID: PMC12004904 DOI: 10.1002/cbdv.202403213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/09/2025]
Abstract
Biofouling, which is the accumulation of organisms on undersea structures, poses significant global, social, and economic issues. Although organotin compounds were effective antifoulants since the 1960s, they were banned in 2008 due to their toxicity to marine life. Although tin-free alternatives have been developed, they also raise environmental concerns. This underscores the need for effective, nontoxic antifouling agents. We previously synthesized N-(4-aminobutyl)propylamine (xylemin) and its structural analogs. In this study, we assayed the antifouling activity and toxicity of xylemin, its structural analogs, and related polyamines toward cypris larvae of the barnacle Amphibalanus amphitrite. Xylemin and its Boc-protected analog exhibited antifouling activities with 50% effective concentrations (EC50) of 4.25 and 6.11 µg/mL, respectively. Four xylemin analogs did not show a settlement-inhibitory effect at a concentration of 50 µg/mL. Putrescine, spermidine, spermine, and thermospermine, which are xylemin-related polyamines, did not display antifoulant effects (EC50 > 50 µg/mL). All evaluated compounds were nontoxic at a concentration of 50 µg/mL. These findings indicate that the size and structure of the N-alkyl group are essential for the antifouling activity of xylemin. Therefore, xylemin and its analogs hold promise as nontoxic, eco-friendly antifouling agents, offering a sustainable solution to biofouling in marine environments.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
| | - Takefumi Yorisue
- Institute of Natural and Environmental SciencesUniversity of HyogoSandaJapan
- Division of Nature and Environmental ManagementMuseum of Nature and Human ActivitiesSandaJapan
| | - Kenta Tanaka
- Research Institute for Interdisciplinary ScienceOkayama UniversityOkayamaJapan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
| |
Collapse
|
5
|
Wang Z, Yan Q, Song M, Aimaier X, Liu X, Zhang B, Han Z, Liu Y, Dan Y, Huang J, Hu X, Wen J, Li H. Bacillus licheniformis Extracellular Polymeric Substances Conditioning Layer Mediates the Bacterial Adhesion Behaviors toward Controlled Biofilm Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6578-6591. [PMID: 40030140 DOI: 10.1021/acs.langmuir.4c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In aquatic environments, conditioning layers play a crucial role in modulating the adhesion and aggregation of planktonic bacteria, ultimately facilitating biofilm formation and the irreversible onset of biofouling. This study reports the construction of a simplified conditioning layer using extracellular polymeric substances (EPS) secreted by Bacillus licheniformis and its influence on the adherence behaviors of bacteria. The results reveal that the EPS conditioning layer remarkably inhibits the Staphylococcus aureus adherence yet promotes the aggregation of Escherichia coli. The surface of the EPS conditioning layer shows a flat morphology with the highest height of approximately 12.9 nm. The conditioning layer alters the physicochemical properties of the substrate materials on their surfaces, with water contact angles changing from 61.23° to 8.76° and the zeta potential changing from -1.0 to -25.0 mV. Despite these changes, the overall effect of the EPS conditioning layer on bacterial adhesion was found to be minimal. Further investigation on the bacterial adhesion and aggregation behaviors shows that two main components of EPS, namely, polysaccharides and bacitracin, affect the bacterial adhesion and aggregation behaviors. Bacitracin plays a predominant role in inhibiting the Staphylococcus aureus attachment, and the polysaccharides promote Escherichia coli aggregation. These findings would give inspiring insight into developing environmentally friendly efficient biological measures for combating the worldwide persisting biofouling.
Collapse
Affiliation(s)
- Zhijuan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qi Yan
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Meiqi Song
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xierzhati Aimaier
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaomei Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Botao Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhuoyue Han
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yi Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanxin Dan
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Huang
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xuan Hu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianxin Wen
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hua Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
6
|
Satasiya G, Kumar MA, Ray S. Biofouling dynamics and antifouling innovations: Transitioning from traditional biocides to nanotechnological interventions. ENVIRONMENTAL RESEARCH 2025; 269:120943. [PMID: 39862960 DOI: 10.1016/j.envres.2025.120943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency. Conventional antifouling agents are synthetic chemicals which are hazardous to non-target species. Further, these agents are mixed with paints, releasing toxins in the water bodies that affect other organisms. Thus, the development of natural alternatives for anti-fouling chemicals is urgently needed. This review examines the development of environmentally friendly antifouling technologies, focusing on the switch from biocidal coatings that leach toxic elements like mercury and copper to sustainable substitutes such as hybrid, biomimetic, and nanotechnology-based antifouling solutions. Research also focuses on increasing antifouling properties and reducing environmental impact by incorporating natural antifouling agents and constructing hybrid coatings that include multiple technologies. The financial effects of implementing these new technologies compared to more conventional approaches highlight the significance of sustainable practices in the maritime industry. This thorough review sheds light on the state of antifouling technology. It recommends future research to maximize ecological compatibility and apply these advancements to broader applications.
Collapse
Affiliation(s)
- Gopi Satasiya
- Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhava Anil Kumar
- Department of Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| | - Sanak Ray
- Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Hou J, Chen G, Hao X, Xu J, Waterhouse GIN, Zhang Z, Yu L. Coral-Inspired Zinc Acrylate Polymer Utilizing Coumarin as the Fluorescent Unit for Marine Antifouling. Biomacromolecules 2025; 26:1799-1815. [PMID: 39960235 DOI: 10.1021/acs.biomac.4c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The need for low-cost and effective antifouling solutions drives innovation in the fields of chemistry, materials science, and biology. In this work, guided by the antifouling strategies used by fluorescent corals, a series of fluorescent zinc acrylate polymer coatings containing coumarin units (ZAR-coumarin) was successfully prepared. The ZAR-coumarin coatings demonstrated excellent antifouling properties due to the synergistic action of multiple antifouling mechanisms, including fluorescent antifouling, natural bactericidal activity, and self-polishing surface renewal (due to ester group (-COO-Zn-OOC-) cleavage). Compared with zinc acrylate coatings without coumarin units (ZAR), the introduction of coumarin units significantly improved the inhibition efficiency for both bacteria and algae. In marine environment tests, the ZAR-AMCO-1, ZAR-ADMCO-1, and ZAR-CAMCO-1 coatings containing optimized amounts of different types of coumarin units maintained good antifouling properties over a 160-day field test period. This research presents an innovative approach to creating marine antifouling coatings.
Collapse
Affiliation(s)
- Jianwei Hou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Guobo Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xinghai Hao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiali Xu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | | | - Zhiming Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China; Sanya Oceanographic Laboratory, Sanya 572024, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China; Sanya Oceanographic Laboratory, Sanya 572024, China
| |
Collapse
|
8
|
Gao Z, Zhang S, Duan Y, Chang H, Cui M, Huang R, Su R. Photoinitiated Thiol-Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8299-8311. [PMID: 39836235 DOI: 10.1021/acsami.4c18569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments. In this work, we presented a marine antifouling and anticorrosion coating named POSS-DMA@PDMS-TCM through photoinitiated thiol-ene click reaction combined with (mercaptopropyl) methylsiloxane dimethylsiloxane (PDMS-SH), dopamine methacrylamide (DMA), sulfhydryl-functionalized organosiloxanes (POSS-(SH)8), and N-(2,4,6-trichlorophenyl) maleimide (TCM). The POSS-DMA@PDMS-TCM coating exhibited strong stability and bonding ability both in air (2.17 MPa) and underwater (2.11 MPa) when the DMA content was 3 wt %. The high antibacterial (98.1% for Staphylococcus aureus and 99.5% for Escherichia coli) and antidiatom (94.5%) properties of the POSS-DMA@PDMS-TCM coatings have also been confirmed. Moreover, the POSS-DMA@PDMS-TCM coatings show excellent antifouling abilities in 120-day marine field tests, reducing fouling by 65.5% in comparison to the blank group. The coating also displayed superior anticorrosion performance with Ecorr values of -0.055 V, Icorr values of 7.67 × 10-6 , and Rp values of 3.10 × 105 Ω for Cu, which benefited from excellent chelating effect and liquid repellency. This study provides a novel strategy for the development of high-quality marine antifouling and anticorrosion coatings.
