1
|
Picone M, Marangoni S, Silan G, Volpi Ghirardini A, Piazza R, Bonato T. Hair analysis as a non-invasive method for assessing the exposure of wildlife to per- and poly-fluoroalkyl substances (PFAS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126443. [PMID: 40373857 DOI: 10.1016/j.envpol.2025.126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
In mammals, exposure to PFAS is usually assessed by measuring burdens in internal organs (i.e., liver and brain) or plasma, while less emphasis is devoted to non-invasive and non-destructive methods. We assess the suitability of hair as a non-invasive matrix for monitoring the exposure of mammals to 33 PFAS, including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs), perfluoroalkylether carboxylic acids (PFECAs), perfluoroalkylether sulfonic acids (PFESAs), perfluoroalkane sulfonyl fluoride-based substances (PASFs), and fluorotelomers (FTs). The Red fox is chosen as the target species due to its apical position in the terrestrial food web of the study area, the Cavallino-Treporti peninsula in North-East Italy. All analysed samples (n = 24) are positive for PFAS, with eight compounds quantified in all samples, including PFHxA, PFOA, PFDA, PFUnDA, PFDoDA, PFTriDA, PFTeDA, and PFOS. The highest mean concentration in hair samples is measured for PFOS (1.40 ± 0.48 ng g-1 dw) followed by PFDoDA (0.31 ± 0.05 ng g-1 dw), and PFOA (0.31 ± 0.19 ng g-1 dw), while the mean ∑33PFAS was 3.41 ± 0.93 ng g-1 dw. The dominance of PFOS and long-chain PFAS in the PFAS profile and the occurrence of compounds with even-numbered carbon chains at higher concentrations than the odd-numbered compounds with a one-carbon longer chain (i.e., PFOA > PFNA, PFDA > PFUnDA, PFDoDA > PFTriDA) suggest the trophic transfer along the terrestrial food web as the primary exposure pathway in the study area. The data suggest hair analysis as a reliable, non-invasive method for assessing the possible exposure of mammals to PFAS and suggested that the Red fox can be used as a sentinel of the environment, embracing the One Health perspective.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy.
| | - Simone Marangoni
- Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042, Este, Italy
| | - Giulia Silan
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Italy
| |
Collapse
|
2
|
Aune AA, Gabrielsen GW, Ellis HI, Jenssen BM. Triiodothyronine (T 3), but not resting metabolic rate correlates positively with per- and polyfluoroalkyl substances (PFAS) in Arctic terns. ENVIRONMENTAL RESEARCH 2024; 263:120200. [PMID: 39427944 DOI: 10.1016/j.envres.2024.120200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
In Arctic seabirds, positive correlations between per- and polyfluoroalkyl substances (PFAS) and thyroid hormones (THs) and resting metabolic rate (RMR) have been documented. Herein we investigated levels and patterns of PFAS in Arctic terns (Sterna paradisaea) nesting in Kongsfjorden, Svalbard (Norway), and if circulating concentrations of PFAS correlated with their circulating concentrations of TH, and the RMR of the birds. The hypothesis was that there will be positive correlations between PFAS, TH, and RMR, indicating that PFAS-induced increases in plasma THs could be responsible for the increased RMR. The dominating PFAS in the terns were perfluorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnDA) and perfluorotridecanoate (PFTrDA). The PFAS pattern was similar to what has been found in other seabirds in Kongsfjorden. There were positive correlations between several PFAS and total triiodothyronine (TT3) concentrations in the terns. When sex was accounted for there were significant correlations in female terns, but not in males. There were no correlations between PFAS and RMR or between TT3 and RMR. This indicates that there is no link between a PFAS-induced increase in plasma TT3 concentrations and a resultant increased RMR. The positive associations between blood PFAS concentrations and plasma TT3 concentrations may be a passive association, as both PFAS and T3 bind to thyroid hormone binding proteins (THBP). We recommend that interrelationships between circulating concentrations of PFAS, THs and THBP are investigated further to identify the role of PFAS as TH disrupting chemicals and chemicals that may affect the RMR in birds.