Collapse
Affiliation(s)
- Zhongshuai Gao
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuya Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yanyi Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Heng Chang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo 315201, Zhejiang, China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo 315201, Zhejiang, China
| | - Rongxin Su
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo 315201, Zhejiang, China
| |
Collapse
|
9
|
Choudhary R, Kaushik R, Chawla P, Manna S. Exploring the extraction, functional properties, and industrial applications of papain from Carica papaya. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1533-1545. [PMID: 39077990 DOI: 10.1002/jsfa.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Papain a protease enzyme naturally present in the Carica papaya has gained significant interest across several industries due to its unique properties and versatility. The unique structure of papain imparts the functionality that assists in elucidating how papain enzyme works and making it beneficial for a variety of purposes. This review highlights recent advancements in papain extraction techniques to enhance production efficiency to meet market demand. The extraction of papain from the Carica papaya plant offers various advantages such as cost-effectiveness, biodegradability, safety, and the ability to withstand a wide range of pH and temperature conditions. Key findings reveal that non-conventional papain extraction techniques offer significant advantages in terms of efficiency, product quality, and environmental sustainability. Furthermore, papain treatment enhances the value of final products due to its anti-bacterial, anti-oxidant, and anti-obesity properties. The ability of papain to hydrolyze a wide range of proteins across various conditions makes it a suitable protease enzyme. While the study emphasizes the advantages of papain, the study also acknowledges limitations such as the continuous research and development to optimize extraction processes which will help unlock papain's potential and meet the growing demand. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rajni Choudhary
- School of Health Sciences and Technology, UPES, Dehradun, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Suvendu Manna
- Sustainibility Cluster, School of Advance Engineering, UPES, Dehradun, India
| |
Collapse
|
10
|
Sun R, Zhang S, Tong Z, Wang Y, Gao F, Hu J, Hou Y, Lu J, Cong W, Sun Y, Zhan X, Zhang Q. A Bioinspired Antifouling Coating Based on "Host-Guest Interaction" Strategy: Durable Slipperiness and Tunable Transparency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409771. [PMID: 39757712 DOI: 10.1002/smll.202409771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 01/07/2025]
Abstract
Lubricant-mediated surfaces limit their practical application in transparent antifouling due to the inherent drawbacks of lubricant loss and poor transparency. Liquid-Like Surfaces(LLSs)are expected to solve these problems. Herein, inspired by the skin structure of globefish, some slippery LLSs are prepared with the cyclodextrin-eugenol inclusion complexes as the poison glands and flexible silicone chains as the liquid-like layer. LLSs kill attached organisms by slowly secreting environmentally friendly eugenol through poison glands. Short-term explosive release of the drug is avoided owing to host-guest interactions. In addition, due to low surface energy, the covalently linked flexible silicone chains spontaneously migrate to the surface of the coating, effectively preventing the adhesion of fouling and improving the durability of slippery surfaces, achieving both offense and defense. LLSs exhibit outstanding antifouling, mechanical, and adhesive performance. Interestingly, the transparency of LLSs in seawater and freshwater is quite different. This different behavior is attributed to ion-dipole interactions weakening the hydrogen bonding of water molecules to the polymer network, which provides some insights into tuning the transparency responsiveness of polymers. Furthermore, LLSs-coated lenses achieve a long-lasting transparent application in seawater for 90 days, providing a promising approach for surface antifouling of lenses in marine environments.
Collapse
Affiliation(s)
- Rui Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shen Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zheming Tong
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yixue Wang
- Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Jiankun Hu
- Donghai Laboratory, Zhoushan, 316000, China
| | - Yang Hou
- Donghai Laboratory, Zhoushan, 316000, China
| | - Jianguo Lu
- Donghai Laboratory, Zhoushan, 316000, China
| | - Weiwei Cong
- State Key Laboratory of Marine Coatings, Marina Chemical Research Institute Co., Ltd, Qingdao, 266071, China
| | - Yiming Sun
- State Key Laboratory of Marine Coatings, Marina Chemical Research Institute Co., Ltd, Qingdao, 266071, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| |
Collapse
|
11
|
Chen Y, Ye H, Zhao X, Li P, Chen H, Liu H, Zhang H, Li W. Strategy for Fabricating Degradable Low-Surface-Energy Cross-Linked Networks with Excellent Anti-Fouling Properties. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3995-4008. [PMID: 39760340 DOI: 10.1021/acsami.4c19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Marine biofouling negatively impacts marine industries and ship navigation. However, current coatings are based on a single antifouling mechanism, which is insufficient to cope with the complex and ever-changing marine environment. Herein, multifunctional antifouling coatings were developed using a material system containing perfluoropolyether and caprolactone chains. First, an acrylic resin containing perfluoropolyether side chains was synthesized as a liquid-repellent component and then a degradable cross-linked network was constructed by bridging polycaprolactone chains. Surprisingly, polycaprolactone chains not only effectively improved the tensile strength but also provided flexibility to the resin. Thus, the coating exhibited satisfactory mechanical stability and low roughness (4.06 nm) during dynamic polishing. It is worth noting that the cross-linked network with a low surface energy (SE) (22.0 mJ·m-2) effectively inhibited the adhesion of marine fouling organisms. Moreover, the hydrolysis of ester groups promoted the formation of a self-renewing surface, and the synergistic effect of the low SE and degradability of the coating ensured excellent and long-lasting antifouling performance of the coating. The coating reduced the adhesions of Vibrio alginolyticus, Nitzschia sp., and Navicula sp. by 99.99, 84.6, and 91.0%, respectively, compared with their adhesions to a commercially available self-polishing coating (B3000). Thus, the degradable low-SE antifouling coating produced using the proposed strategy can be potentially applied to various maritime industries.
Collapse
Affiliation(s)
- Yongjun Chen
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hui Ye
- Aerospace Research Institute of Materials and Processing Technology, No. 1 South Dahongmen Road, Beijing 100076, China
| | - Xianwei Zhao
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Pei Li
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Haining Chen
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Huicong Liu
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hui Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 104 Youyi Road, Haidian District, Beijing 100086, China
| | - Weiping Li
- National Experimental Teaching Demonstration Center for Materials Science and Engineering, School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
12
|
Jiang W, Luan T, Cao P, Ma Z, Su Z. New Brusatol Derivatives as Anti-Settlement Agents Against Barnacles, Targeting HSP90: Design, Synthesis, Biological Evaluation, and Molecular Docking Investigations. Int J Mol Sci 2025; 26:593. [PMID: 39859311 PMCID: PMC11765156 DOI: 10.3390/ijms26020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The increasing challenge of marine biofouling, mainly due to barnacle settlement, necessitates the development of effective antifoulants with minimal environmental toxicity. In this study, fifteen derivatives of brusatol were synthesized and characterized using 13C-NMR, 1H-NMR, and mass spectrometry. All the semi-synthesized compounds obtained using the Multi-Target-Directed Ligand (MTDL) strategy, when evaluated as anti-settlement agents against barnacles, showed promising activity. Compound 3 exhibited the highest anti-settlement capacity, with an EC50 value of 0.1475 μg/mL, an LC50/EC50 ratio of 42.2922 (>15 indicating low toxicity), and a resuscitation rate of 71.11%, while it showed no significant phenotypic differences in the zebrafish embryos after treatment for 48 h. The toxicity screening of zebrafish also demonstrated the low ecotoxicity of the selected compounds. Furthermore, homology modeling of the HSP90 structure was performed based on related protein sequences in barnacles. Subsequently, molecular docking studies were conducted on HSP90 using these newly synthesized derivatives. Molecular docking analyses showed that most activated derivatives displayed low binding energies with HSP90, aligning well with the biological results. They were found to interact with key residues in the binding site, specifically ARG243, TYR101, and LEU73. These computational findings are anticipated to aid in predicting the enzyme targets of the tested inhibitors and their potential interactions, thus facilitating the design of novel antifoulants in future research endeavors.
Collapse
Affiliation(s)
- Wang Jiang
- College of Agriculture, Guangxi University, Nanning 530004, China; (W.J.); (Z.M.)
- Traditional Chinese Herbal Medicine Resources and Agriculturalization Research Institute, Guangxi University, Nanning 530004, China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (P.C.)
| | - Tongtong Luan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (P.C.)
| | - Pei Cao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (P.C.)
| | - Zhonghui Ma
- College of Agriculture, Guangxi University, Nanning 530004, China; (W.J.); (Z.M.)
- Traditional Chinese Herbal Medicine Resources and Agriculturalization Research Institute, Guangxi University, Nanning 530004, China
| | - Zhiwei Su
- College of Agriculture, Guangxi University, Nanning 530004, China; (W.J.); (Z.M.)
- Traditional Chinese Herbal Medicine Resources and Agriculturalization Research Institute, Guangxi University, Nanning 530004, China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (P.C.)
| |
Collapse
|
13
|
Neves AR, Godinho S, Gonçalves C, Gomes AS, Almeida JR, Pinto M, Sousa E, Correia-da-Silva M. A Chemical Toolbox to Unveil Synthetic Nature-Inspired Antifouling (NIAF) Compounds. Mar Drugs 2024; 22:416. [PMID: 39330297 PMCID: PMC11433177 DOI: 10.3390/md22090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The current scenario of antifouling (AF) strategies to prevent the natural process of marine biofouling is based in the use of antifouling paints containing different active ingredients, believed to be harmful to the marine environment. Compounds called booster biocides are being used with copper as an alternative to the traditionally used tributyltin (TBT); however, some of them were recently found to accumulate in coastal waters at levels that are deleterious for marine organisms. More ecological alternatives were pursued, some of them based on the marine organism mechanisms' production of specialized metabolites with AF activity. However, despite the investment in research on AF natural products and their synthetic analogues, many studies showed that natural AF alternatives do not perform as well as the traditional metal-based ones. In the search for AF agents with better performance and to understand which molecular motifs were responsible for the AF activity of natural compounds, synthetic analogues were produced and investigated for structure-AF activity relationship studies. This review is a comprehensive compilation of AF compounds synthesized in the last two decades with highlights on the data concerning their structure-activity relationship, providing a chemical toolbox for researchers to develop efficient nature-inspired AF agents.
Collapse
Affiliation(s)
- Ana Rita Neves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Sara Godinho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Catarina Gonçalves
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Ana Sara Gomes
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Joana R Almeida
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
14
|
Pereira D, Almeida JR, Cidade H, Correia-da-Silva M. Proof of Concept of Natural and Synthetic Antifouling Agents in Coatings. Mar Drugs 2024; 22:291. [PMID: 39057400 PMCID: PMC11278152 DOI: 10.3390/md22070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
15
|
Udumulla D, Ginigaddara T, Jayasinghe T, Mendis P, Baduge S. Effect of Graphene Oxide Nanomaterials on the Durability of Concrete: A Review on Mechanisms, Provisions, Challenges, and Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2411. [PMID: 38793476 PMCID: PMC11123155 DOI: 10.3390/ma17102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
This review focuses on recent advances in concrete durability using graphene oxide (GO) as a nanomaterial additive, with a goal to fill the gap between concrete technology, chemical interactions, and concrete durability, whilst providing insights for the adaptation of GO as an additive in concrete construction. An overview of concrete durability applications, key durability failure mechanisms of concrete, transportation mechanisms, chemical reactions involved in compromising durability, and the chemical alterations within a concrete system are discussed to understand how they impact the overall durability of concrete. The existing literature on the durability and chemical resistance of GO-reinforced concrete and mortar was reviewed and summarized. The impacts of nano-additives on the durability of concrete and its mechanisms are thoroughly discussed, particularly focusing on GO as the primary nanomaterial and its impact on durability. Finally, research gaps, future recommendations, and challenges related to the durability of mass-scale GO applications are presented.
Collapse
Affiliation(s)
| | | | | | | | - Shanaka Baduge
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; (D.U.); (T.G.); (T.J.); (P.M.)
| |
Collapse
|
16
|
Xu Y, Luan X, He P, Zhu D, Mu R, Wang Y, Wei G. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308091. [PMID: 38088535 DOI: 10.1002/smll.202308091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Indexed: 05/25/2024]
Abstract
Biomimetic synthesis provides potential guidance for the synthesis of bio-nanomaterials by mimicking the structure, properties and functions of natural materials. Behavioral studies of biological surfaces with specific micro/nano structures are performed to explore the interactions of various molecules or organisms with biological surfaces. These explorations provide valuable inspiration for the development of biomimetic surfaces with similar effects. This work reviews some conventional preparation methods and functional modulation strategies for biomimetic interfaces. It aims to elucidate the important role of biomimetic interfaces with antifouling and low-pollution properties that can replace non-environmentally friendly coatings. Thus, biomimetic antifouling interfaces can be better applied in the field of marine antifouling and antimicrobial. In this review, the commonly used fabrication methods for biomimetic interfaces as well as some practical strategies for functional modulation is present in detail. These methods and strategies modify the physical structure and chemical properties of the biomimetic interfaces, thus improving the wettability, adsorption, drag reduction, etc. that they exhibit. In addition, practical applications are presented of various biomimetic interfaces for antifouling and look ahead to potential biomedical applications. By continuously discovering functional surfaces with biomimetic properties and studying their microstructure and macroscopic properties, more biomimetic interfaces will be developed.
Collapse
Affiliation(s)
- Youyin Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
17
|
Zheng J, Gao H, Zhang G, Sun Z, Zhang J, Wang L, Lin C. Design and synthesis of a new bioactive compound for marine antifouling inspired by natural products. Nat Prod Res 2024; 38:1624-1628. [PMID: 36469680 DOI: 10.1080/14786419.2022.2152020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
A marine antifouling compound, N-octyl-2-hydroxybenzamide (OHBA), inspired by ceramide and paeonol molecules, was created. First, methyl salicylate was synthesized with salicylic acid and methanol, followed by n-octylamine through an ester-amine condensation reaction. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry confirmed the characteristic structure of the OHBA compound. Bioassays showed that OHBA inhibits the growth of typical marine fouling organisms, such as Vibrio azureus, Navicula subminuscula, Ulva pertusa, Mytilus edulis, and Amphibalanus amphitrite, indicating its broad-spectrum antifouling ability. A one-year marine real-sea test further demonstrated the excellent antifouling properties of OHBA. OHBA is also extremely biodegradable, with a half-life of 6.3 days, making it a less environmentally harmful replacement for widely-used heavy metal-containing antifoulants.
Collapse
Affiliation(s)
- Jiyong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Haiping Gao
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Guanglong Zhang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Zhiyong Sun
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Jinwei Zhang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Li Wang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| |
Collapse
|
18
|
Cui J, Liu L, Chen B, Hu J, Song M, Dai H, Wang X, Geng H. A comprehensive review on the inherent and enhanced antifouling mechanisms of hydrogels and their applications. Int J Biol Macromol 2024; 265:130994. [PMID: 38518950 DOI: 10.1016/j.ijbiomac.2024.130994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.
Collapse
Affiliation(s)
- Junting Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Beiyue Chen
- Nanjing Xiaozhuang University, College of Electronics Engineering, Nanjing 211171, China
| | - Jiayi Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Mengyao Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
19
|
Li J, Zhu Q, Wu Y, Lin F, Liu L, Chen L, Wang S, Song L. Synthesis, Characterization, and Applications of Rare-Earth-Based Complexes with Antibacterial and Antialgal Properties. ACS APPLIED BIO MATERIALS 2024; 7:104-113. [PMID: 38149377 DOI: 10.1021/acsabm.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The pursuit of environmentally friendly and highly effective antifouling materials for marine applications is of paramount importance. In this study, we successfully synthesized novel rare earth-based complexes by coordinating cerium (Ce III), samarium (Sm III), and europium (Eu III) with pyrithione (1-hydroxy-2-pyridinethione; PT). Extensive characterizations were performed, including single-crystal X-ray analysis, which revealed the intriguing binuclear structure of these complexes. This structural motif comprises two rare-earth ions intricately double-bridged by two oxygen atoms from the PT ligand, resulting in a distinctive and intriguing geometry. Furthermore, the central rare earth ion is surrounded by three sulfur atoms and two additional oxygen atoms, forming a unique distorted bicapped trigonal prismatic configuration. Compared with conventional antifouling biocides such as sodium pyrithione (NaPT), copper pyrithione (CuPT), and zinc pyrithione (ZnPT), these newly synthesized rare-earth complexes exhibited a remarkable boost in their in vitro antibacterial efficacy against both Gram-positive and Gram-negative bacteria. Additionally, these complexes demonstrated significant potential as antialgal agents, displaying impressive activity against marine planktonic organisms. These findings underscore the promising application prospects of these rare-earth complexes in the field of marine antifouling.