Collapse
Affiliation(s)
- Aslak Arnesson Aune
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | | | - Hugh I Ellis
- Department of Biology, University of San Diego, San Diego, CA, 92110, USA
| | - Bjorn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway; Department of Arctic Technology, University Centre in Svalbard, P.O. Box 156 N-9171 Longyearbyen, Norway.
| |
Collapse
|
3
|
Brady S, Shuwal M, Capozzi SL, Xia C, Annis M, Grasman K, Venier M. A decade of data and hundreds of analytes: Legacy and emerging chemicals in North American herring gull plasma. CHEMOSPHERE 2024; 363:142797. [PMID: 38986784 DOI: 10.1016/j.chemosphere.2024.142797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Between 2010 and 2021, 199 herring gull serum samples were collected from Lake Michigan, Lake Huron, and Lake Erie, including two Areas of Concern: Saginaw Bay and the River Raisin. They were analyzed for 21 polybrominated diphenyl ether congeners, 10 non-PBDE flame retardants, 85 polychlorinated biphenyls, 17 legacy organochlorine pesticides, and 36 per- and polyfluoroalkyl substances. Σ36PFAS, Σ85PCB, Σ21PBDE, and Σ17Pesticide concentrations comprised 41-74%, 17-50%, 3-4%, and 5-9% of the total concentration, respectively. Median concentrations of the chemical groups ranged from 81.5 to 129 ng/g ww for PFAS, 26.3-158 ng/g ww for PCBs, 4.26-8.89 ng/g ww for PBDEs, and 8.08-23.0 ng/g ww for pesticides. The regional concentrations of all four classes of compounds are significantly decreasing when sites are combined with halving times of 11.3 ± 4.8, 8.2 ± 4.3, 5.9 ± 3.1, and 8.3 ± 4.2 years for the Penta-BDE mixture, ΣDDTs, Σ85PCBs and Σ36PFAS, respectively. These results suggest that, while PFAS has emerged as the dominant group of chemicals in the plasma, legacy pollutants continue to represent a threat to herring gulls and wildlife in the Great Lakes basin. PCBs were the largest contributors to the chemical load in plasma of birds whose colonies are located near the River Raisin, and continue to pose a threat to herring gulls within the two Areas of Concern.
Collapse
Affiliation(s)
- Sydney Brady
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN 47405, USA
| | - Matthew Shuwal
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN 47405, USA
| | - Staci L Capozzi
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN 47405, USA
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN 47405, USA
| | - Mandy Annis
- Biology Department, Calvin University, 3201 Burton Street SE, Grand Rapids, MI 49546, USA
| | - Keith Grasman
- Michigan Ecological Services Field Office, US Fish and Wildlife Service, 2651 Coolidge Road, East Lansing, MI, 48823, USA
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN 47405, USA.
| |
Collapse
|
4
|
Xie LN, Wang XC, Su LQ, Ji SS, Gu W, Barrett H, Dong XJ, Zhu HJ, Hou SS, Li ZH, Liu YL, Zhang L, Zhu Y. The association between per-/polyfluoroalkyl substances in serum and thyroid function parameters: A cross-sectional study on teenagers living near a Chinese fluorochemical industrial plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170985. [PMID: 38367719 DOI: 10.1016/j.scitotenv.2024.170985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Thyroid hormones (THs) play an important role in a wide range of crucial biological functions related to growth and development, and thyroid antibodies (TAs) can influence the biosynthesis of THs. Epidemiological studies have indicated that per- and polyfluoroalkyl substances (PFAS) could induce thyroid disruption, but studies on teenagers living in areas with high PFAS exposure are limited. This cross-sectional study focused on 836 teenagers (11- 15 years) living near a Chinese fluorochemical industrial plant. Decreased levels of free thyroxine (FT4, ﹤9.6 pmol/L, abnormal rate = 19.0 %) and elevated levels of free triiodothyronine (FT3, ﹥6.15 pmol/L, abnormal rate = 29.8 %) were observed. Correlations of serum PFAS concentrations and TAs/THs were analyzed. Increased PFOA was identified as a risk factor of decreased FT4 by using unadjusted (OR: 11.346; 95 % CI: 6.029, 21.352, p < 0.001) and adjusted (OR: 12.566; 95 % CI: 6.549, 24.115, p < 0.001) logistic regression models. In addition, significantly negative correlations were found between log10 transformed PFOA and FT4 levels using linear (unadjusted: β = -1.543, 95 % CI: -1.937, -1.148, p < 0.001; adjusted: β = -1.534, 95 % CI: -1.930, -1.137, p < 0.001) and BKMR models. For abnormal FT3, a significantly positive association between PFHxS and FT3 levels was observed in a regression model (unadjusted: β = -0.903, 95 % CI: -1.212, -0.595, p < 0.001; adjusted: β = -0.894, 95 % CI: -1.204, -0.583, p < 0.001), and PFHxS was identified as a risk factor (unadjusted: OR: 4.387; 95 % CI: 2.619, 7.346, p < 0.001; adjusted: OR: 4.527; 95 % CI: 2.665, 7.688, p < 0.001). Sensitivity analyses confirmed the robustness of the above results. This study reported the elevated PFAS exposure and thyroid function of teenagers living near a fluorochemical industrial plant from China.
Collapse
Affiliation(s)
- Lin-Na Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao-Chen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li-Qin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Sai-Sai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Xiao-Jie Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui-Juan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Sha-Sha Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhen-Huan Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yi-Lin Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ling Zhang
- Zibo Maternal and Child Health Hospital, Zibo, Shandong Province 255000, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
5
|
Khan EA, Greve M, Russell I, Ciesielski TM, Lundregan S, Jensen H, Rønning B, Bones AM, Asimakopoulos AG, Waugh CA, Jaspers VLB. Lead exposure is related to higher infection rate with the gapeworm in Norwegian house sparrows (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123443. [PMID: 38278400 DOI: 10.1016/j.envpol.2024.123443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Anthropogenic pollution is identified as an important threat to bird and other wildlife populations. Many metals and toxic elements, along with poly- and perfluoroalkyl substances (PFASs) are known to induce immunomodulation and have previously been linked to increased pathogen prevalence and infectious disease severity. In this study, the house sparrow (Passer domesticus) was investigated at the coast of Helgeland in northern Norway. This population is commonly infected with the parasitic nematode "gapeworm" (Syngamus trachea), with a prevalence of 40-60 % during summer months. Gapeworm induces severe respiratory disease in birds and has been previously demonstrated to decrease survival and reproductive success in wild house sparrows. The aim of this study was to investigate whether a higher exposure to pollution with PFASs, metals and other elements influences gapeworm infection in wild house sparrows. We conducted PFASs and elemental analysis on whole blood from 52 house sparrows from Helgeland, including analyses of highly toxic metals such as lead (Pb), mercury (Hg) and arsenic (As). In addition, we studied gapeworm infection load by counting the parasite eggs in faeces from each individual. We also studied the expression of microRNA 155 (miR155) as a key regulator in the immune system. Elevated blood concentrations of Pb were found to be associated with an increased prevalence of gapeworm infection in the house sparrow. The expression of miR155 in the plasma of the house sparrow was only weakly associated with Pb. In contrast, we found relatively low PFASs concentrations in the house sparrow blood (∑ PFASs 0.00048-354 μg/L) and PFASs were not associated to miR155 nor infection rate. The current study highlights the potential threat posed by Pb as an immunotoxic pollutant in small songbirds.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology, Norway.