Collapse
Affiliation(s)
- Jinlei Li
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Haixi Research Institute, Xiamen, Fujian 361021, China
| | - Qiuyin Zhu
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Haixi Research Institute, Xiamen, Fujian 361021, China
| | - Yincai Wu
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Haixi Research Institute, Xiamen, Fujian 361021, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Fenglong Lin
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Haixi Research Institute, Xiamen, Fujian 361021, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Linze Liu
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Haixi Research Institute, Xiamen, Fujian 361021, China
| | - Libin Chen
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Haixi Research Institute, Xiamen, Fujian 361021, China
| | - Shenglong Wang
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Haixi Research Institute, Xiamen, Fujian 361021, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Lijun Song
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Haixi Research Institute, Xiamen, Fujian 361021, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| |
Collapse
|
20
|
Karyani TZ, Ghattavi S, Homaei A. Application of enzymes for targeted removal of biofilm and fouling from fouling-release surfaces in marine environments: A review. Int J Biol Macromol 2023; 253:127269. [PMID: 37804893 DOI: 10.1016/j.ijbiomac.2023.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Biofouling causes adverse issues in underwater structures including ship hulls, aquaculture cages, fishnets, petroleum pipelines, sensors, and other equipment. Marine constructions and vessels frequently are using coatings with antifouling properties. During the previous ten years, several alternative strategies have been used to combat the biofilm and biofouling that have developed on different abiotic or biotic surfaces. Enzymes have frequently been suggested as a cost-effective, substitute, eco-friendly, for conventional antifouling and antibiofilm substances. The destruction of sticky biopolymers, biofilm matrix disorder, bacterial signal interference, and the creation of biocide or inhibitors are among the catalytic reactions of enzymes that really can successfully prevent the formation of biofilms. In this review we presented enzymes that have antifouling and antibiofilm properties in the marine environment like α-amylase, protease, lysozymes, glycoside hydrolase, aminopeptidases, oxidase, haloperoxidase and lipases. We also overviewed the function, benefits and challenges of enzymes in removing biofouling. The reports suggest enzymes are good candidates for marine environment. According to the findings of a review of studies in this field, none of the enzymes were able to inhibit the development of biofilm by a site marine microbial community when used alone and we suggest using other enzymes or a mixture of enzymes for antifouling and antibiofilm purposes in the sea environment.
Collapse
Affiliation(s)
- Tayebeh Zarei Karyani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
21
|
Saccardi L, Schiebl J, Balluff F, Christ U, Gorb SN, Kovalev A, Schwarz O. Anti-Adhesive Surfaces Inspired by Bee Mandible Surfaces. Biomimetics (Basel) 2023; 8:579. [PMID: 38132517 PMCID: PMC10742288 DOI: 10.3390/biomimetics8080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Propolis, a naturally sticky substance used by bees to secure their hives and protect the colony from pathogens, presents a fascinating challenge. Despite its adhesive nature, honeybees adeptly handle propolis with their mandibles. Previous research has shown a combination of an anti-adhesive fluid layer and scale-like microstructures on the inner surface of bee mandibles. Our aim was to deepen our understanding of how surface energy and microstructure influence the reduction in adhesion for challenging substances like propolis. To achieve this, we devised surfaces inspired by the intricate microstructure of bee mandibles, employing diverse techniques including roughening steel surfaces, creating lacquer structures using Bénard cells, and moulding resin surfaces with hexagonal patterns. These approaches generated patterns that mimicked the bee mandible structure to varying degrees. Subsequently, we assessed the adhesion of propolis on these bioinspired structured substrates. Our findings revealed that on rough steel and resin surfaces structured with hexagonal dimples, propolis adhesion was significantly reduced by over 40% compared to unstructured control surfaces. However, in the case of the lacquer surface patterned with Bénard cells, we did not observe a significant reduction in adhesion.
Collapse
Affiliation(s)
- Leonie Saccardi
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Jonas Schiebl
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Franz Balluff
- Department of Applied Coating Technology, Fraunhofer-Institute for Manufacturing Engineering and Automation (IPA), 70569 Stuttgart, Germany
| | - Ulrich Christ
- Department of Applied Coating Technology, Fraunhofer-Institute for Manufacturing Engineering and Automation (IPA), 70569 Stuttgart, Germany
| | - Stanislav N. Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Alexander Kovalev
- Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Oliver Schwarz
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| |
Collapse
|
22
|
Hao S, Qi Y, Zhang Z. Influence of Light Conditions on the Antibacterial Performance and Mechanism of Waterborne Fluorescent Coatings Based on Waterproof Long Afterglow Phosphors/PDMS Composites. Polymers (Basel) 2023; 15:3873. [PMID: 37835922 PMCID: PMC10574996 DOI: 10.3390/polym15193873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Marine microbial adhesion is the fundamental cause of large-scale biological fouling. Low surface energy coatings can prevent marine installations from biofouling; nevertheless, their static antifouling abilities are limited in the absence of shear forces produced by seawater. Novel waterborne antifouling coatings inspired by fluorescent coral were reported in this paper. Waterproof long afterglow phosphors (WLAP) were introduced into waterborne silicone elastomers by the physical blending method. The composite coatings store energy during the day, and the various colors of light emitted at night affect the regular physiological activities of marine bacteria. Due to the synergistic effect of fouling-release and fluorescence antifouling, the WLAP/polydimethylsiloxane (PDMS) composite coating showed excellent antifouling abilities. The antibacterial performance of coatings was tested under simulated day-night alternation, continuous light, and constant dark conditions, respectively. The results illustrated that the antibacterial performance of composite coatings under simulated day-night alternation conditions was significantly better than that under continuous light or darkness. The weak lights emitted by the coating can effectively inhibit the adhesion of bacteria. C-SB/PDMS showed the best antibacterial effect, with a bacterial adhesion rate (BAR) of only 3.7%. Constant strong light also affects the normal physiological behavior of bacteria, and the weak light of coatings was covered. The antibacterial ability of coatings primarily relied on their surface properties under continuous dark conditions. The fluorescent effect played a vital role in the synergetic antifouling mechanism. This study enhanced the static antifouling abilities of coatings and provided a new direction for environmentally friendly and long-acting marine antifouling coatings.
Collapse
Affiliation(s)
- Sinan Hao
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuhong Qi
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhanping Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116026, China; (S.H.); (Z.Z.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
23
|
Li H, Zhang L, Zhang X, Zhu G, Zheng D, Luo S, Wu M, Li WH, Liu FQ. Self-Enhanced Antibacterial and Antifouling Behavior of Three-Dimensional Porous Cu 2O Nanoparticles Functionalized by an Organic-Inorganic Hybrid Matrix. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38808-38820. [PMID: 37526484 DOI: 10.1021/acsami.3c06905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cu2O is currently an important protective material for domestic engineering and equipment used to exploit marine resources. Cu+ is considered to have more effective antibacterial and antifouling activities than Cu2+. However, disproportionation of Cu+ in the natural environment leads to its reduced bioavailability and weakened reactivity. Novel and functionalized Cu2O composites could enable efficient and environmentally friendly applications of Cu+. To this end, a series of three-dimensional porous Cu2O nanoparticles (3DNP-Cu2O) functionalized by organic (redox gel, R-Gel)-inorganic (reduced graphene oxide, rGO) hybrids─3DNP-Cu2O/rGOx@R-Gel─at room temperature by immobilization-reduction method was prepared and applied for protection against marine biofouling. 3DNP-Cu2O/rGO1.76@R-Gel includes rGO and R-Gel shape 3D porous Cu2O nanoparticles with diameters ∼177 nm and strong dispersion and antioxidant stability. Compared with commercial Cu2O (Cu2O-0), 3DNP-Cu2O/rGO1.76@R-Gel exhibited an ∼50% higher bactericidal rate, ∼96.22% higher water content, and ∼75% lower adhesion of mussels and barnacles. Moreover, 3DNP-Cu2O/rGOx@R-Gel maintains the same excellent, stable, and long-lasting bactericidal performance as Cu2O-0@R-Gel while reducing the average copper ion release concentration by ∼56 to 76%. This was also confirmed by X-ray diffraction, X-ray photoelectric spectroscopy (XPS), atomic absorption spectroscopy, and antifouling tests. In addition, XPS tests of rGO-Cu2+ and R-Gel-Cu2+, photocurrent tests of 3DNP-Cu2O/rGO1.76@R-Gel, and energy-dispersive spectrometry pictures of bacteria confirm that R-Gel and rGO act as electron donors and transfer substrates driving the reduction of Cu2+ (Cu2+ → Cu+) and the diffusion of Cu+. Thus, a self-growing antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel was achieved. The mechanism of accelerated bacterial inactivation and resistance to mussel and barnacle adhesion by 3DNP-Cu2O/rGO1.76@R-Gel was interpreted. It is shown that rGO and R-Gel are important players in the antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel.