| | - Melissa Greve
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Isabelle Russell
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Sarah Lundregan
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Henrik Jensen
- Department of Biology, Norwegian University of Science and Technology, Norway
| | - Bernt Rønning
- Department of Teacher Education, Norwegian University of Science and Technology, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology, Norway
| | | | | | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Norway
| |
Collapse
|
6
|
Wells MR, Coggan TL, Stevenson G, Singh N, Askeland M, Lea MA, Philips A, Carver S. Per- and polyfluoroalkyl substances (PFAS) in little penguins and associations with urbanisation and health parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169084. [PMID: 38056658 DOI: 10.1016/j.scitotenv.2023.169084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are increasingly detected in wildlife and present concerning and unknown health risks. While there is a growing body of literature describing PFAS in seabird species, knowledge from temperate Southern Hemisphere regions is lacking. Little penguins (Eudyptula minor) can nest and forage within heavily urbanised coastal environments and hence may be at risk of exposure to pollutants. We analysed scat contaminated nesting soils (n = 50) from 17 colonies in lutruwita/Tasmania for 16 PFAS, plasma samples (n = 45) from nine colonies, and three eggs for 49 PFAS. We detected 14 PFAS across the sample types, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) most commonly detected. Mean concentration of PFOS in plasma was 2.56 ± 4.3 ng/mL (
Collapse
Affiliation(s)
- Melanie R Wells
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia.
| | - Timothy L Coggan
- Environment Protection Authority Victoria, 200 Victoria Street, Carlton 3053, Victoria, Australia; ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde 2113, New South Wales, Australia
| | - Navneet Singh
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Matthew Askeland
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Annie Philips
- Wildlife Veterinary Consultant, Hobart 7000, Tasmania, Australia
| | - Scott Carver
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Odum School of Ecology, University of Georgia, GA, USA 30602; Center for the Ecology of Infectious Diseases, University of Georgia, GA, USA 30602
| |
Collapse
|
7
|
Ross TA, Zhang J, Wille M, Ciesielski TM, Asimakopoulos AG, Lemesle P, Skaalvik TG, Atkinson R, Jessop R, Jaspers VLB, Klaassen M. Assessment of contaminants, health and survival of migratory shorebirds in natural versus artificial wetlands - The potential of wastewater treatment plants as alternative habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166309. [PMID: 37586507 DOI: 10.1016/j.scitotenv.2023.166309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The rapid destruction of natural wetland habitats over past decades has been partially offset by an increase in artificial wetlands. However, these also include wastewater treatment plants, which may pose a pollution risk to the wildlife using them. We studied two long-distance Arctic-breeding migratory shorebird species, curlew sandpiper (Calidris ferruginea, n = 69) and red-necked stint (Calidris ruficollis, n = 103), while on their Australian non-breeding grounds using an artificial wetland at a wastewater treatment plant (WTP) and a natural coastal wetland. We compared pollutant exposure (elements and per- and poly-fluoroalkyl substances/PFASs), disease (avian influenza), physiological status (oxidative stress) of the birds at the two locations from 2011 to 2020, and population survival from 1978 to 2019. Our results indicated no significant differences in blood pellet pollutant concentrations between the habitats except mercury (WTP median: 224 ng/g, range: 19-873 ng/g; natural wetland: 160 ng/g, 22-998 ng/g) and PFASs (total PFASs WTP median: 85.1 ng/g, range: <0.01-836 ng/g; natural wetland: 8.02 ng/g, <0.01-85.3 ng/g) which were higher at the WTP, and selenium which was lower at the WTP (WTP median: 5000 ng/g, range: 1950-34,400 ng/g; natural wetland: 19,200 ng/g, 4130-65,200 ng/g). We also measured higher blood o,o'-dityrosine (an indicator of protein damage) at the WTP. No significant differences were found for adult survival, but survival of immature birds at the WTP appeared to be lower which could be due to higher dispersal to other wetlands. Interestingly, we found active avian influenza infections were higher in the natural habitat, while seropositivity was higher in the WTP, seemingly not directly related to pollutant exposure. Overall, we found limited differences in pollutant exposure, health and survival of the shorebirds in the two habitats. Our findings suggest that appropriately managed wastewater treatment wetlands could provide a suitable alternative habitat to these migratory species, which may aid in curbing the decline of shorebird populations from widespread habitat loss.