Collapse
Affiliation(s)
- Huali Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Liuqin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Guangyu Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Dongchen Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Shuwen Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Min Wu
- Offshore Oil Production Plant of Sinopec Shengli Oilfield Company, Dongying 257237, China
| | - Wei-Hua Li
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Fa-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
24
|
Liu D, Shu H, Zhou J, Bai X, Cao P. Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review. Biomimetics (Basel) 2023; 8:biomimetics8020200. [PMID: 37218786 DOI: 10.3390/biomimetics8020200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Any equipment submerged in the ocean will have its surface attacked by fouling organisms, which can cause serious damage. Traditional antifouling coatings contain heavy metal ions, which also have a detrimental effect on the marine ecological environment and cannot fulfill the needs of practical applications. As the awareness of environmental protection is increasing, new environmentally friendly and broad-spectrum antifouling coatings have become the current research hotspot in the field of marine antifouling. This review briefly outlines the formation process of biofouling and the fouling mechanism. Then, it describes the research progress of new environmentally friendly antifouling coatings in recent years, including fouling release antifouling coatings, photocatalytic antifouling coatings and natural antifouling agents derived from biomimetic strategies, micro/nanostructured antifouling materials and hydrogel antifouling coatings. Highlights include the mechanism of action of antimicrobial peptides and the means of preparation of modified surfaces. This category of antifouling materials has broad-spectrum antimicrobial activity and environmental friendliness and is expected to be a new type of marine antifouling coating with desirable antifouling functions. Finally, the future research directions of antifouling coatings are prospected, which are intended to provide a reference for the development of efficient, broad-spectrum and green marine antifouling coatings.
Collapse
Affiliation(s)
- De Liu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haobo Shu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiangwei Zhou
- School of International Education, Wuhan University of Technology, Wuhan 430070, China
| | - Xiuqin Bai
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
| | - Pan Cao
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
25
|
Sha J, Liu X, Chen R, Yu J, Liu Q, Liu J, Zhu J, Liu P, Li R, Wang J. Surface hydrolysis-anchored eugenol self-polishing marine antifouling coating. J Colloid Interface Sci 2023; 637:67-75. [PMID: 36682119 DOI: 10.1016/j.jcis.2023.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Traditional self-polishing antifouling coatings kill surface organisms by releasing toxic substances, which are damaging to the ecosystem. As a natural antimicrobial substance, eugenol is environmentally friendly and has been proven by different research teams to be effective in enhancing the anti-fouling effect of coatings in the real sea. While in these previous research works, the eugenol was released directly into the seawater thus cannot further serve as surface antifouling effect, leading to a limited antifouling effect of the coating. In this work, the quaternary ammonium component was introduced into the butyl ester-based resin - poly (eugenol methacrylate - acryloyloxyethyltrimethyl ammonium chloride - hexafluorobutyl methacrylate - methyl methacrylate - butyl methacrylate - ethylene glycol methyl ether acrylate) (EMQFP) coating for the first time by simple one-step free radical polymerization method. On the one hand, the eugenol produced by hydrolysis is anchored to the quaternary ammonium on the coating surface for a period of time due to the cationic-π interaction, instead of being released into seawater immediately after hydrolysis, thus increasing the utilization rate of eugenol; on the other hand, the negatively charged carboxylate groups generated after hydrolysis in the coating are mutually attracted to quaternary ammonium through electrostatic effect, so the resin chain segment conformation on the coating surface adjusted to produce zwitterionic-like structure, and the hydration of zwitterionic inhibits primary fouling adhesion.
Collapse
Affiliation(s)
- Jianang Sha
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China
| | - Xin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China.
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China.
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China
| |
Collapse
|
26
|
Mu M, Leermakers FAM, Chen J, Holmes M, Ettelaie R. Effect of polymer architecture on the adsorption behaviour of amphiphilic copolymers: A theoretical study. J Colloid Interface Sci 2023; 644:333-345. [PMID: 37120882 DOI: 10.1016/j.jcis.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
HYPOTHESIS Polymer architecture is known to have significant impact on its adsorption behaviour. Most studies have been concerned with the more concentrated, "close to surface saturation" regime of the isotherm, where complications such as lateral interactions and crowding also additionally affect the adsorption. We compare a variety of amphiphilic polymer architectures by determining their Henry's adsorption constant (kH), which, as with other surface active molecules, is the proportionality constant between surface coverage and bulk polymer concentration in a sufficiently dilute regime. It is speculated that not only the number of arms or branches, but also the position of adsorbing hydrophobes influence the adsorption, and that by controlling the latter the two can counteract each other. METHODOLOGY The Self-consistent field calculation of Scheutjens and Fleer was implemented to calculate the adsorbed amount of polymer for many different polymer architectures including linear, star and dendritic. Using the adsorption isotherms at very low bulk concentrations, we determined the value of kH for these. FINDINGS It is found that the branched structures (star polymers and dendrimers) can be viewed as analogues of linear block polymers based on the location of their adsorbing units. Polymers containing consecutive trains of adsorbing hydrophobes in all cases showed higher level of adsorption compared to their counterparts, where the hydrophobes were more uniformly distributed on the chains. While increasing the number of branches (or arms for star polymers) also confirmed the known result that the adsorption decreased with the number of arms, this trend can be partially offset by the appropriate choice of the location of anchoring groups.
Collapse
Affiliation(s)
- Mingduo Mu
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Frans A M Leermakers
- Wageningen Univ & Res, Phys Chem & Soft Matter, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Melvin Holmes
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
27
|
Lakhan MN, Chen R, Liu F, Shar AH, Soomro IA, Chand K, Ahmed M, Hanan A, Khan A, Maitlo AA, Wang J. Construction of antifouling marine coatings via layer-by-layer assembly of chitosan and acid siloxane resin. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
28
|
Xiong H, He X, Lou T, Bai X. Synthesis and characterization of new CNT-loaded CeO2 nanoparticles for antibacterial applications. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
29
|
Duan Y, Wu J, Qi W, Su R. Eco-friendly marine antifouling coating consisting of cellulose nanocrystals with bioinspired micromorphology. Carbohydr Polym 2023; 304:120504. [PMID: 36641170 DOI: 10.1016/j.carbpol.2022.120504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Nanomaterial-incorporated surfaces with microstructures have been widely used for marine antifouling coatings, yet limited green antifouling coatings are currently available for sustainable application, given the potential environmental effects of nanomaterial-based nanofillers. Here, by using natural sourced nanomaterials (cellulose nanocrystals, CNCs) as nanofillers, a nanocomposite superhydrophobic coating was fabricated via a simple sol-gel synthesis method. Notably, CNCs were firstly applied in the marine antifouling realm to form uniform and stable coatings, which were condensed with hydroxyl groups of hydrolyzed tetrapropyl zirconate, 3-glycidyloxypropyltrimethoxysilane, and methyltrimethoxysilane. The synthesized coatings gained a biomimetic microscopic ridge-like surface, where more CNCs contents contributed to finer microstructures. As a result of the influence of CNCs content on surface wettability and antifouling properties, the coating with CNCs accounting for 20 wt% of the total solid content (CNC20) delivered the best antifouling performance. Furthermore, 90-day marine field tests verified CNC20's excellent antifouling ability, reducing fouling by 82 % in comparison to the control group. Such a biomimicry study provides a novel strategy for the development of environmentally friendly coatings with CNCs nanofillers.
Collapse
Affiliation(s)
- Yanyi Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiangjiexing Wu
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
30
|
Rawi NN, Ramzi MM, Rahman NIA, Ariffin F, Saidin J, Bhubalan K, Mazlan NW, Zin NAM, Siong JYF, Bakar K, Azemi AK, Ismail N. Antifouling Potential of Ethyl Acetate Extract of Marine Bacteria Pseudomonas aeruginosa Strain RLimb. Life (Basel) 2023; 13:life13030802. [PMID: 36983957 PMCID: PMC10053361 DOI: 10.3390/life13030802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Biofouling is defined as the excessive colonization process of epibiotic organisms, ranging from microfoulers to macrofoulers, on any submerged surface in water. Previous research has attempted to explore the antifouling activity of bacterial isolates due to the biofouling problems occurring worldwide. One solution is to inhibit the early stage of fouling using secondary metabolites produced by marine bacteria. This study aims to determine the antifouling activities of the marine microorganism P. aeruginosa and to characterize the bacteria isolated as a potential anti-biofouling agent. The bacterial isolate was cultured and isolated on a media culture. The bacteria culture extract was extracted using ethyl acetate and concentrated prior to the bioassay method. It was screened for antibacterial activities against Gram-positive and Gram-negative bacteria, such as Bacillus cereus, Streptococcus uberis, Pseudomonas sp., and Vibrio parahaemolyticus, using the disk diffusion technique. The extract was investigated to verify its bioactivity in the prevention of biofilm formation following the crystal violet assay and aquarium test. The results indicated the inhibition of activity through biofilm formation, with the highest percentage at 83% of biofilm inhibition at a concentration of 0.1563 mg/mL. The bacterial isolate at a concentration of 5% showed the highest reduction in bacteria colonies in the aquarium test (161.8 × 103 CFU/mL compared to 722.5 × 103 CFU/mL for the blank sample). The bacterial isolate was characterized through phenotypic and genotypic tests for species identification. It was identified as a Gram-stain-negative, aerobic, and long-rod-shaped bacteria, designated as RLimb. Based on the 16S rDNA gene sequencing analysis, RLimb was identified as Pseudomonas aeruginosa (accession number: OP522351), exhibiting a similarity of 100% to the described neighbor P. aeruginosa strain DSM 50071. These results indicated that these isolated bacteria can potentially be used as a substitute for toxic antifoulants to prevent the formation of microfoulers.