Collapse
Affiliation(s)
- Tobias A Ross
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia.
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Michelle Wille
- Sydney School for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway; Department of Arctic Technology, The University Center in Svalbard, 9171 Longyearbyen, Norway
| | | | - Prescillia Lemesle
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Tonje G Skaalvik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Robyn Atkinson
- Victorian Wader Study Group, Thornbury, VIC, 3071, Australia
| | - Roz Jessop
- Victorian Wader Study Group, Thornbury, VIC, 3071, Australia
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Marcel Klaassen
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, VIC 3216, Australia; Victorian Wader Study Group, Thornbury, VIC, 3071, Australia
| |
Collapse
|
8
|
Sebastiano M, Jouanneau W, Blévin P, Angelier F, Parenteau C, Pallud M, Ribout C, Gernigon J, Lemesle JC, Robin F, Pardon P, Budzinski H, Labadie P, Chastel O. Physiological effects of PFAS exposure in seabird chicks: A multi-species study of thyroid hormone triiodothyronine, body condition and telomere length in South Western France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165920. [PMID: 37527721 DOI: 10.1016/j.scitotenv.2023.165920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
There is growing evidence that poly and perfluoroalkyl substances (PFAS) exposure leads to the disruption of thyroid hormones including thyroxine (T4) and triiodothyronine (T3), and may affect telomeres, repetitive nucleotide sequences which protect chromosome ends. Many seabird species are long-lived top predators thus exhibit high contaminant levels, and PFAS-disrupting effects on their physiology have been documented especially in relation to the endocrine system in adults. On the contrary, studies on the developmental period (i.e., chicks), during which exposure to environmental contaminants may have a greater impact on physiological traits, remain scarce to this date. We carried out a multi-species study with the aim to assess whether and to which extent chicks of four gull species (herring gull, great and lesser black-backed gull, yellow-legged gull) in South Western France are contaminated by PFAS, and to bring further evidence about their potential physiological consequences. Linear PFOS showed concentrations of concern as it was generally >10 times higher than the other PFAS, and exceeded a threshold toxicity level (calculated from previous studies in birds) in almost all sampled chicks. Nonetheless, in herring gull male chicks, total T3 levels were significantly and negatively associated with perfluorodecanoate (PFDA) and perfluorododecanoate (PFDoDA) and positively associated with perfluorotetradecanoate (PFTeDA) in female chicks. Total T3 levels were also positively associated with PFDoDA in great black backed gull male chicks and with perfluorotridecanoate (PFTrDA) in lesser black backed gull chicks. In lesser and great black-backed gulls, both females and males showed significant negative associations between several PFAS and their body condition, and a positive association between telomere length and L-PFOS in the yellow-legged gull was also found. These results corroborate previous findings and need to be further explored as they suggest that PFAS may interfere with the physiological status of chicks during the developmental period, potentially inducing long-lasting consequences.
Collapse
Affiliation(s)
- M Sebastiano
- Unité Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, CNRS, CP32, 7 rue Cuvier, Paris, France; Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France.