Collapse
Affiliation(s)
- Nurul Najihah Rawi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
| | - Mujahidah Mohd Ramzi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
| | - Nor Izzati Abd Rahman
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
| | - Fazilah Ariffin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (F.A.); (N.W.M.)
| | - Jasnizat Saidin
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
| | - Kesaven Bhubalan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (F.A.); (N.W.M.)
| | - Noor Wini Mazlan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (F.A.); (N.W.M.)
| | - Nor Atikah Mohd Zin
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
| | - Julius Yong Fu Siong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
| | - Kamariah Bakar
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
- Correspondence: (A.K.A.); (N.I.); Tel.: +60-96683240 (N.I.)
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia (J.S.); (K.B.); (N.A.M.Z.); (J.Y.F.S.); (K.B.)
- Correspondence: (A.K.A.); (N.I.); Tel.: +60-96683240 (N.I.)
| |
Collapse
|
31
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
32
|
Abstract
Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combine properties of organic and inorganic materials, i.e., they can exhibit both high hardness and wear resistance from inorganic components as well as the flexibility and tunability from organic components. This strategy is used to prepare hard yet flexible antifouling coatings or polymer-ceramic hybrid antifouling coatings. In this mini-review, we report the recent advances in this field. Particularly, the effects of stereoscopic polysiloxane structures on their mechanical and antifouling properties are discussed in detail.
Collapse
|
33
|
Selim MS, Fatthallah NA, Shenashen MA, Higazy SA, Madian HR, Selim MM, El-Safty SA. Bioinspired Graphene Oxide-Magnetite Nanocomposite Coatings as Protective Superhydrophobic Antifouling Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2333-2346. [PMID: 36719844 DOI: 10.1021/acs.langmuir.2c03061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antifouling (AF) nanocoatings made of polydimethylsiloxane (PDMS) are more cost-efficient and eco-friendly substitutes for the already outlawed tributyltin-based coatings. Here, a catalytic hydrosilation approach was used to construct a design inspired by composite mosquito eyes from non-toxic PDMS nanocomposites filled with graphene oxide (GO) nanosheets decorated with magnetite nanospheres (GO-Fe3O4 nanospheres). Various GO-Fe3O4 hybrid nanofillers were dispersed into the PDMS resin through a solution casting method to evaluate the structure-property relationship. A simple coprecipitation procedure was used to fabricate magnetite nanospheres with an average diameter of 30-50 nm, a single crystal structure, and a predominant (311) lattice plane. The uniform bioinspired superhydrophobic PDMS/GO-Fe3O4 nanocomposite surface produced had a micro-/nano-roughness, low surface-free energy (SFE), and high fouling release (FR) efficiency. It exhibited several advantages including simplicity, ease of large-area fabrication, and a simultaneous offering of dual micro-/nano-scale structures simply via a one-step solution casting process for a wide variety of materials. The superhydrophobicity, SFE, and rough topology have been studied as surface properties of the unfilled silicone and the bioinspired PDMS/GO-Fe3O4 nanocomposites. The coatings' physical, mechanical, and anticorrosive features were also taken into account. Several microorganisms were employed to examine the fouling resistance of the coated specimens for 1 month. Good dispersion of GO-Fe3O4 hybrid fillers in the PDMS coating until 1 wt % achieved the highest water contact angle (158° ± 2°), the lowest SFE (12.06 mN/m), micro-/nano-roughness, and improved bulk mechanical and anticorrosion properties. The well-distributed PDMS/GO-Fe3O4 (1 wt % nanofillers) bioinspired nanocoating showed the least biodegradability against all the tested microorganisms [Kocuria rhizophila (2.047%), Pseudomonas aeruginosa (1.961%), and Candida albicans (1.924%)]. We successfully developed non-toxic, low-cost, and economical nanostructured superhydrophobic FR composite coatings for long-term ship hull coatings. This study may expand the applications of bio-inspired functional materials because for multiple AF, durability and hydrophobicity are both important features in several industrial applications.
Collapse
Affiliation(s)
- Mohamed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Nesreen A Fatthallah
- Processes Design & Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Mohamed A Shenashen
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken305-0047, Japan
| | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Hekmat R Madian
- Processes Design & Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj11942, Saudi Arabia
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken305-0047, Japan
| |
Collapse
|
34
|
Takamura H, Kinoshita Y, Yorisue T, Kadota I. Chemical synthesis and antifouling activity of monoterpene-furan hybrid molecules. Org Biomol Chem 2023; 21:632-638. [PMID: 36562351 DOI: 10.1039/d2ob02203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Geraniol, a monoterpene, and furan are structural motifs that exhibit antifouling activity. In this study, monoterpene-furan hybrid molecules with potentially enhanced antifouling activity were designed and synthesized. The nine synthetic hybrids showed antifouling activity against the cypris larvae of the barnacle Balanus (Amphibalanus) amphitrite with EC50 values of 1.65-4.70 μg mL-1. This activity is higher than that of geraniol and the reference furan compound. This hybridization approach to increase antifouling activity is useful and can also be extended to other active structural units.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuya Kinoshita
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Takefumi Yorisue
- Institute of Natural and Environmental Sciences, University of Hyogo, 6 Yayoigaoka, Sanda 669-1546, Japan.,Division of Nature and Environmental Management, Museum of Nature and Human Activities, 6 Yayoigaoka, Sanda 669-1546, Japan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
35
|
Ru JC, Zhao XL, Cao ZH, Chen CZ, Li P, Li ZH. Acute Toxicity of a Novel anti-fouling Material Additive DCOIT to Marine Chlorella sp. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1018-1022. [PMID: 36318303 DOI: 10.1007/s00128-022-03623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main ingredient in SeaNine-211, a new antifouling agent that replaces organotin compounds to prevent the growth of fouling organisms on board. Biocides from antifoulants can cause problems for marine ecosystems by destroying non-target algal species. This study evaluated the potential adverse effects DCOIT using the Marine Chlorella sp. The concentration of DCOIT were set according to the semi-inhibitory concentrations for acute exposure experiments, and relevant oxidative stress indicators were measured to assess the acute toxic effects. The results showed that the inhibition concentrations (IC50) of DCOIT against Marine Chlorella sp was 2.522 mg/L. The genes related to photosynthesis and antioxidant capacity showed the effect of promoting low concentration and inhibiting high concentration. In addition, based on the ultrastructural observation and the expression analysis of photosynthesis related genes, it was found that DCOIT had a significant effect on plant photosynthesis.
Collapse
Affiliation(s)
- Jin-Chuang Ru
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Xue-Li Zhao
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Zhi-Han Cao
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, 264209, Weihai, Shandong, China
| | - Ping Li
- Marine College, Shandong University, 264209, Weihai, Shandong, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, 264209, Weihai, Shandong, China.
| |
Collapse
|
36
|
Saha R, Bhattacharya D, Mukhopadhyay M. Advances in modified antimicrobial peptides as marine antifouling material. Colloids Surf B Biointerfaces 2022; 220:112900. [DOI: 10.1016/j.colsurfb.2022.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
|
37
|
Xie J, Qi S, Ran Q, Dong L. The Preparation of a Novel Hyperbranched Antifouling Material and Application in the Protection of Marine Concrete. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8402. [PMID: 36499901 PMCID: PMC9741258 DOI: 10.3390/ma15238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Marine fouling on concrete has become one of the severest problems that damage the surface and even cause internal corrosion of marine concrete. Dissimilarly to the previous abuse of toxic antifoulants, developing hydrophobic waterborne antifouling materials could be regarded as one of the most environment-friendly and potential directions to protect marine concrete. However, the insufficient hydrophobicity, antifouling, and mechanical properties limit their application. Herein, we reported a series of hybrid coatings combining hyperbranched polyglycerol (HPG) decorated waterborne fluoro silicone polyurethane (H) and HPG-grafted graphene oxide (G-HPG) that improve the hydrophobicity, antifouling, and mechanical properties. The hybrid materials were modified by the hyperbranched polyglycerol synthesized based on the anionic-ring-opening reaction between glycerol and ethylene glycol or polyethylene glycol. Remarkably, the hydrophobicity (115.19°) and antifouling properties (BSA absorption of 2.33 μg/cm2 and P. tricornutum attachment of 1.289 × 104 CFU/cm2) of the materials could be developed by the modification of HPG with higher generation numbers and backbone molecular weights. Moreover, the mechanical properties negligibly decreased (tensile strength decreased from 11.29 MPa to 10.49 MPa, same pencil hardness and adhesion grade as H of 2H and grade 2). The results revealed that the HPG of higher generation numbers and backbone molecular weights could benefit materials with enhanced antifouling properties and hydrophobicity. The method of hyperbranched modification can be regarded as potentially effective in developing the durability and antifouling properties of marine antifouling materials.
Collapse
Affiliation(s)
- Junhao Xie
- School of Material Science and Engineering, Southeast University, Nanjing 211189, China
| | - Shuai Qi
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing 211103, China
| | - Qianping Ran
- School of Material Science and Engineering, Southeast University, Nanjing 211189, China
| | - Lei Dong
- School of Material Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
38
|
Gomes LC, Saubade F, Amin M, Spall J, Liauw CM, Mergulhão F, Whitehead KA. A Comparison of Vegetable Leaves and Replicated Biomimetic Surfaces on the Binding of Escherichia coli and Listeria monocytogenes. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Jiang Y, Xian C, Xu X, Zheng W, Zhu T, Cai W, Huang J, Lai Y. Robust PAAm-TA hydrogel coated PVDF membranes with excellent crude-oil antifouling ability for sustainable emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Durand H, Whiteley A, Mailley P, Nonglaton G. Combining Topography and Chemistry to Produce Antibiofouling Surfaces: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4718-4740. [PMID: 36162127 DOI: 10.1021/acsabm.2c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite decades of research on the reduction of surface fouling from biomolecules or micro-organisms, the ultimate antibiofouling surface remains undiscovered. The recent covid-19 pandemic strengthened the crucial need for such treatments. Among the numerous approaches that are able to provide surfaces with antibiofouling properties, chemical, biological, and topographical strategies have been implemented for instance in the marine, medical, or food industries. However, many of these methods have a biocidal effect and, with antibioresistance and biocide resistance a growing threat on humanity, strategies based on reducing adsorption of biomolecules and micro-organism are necessary for long-term solutions. Bioinspired strategies, combining both surface chemistry and topography, are currently at the heart of the best innovative and sustainable solutions. The synergistic effect of micro/nanostructuration, together with engineered chemical or biological functionalization is believed to contribute to the development of antibiofouling surfaces. This review aims to present approaches combining hydrophobic or hydrophilic chemistries with a specific topography to avoid biofouling in various industrial environments and healthcare facilities.
Collapse
Affiliation(s)
| | - Amelia Whiteley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | | |
Collapse
|
41
|
Ren CG, Liu ZY, Zhong ZH, Wang XL, Qin S. Integrated biotechnology to mitigate green tides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119764. [PMID: 35841985 DOI: 10.1016/j.envpol.2022.119764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Around the world, green tides are happening with increasing frequency because of the dual effects of increasingly intense human activity and climate change; this leads to significant impacts on marine ecology and economies. In the last decade, the world's largest green tide, which is formed by Ulva/Enteromorpha porifera, has become a recurrent phenomenon every year in the southern Yellow Sea (China), and it has been getting worse. To alleviate the impacts of such green tide outbreaks, multiple measures need to be developed. Among these approaches, biotechnology plays important roles in revealing the outbreak mechanism (e.g., molecular identification technology for algal genotypes), controlling and preventing outbreaks at the origin sites (e.g., technology to inhibit propagation), and utilizing valuable algal biomass. This review focuses on the various previously used biotechnological approaches that may be applicable to worldwide seaweed blooms that result from global climate change and environmental degradation.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Zheng-Yi Liu
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-Hai Zhong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Song Qin
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
42
|
Blasiak R, Jouffray JB, Amon DJ, Moberg F, Claudet J, Søgaard Jørgensen P, Pranindita A, Wabnitz CCC, Österblom H. A forgotten element of the blue economy: marine biomimetics and inspiration from the deep sea. PNAS NEXUS 2022; 1:pgac196. [PMID: 36714844 PMCID: PMC9802412 DOI: 10.1093/pnasnexus/pgac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The morphology, physiology, and behavior of marine organisms have been a valuable source of inspiration for solving conceptual and design problems. Here, we introduce this rich and rapidly expanding field of marine biomimetics, and identify it as a poorly articulated and often overlooked element of the ocean economy associated with substantial monetary benefits. We showcase innovations across seven broad categories of marine biomimetic design (adhesion, antifouling, armor, buoyancy, movement, sensory, stealth), and use this framing as context for a closer consideration of the increasingly frequent focus on deep-sea life as an inspiration for biomimetic design. We contend that marine biomimetics is not only a "forgotten" sector of the ocean economy, but has the potential to drive appreciation of nonmonetary values, conservation, and stewardship, making it well-aligned with notions of a sustainable blue economy. We note, however, that the highest ambitions for a blue economy are that it not only drives sustainability, but also greater equity and inclusivity, and conclude by articulating challenges and considerations for bringing marine biomimetics onto this trajectory.
Collapse
Affiliation(s)
- Robert Blasiak
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Diva J Amon
- SpeSeas, D'Abadie, Trinidad and Tobago
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Fredrik Moberg
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005 Paris, France
| | - Peter Søgaard Jørgensen
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- The Global Economic Dynamics and the Biosphere Academy Program, Royal Swedish Academy of Science, 104 05 Stockholm, Sweden
| | - Agnes Pranindita
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Colette C C Wabnitz
- Stanford Center for Ocean Solutions, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
- Institute for the Oceans and Fisheries, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Henrik Österblom
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- South American Institute for Resilience and Sustainability Studies, CP 20200 Maldonado, Uruguay
| |
Collapse
|
43
|
Xiong G, Zhang Z, Zhang C, Qi Y. SLAP@g-C 3N 4 Fluorescent Photocatalytic Composite Powders Enhance the Anti-Bacteria Adhesion Performance and Mechanism of Polydimethylsiloxane Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3005. [PMID: 36080041 PMCID: PMC9457994 DOI: 10.3390/nano12173005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent antifouling and photocatalytic antifouling technologies have shown potential in the field of marine antifouling. SLAP@g-C3N4/PDMS (SLAP@CN/PDMS) composite antifouling coatings were designed and prepared using g-C3N4, sky-blue long afterglow phosphor (SLAP), and polydimethylsiloxane (PDMS). The fluorescence emitted by SLAP under dark conditions was used to excite g-C3N4 for fluorescent photocatalysis and to prolong the photocatalytic activity of g-C3N4. Key data were collected by testing and characterization and are presented in this work. The results showed that g-C3N4 was successfully coated on the SLAP surface and formed a heterogeneous structure. After the composite powder was added to the PDMS coating, the coating maintained low surface energy but enhanced the surface roughness of the coating. The experimental results of degraded Rhodamine B (RhB) showed that SLAP prolonged the g-C3N4 photocatalytic activity time. The anti-marine bacterial adhesion performance of the coating was investigated by bacterial adhesion experiments. The results showed that SLAP@CN could effectively improve the anti-bacterial adhesion performance of PDMS coating, in which the anti-bacterial adhesion performance of SLAP@CN-2.5/PDMS was improved by nearly 19 times. This antifouling coating introduces fluorescent antifouling, photocatalytic antifouling, and fluorescence-driven photocatalytic antifouling based on the low surface energy antifouling of silicones and achieves "all-weather" fluorescent photocatalytic antifouling.