| | - W Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France
| | - P Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France; Akvaplan-niva AS, Fram Centre, NO-9296 Tromsø, Norway
| | - F Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France
| | - C Parenteau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France
| | - M Pallud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France
| | - C Ribout
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France
| | - J Gernigon
- Réserve Naturelle de Lilleau des Niges, 17880, France
| | - J C Lemesle
- Réserve Naturelle de Lilleau des Niges, 17880, France
| | - F Robin
- Réserve Naturelle de Lilleau des Niges, 17880, France; Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | - P Pardon
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | - H Budzinski
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | - P Labadie
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | - O Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ. La Rochelle, France
| |
Collapse
|
9
|
Vilar CC, Andrades R, Guabiroba HC, de Oliveira-Filho RR, Condini MV, Hostim-Silva M, Joyeux JC. Impacts of mining pollution on coastal ecosystems: is fish body condition a reliable indicator? MARINE ENVIRONMENTAL RESEARCH 2023; 190:106070. [PMID: 37421704 DOI: 10.1016/j.marenvres.2023.106070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Identifying reliable biological indicators is fundamental to efficiently assess human impacts on biodiversity and to monitor the outcomes of management actions. This study investigates whether body condition is an appropriate indicator of putative effects from iron ore mining tailings on marine fishes, focusing on the world's largest mining disaster - known as the Mariana disaster, in Brazil. Eight species were used to test the hypothesis that individuals inhabiting an area severely impacted by tailings have reduced body condition in comparison to those in control areas near (<60 km) and distant (>120 km) from the impact site. Contrary to our prediction, no significant difference in condition was detected between the impacted area and both near and distant controls in seven of the eight species. The results indicate that body condition, as measured by the scaled mass index, has limited applicability as indicator of impact from mining pollution on the fishes analysed. Hypotheses that could explain our findings are proposed, including nutrient provisioning from continental drainage that could indirectly influence fish condition and compensate for the deleterious effects of mining pollution.
Collapse
Affiliation(s)
- Ciro Colodetti Vilar
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29075-910, Brazil.
| | - Ryan Andrades
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Helder Coelho Guabiroba
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Ronaldo Ruy de Oliveira-Filho
- Laboratório de Ecologia de Peixes Marinhos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101, km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil
| | - Mario Vinicius Condini
- Laboratório de Ecologia de Peixes Marinhos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101, km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil
| | - Mauricio Hostim-Silva
- Laboratório de Ecologia de Peixes Marinhos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101, km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil
| | - Jean-Christophe Joyeux
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| |
Collapse
|
10
|
Lopez-Antia A, Piña B, Lacorte S, Bervoets L, Eens M. Transcriptomic effects of Perfluoralkyl acids on the adipose tissue of a songbird species at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121478. [PMID: 36972811 DOI: 10.1016/j.envpol.2023.121478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Perfluoralkyl acids (PFAS) have been regarded as global pollutants for at least twenty years, with potentially negative physiological effects on multiple vertebrate species including humans. Here we analyze the effects of the administration of environmentally-relevant levels of PFAS on caged canaries (Serinus canaria) by using a combination of physiological, immunological, and transcriptomic analyses. This constitutes a completely new approach to understand the toxicity pathway of PFAS in birds. While we observed no effects on physiological and immunological parameters (e.g, body weight, fat index, cell-mediated immunity), the transcriptome of the pectoral fatty tissue showed changes compatible with the known effects of PFAS as obesogens in other vertebrates, particularly in mammals. First, transcripts related to the immunological response were affected (mainly enriched), including several key signaling pathways. Second, we found a repression of genes related to the peroxisome response and fatty acid metabolism. We interpret these results as indicative of the potential hazard of environmental concentrations of PFAS on the fat metabolism and the immunological system of birds, while exemplifying the ability of transcriptomic analyses of detecting early physiological responses to toxicants. As the potentially affected functions are essential for the survival of the animals during, for example, migration, our results underline the need for tight control of the exposure of natural populations of birds to these substances.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain.