Collapse
Affiliation(s)
- Gang Xiong
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| | - Zhanping Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| | - Chen Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| | - Yuhong Qi
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| |
Collapse
|
44
|
Bing W, Jin E, Tian L, Jin H, Liu Z. Construction and application of bionic antifouling coatings inspired by soft coral. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wei Bing
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- School of Chemistry and Life Science Changchun University of Technology Changchun China
| | - E. Jin
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
| | - Limei Tian
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- Weihai Institute for Bionics‐Jilin University Weihai China
| | - Huichao Jin
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Zhuo Liu
- Department of the Lymphatic and Vascular Surgery Key Laboratory of Lymphatic Surgery Jilin Province China‐Japan Union Hospital of Jilin University Changchun China
| |
Collapse
|
45
|
Xiong G, Zhang Z, Qi Y. Preparation of g-C 3N 4/TNTs/CNTs Photocatalytic Composite Powder and Its Enhancement of Antifouling Performance of Polydimethylsiloxane Coatings. NANOMATERIALS 2022; 12:nano12142442. [PMID: 35889666 PMCID: PMC9320443 DOI: 10.3390/nano12142442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023]
Abstract
Semiconductor photocatalytic materials have shown potential in the field of antifouling due to their good antibacterial properties, stability, and nontoxic properties. It is an effective way to use them to improve the static antifouling performance of silicone antifouling coatings. g-C3N4/TNTs/CNTs (CNTC) photocatalytic composite powders were prepared and introduced into polydimethylsiloxane (PDMS) coatings to enhance their antifouling performance. Firstly, g-C3N4/TNTs with heterostructure were thermally polymerized by urea and TiO2 nanotubes (TNTs), and then g-C3N4/TNTs and multi-walled carbon nanotubes (CNTs) were composited to obtain CNTC. Finally, CNTC was added into PDMS to prepare g-C3N4/TNTs/CNTs/PDMS (CNTC/P) composite antifouling coating. The results showed that CNTC successfully recombined and formed a heterostructure, and the recombination rate of photogenerated carriers decreased after recombination. The addition of CNTC to PDMS increased the hydrophobicity and roughness while reducing the surface energy (SE) of the coatings. CNTC could effectively improve the anti-attachment performance of PDMS coatings to bacteria and benthic diatom. The bacterial attachment rate (AB) and benthic diatom attachment rate (AD) of CNTC/P-20 were, respectively, 13.1% and 63.1%; they are much lower than that of the coating without photocatalytic composite powder. This coating design provides a new idea for developing new “efficient” and “green” photocatalytic composite antifouling coatings.
Collapse
Affiliation(s)
- Gang Xiong
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China; (G.X.); (Y.Q.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| | - Zhanping Zhang
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China; (G.X.); (Y.Q.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
- Correspondence:
| | - Yuhong Qi
- Key Laboratory of Ship-Machinery Maintenance & Manufacture, Dalian Maritime University, Dalian 116000, China; (G.X.); (Y.Q.)
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116000, China
| |
Collapse
|
46
|
Antifouling Systems Based on Copper and Silver Nanoparticles Supported on Silica, Titania, and Silica/Titania Mixed Oxides. NANOMATERIALS 2022; 12:nano12142371. [PMID: 35889595 PMCID: PMC9320147 DOI: 10.3390/nano12142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Silica, titania, and mixed silica–titania powders have been used as supports for loading 5 wt% Cu, 5 wt% Ag, and 2.5 wt% Cu-2.5 wt% Ag with the aim of providing a series of nanomaterials with antifouling properties. All the solids were easily prepared by the wetness-impregnation method from commercially available chemical precursors. The resulting materials were characterized by several techniques such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, N2 physisorption, and temperature-programmed reduction measurements. Four selected Cu and Ag SiO2- and TiO2-supported powders were tested as fillers for the preparation of marine antifouling coatings and complex viscosity measurements. Titania-based coatings showed better adhesion than silica-based coatings and the commercial topcoat. The addition of fillers enhances the resin viscosity, suggesting better workability of titania-based coatings than silica-based ones. The ecotoxicological performance of the powders was evaluated by Microtox luminescence tests, using the marine luminescent bacterium Vibrio fisheri. Further investigations of the microbiological activity of such materials were carried out focusing on the bacterial growth of Pseudoalteromonas sp., Alteromonas sp., and Pseudomonas sp. through measurements of optical density at 600 nm (OD600nm).
Collapse
|
47
|
Fluorinated-Triazole-Modified ZnO and Its Application in Marine Antifouling. COATINGS 2022. [DOI: 10.3390/coatings12060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The accumulation of marine biological growth has irreversible negative effects on shipping and coastal fisheries. In this paper, a new antibacterial nanofiller—triazole fluoroaromatic hydrocarbon−modified nano−zinc oxide (ZnO−APTES−TRF)—was prepared by a Cu(I)−catalyzed azide–alkyne click chemical reaction. The modification of nano−ZnO with triazole ring fluoroaromatic hydrocarbons were testified by FT−IR, XPS, and EDS. The grafting rate of ZnO−APTES−TRF can reach 32.38%, which was verified by the TGA test. The ZnO−APTES−TRF was mixed with zinc acrylate resin to produce a low surface energy antifouling coating with a surface water contact angle of 106°. The bactericidal rate of ZnO−APTES−TRF against Escherichia coli, Staphylococcus aureus, and Pseudoalteromonas sp. can reach more than 98% due to the synergistic effect of triazole and fluorine. The 120−day marine experiment shows that the low surface energy antifouling coating of ZnO−APTES−TRF/ZA is expected to be widely used in the field of marine antifouling.
Collapse
|
48
|
Liu X, Yang JL, Rittschof D, Maki JS, Gu JD. Redirecting marine antibiofouling innovations from sustainable horizons. Trends Ecol Evol 2022; 37:469-472. [PMID: 35303993 DOI: 10.1016/j.tree.2022.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/15/2022]
Abstract
Biofouling has great environmental, economic, and societal impacts. Emerging and promising strategies for antibiofouling require incorporation of sustainability concepts. To this end, key research priorities should be given to disrupting attachment of organisms or engineering innovative surfaces to slough off fouling organisms from the surfaces, with more holistic considerations of other viable options, including eco-friendly antifouling chemicals.
Collapse
Affiliation(s)
- Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu 210094, China; Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Daniel Rittschof
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - James S Maki
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, Guangdong 519082, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.
| |
Collapse
|
49
|
Gao Y, Meng Q, Zhou X, Luo X, Su Z, Chen Z, Huang R, Liu Y, Zhang X. How do environmentally friendly antifouling alkaloids affect marine fouling microbial communities? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152910. [PMID: 34999079 DOI: 10.1016/j.scitotenv.2021.152910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Most previous studies on antifouling (AF) agents have focused on the influence of biofilm formation constituted by single or multiple cultured microbial species, and very few studies have analyzed the relationship between environmentally friendly AF compounds and marine fouling microbial communities (MFMCs). This is the first investigation of the impact of three environmentally friendly alkaloids (5-chlorosclerotiamide, circumdatin F and notoamide C) produced by the deep-sea-derived fungus Aspergillus westerdijkiae on MFMCs using high-throughput Illumina sequencing in a field test. The results of this study showed that the three alkaloids could significantly decrease the coverage of marine microflora (p < 0.05) and affect the composition and diversity of MFMCs on polyvinyl chloride (PVC) plates. Furthermore, 5-chlorosclerotiamide and notoamide C could completely inhibit many macrofouler-inductive-bacteria, such as Pseudoalteromonas and Pseudomonas, and promote the anti-macrofouler-bacteria, such as Winogradskyella, from 0.21% to more than 10% of the MFMCs on PVC plates. These results suggested that 5-chlorosclerotiamide and notoamide C could influence the compositions of MFMCs and make it unfavorable for the settlement of macrofoulers, by reducing the abundance of macrofouler-inductive-bacteria and promoting the percentage of anti-macrofouler-bacteria on PVC plates. The present study provides a new way to evaluate the effect of environmentally friendly AF compounds and obtain a better understanding of the antifouling process.
Collapse
Affiliation(s)
- Yumiao Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Biological Sciences, University of Edinburgh, Edinburgh EH93FL, United Kingdom
| | - Qingyue Meng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuefeng Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ziheng Su
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yonghong Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
50
|
Dong Y, Feng D, Song GL, Su P, Zheng D. The effect of a biofilm-forming bacterium Tenacibaculum mesophilum D-6 on the passive film of stainless steel in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152909. [PMID: 34998779 DOI: 10.1016/j.scitotenv.2021.152909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The microbiologically influenced corrosion of 304 stainless steel in the presence of a marine biofilm-forming bacterium Tenacibaculum mesophilum D-6 was systematically investigated by means of electrochemical techniques and surface analyses to reveal the effect of the selective attachment and adsorption of the biofilms on the passivity breakdown of the stainless steel. It was found that the T. mesophilum D-6 was electroactive and could oxidize low valent cations and metal, facilitating the local dissolution of the passive film and the substrate in the film defects, nearly doubling the surface roughness. The biofilms of T. mesophilum D-6 with mucopolysaccharide secreta and chloride ions tended to preferentially adsorb at the defects of the passive film on the steel, yielding non-homogeneous microbial aggregates and local Cl- enrichment there. The adsorption of the bacteria and chloride ions reduced the thickness of passive film by 23.9%, and generate more active sites for pitting corrosion on the passive film and more semiconducting carrier acceptors in the film. The maximum current density of the 304 SS in the presence of T. mesophilum D-6 was over one order of magnitude higher than that in the sterile medium, and the largest pit was deepened 3 times.
Collapse
Affiliation(s)
- Yuqiao Dong
- Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Guang-Ling Song
- Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, China; The University of Queensland, School of Mechanical and Mining Engineering, Division of Materials Engineering, St Lucia, Qld 4072, Australia.
| | - Pei Su
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Dajiang Zheng
- Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|