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
11
|
Sun J, Cheng Y, Song Z, Ma S, Xing L, Wang K, Huang C, Li D, Chu J, Liu Y. Large-scale assessment of exposure to legacy and emerging per- and polyfluoroalkyl substances in China's shorebirds. ENVIRONMENTAL RESEARCH 2023; 229:115946. [PMID: 37080273 DOI: 10.1016/j.envres.2023.115946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Emerging per- and polyfluoroalkyl substances (PFAS) have become more widely applied, whereas legacy PFAS such as PFOS continue to distribute ubiquitously in the environment. Large-scale assessment of wildlife exposure to both emerging and legacy PFAS plays a key role in effective biomonitoring to better discriminate regional contamination patterns and provide early warnings. Using eggs of two closely-related shorebird species collected across China during the breeding season in 2021, we constructed contrasting PFAS levels and profiles in coastal versus inland populations. The highest ∑PFAS concentrations were found in two Kentish plover (Charadrius alexandrinus) populations from the Bohai Sea, a semi-enclosed shallow bay located in northeast China. These two populations showed exceptionally high PFOA concentrations (mean: 94 and 121 ng/g wet weight; West and North Bohai Sea, respectively) dominating the overall PFAS profile (66% for both). This pattern is characteristic, compared to that of other seabird eggs worldwide. By comparison, PFAS profile in the white-faced plover (Charadrius dealbatus) population at the South China Sea coast was dominated by PFOS (46%), which showed similar levels to those at the North Bohai Sea coast (mean: 29 and 20 ng/g, respectively). PFAS concentrations of Kentish plovers from the remote Qinghai Lake were lower compared to the three coastal populations, and were dominated by PFNA (mean: 2.6 ng/g, 29%) and PFOS (mean: 2.5 ng/g, 27%). None of the eggs analyzed in the present study exceeded estimated toxicity reference values for PFOS or PFOA. Additionally, the emerging 6:2 Cl-PFESA was detected in eggs from all regions, while its concentrations were highest in the Bohai Sea populations, and short-chain PFBS was only detected in the North Bohai Sea population. Our results indicate intensive local emissions of PFOA and emerging PFAS at the Bohai Sea region, and warrant further investigation and monitoring.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Yachang Cheng
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zitan Song
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shisheng Ma
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Lingling Xing
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Kai Wang
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Chenjing Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Donglai Li
- Provincial Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Sciences, Liaoning University, Shenyang, Liaoning, China
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Sun J, Xing L, Chu J. Global ocean contamination of per- and polyfluoroalkyl substances: A review of seabird exposure. CHEMOSPHERE 2023; 330:138721. [PMID: 37080473 DOI: 10.1016/j.chemosphere.2023.138721] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been extensively produced and used as surfactants and repellents for decades. To date, the global contamination pattern of PFAS in marine biota has seldomly been reviewed. Seabirds are ideal biomonitoring tools to study environmental contaminants and their effects. Here, we compiled and synthesized reported PFAS concentrations in various seabird species to reflect spatiotemporal patterns and exposure risks of major PFAS on a global ocean scale. Perfluorooctane sulfonic acid (PFOS) was the most studied PFAS in seabirds, which showed the highest level in eggs of common guillemots (U. aalge) from the Baltic Sea, followed by great cormorants (P. carbo) from the North Sea and double-crested cormorants (P.auritus) from the San Francisco Bay, whereas the lowest were those reported for Antarctic seabirds. The temporal pattern showed an overall higher level of PFOS in the late 1990s and early 2000s, consistent with the phase-out of perfluorooctane sulfonyl fluoride-based products. Maximum liver PFOS concentrations in several species such as cormorants and fulmars from Europe and North America exceeded the estimated toxicity reference values. Systematic evaluations using representative species and long time-series are necessary to understand contamination patterns in seabirds in South America, Africa, and Asia where information is lacking. In addition, limited research has been conducted on the identification and toxic effects of novel substitutes such as fluorotelomers and ether PFAS (F-53B, Gen-X etc.) in seabirds. Further research, including multi-omics analysis, is needed to comprehensively characterize the exposure and toxicological profiles of PFAS in seabirds and other wildlife.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| | - Lingling Xing
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| |
Collapse
|
13
|
Dulsat-Masvidal M, Bertolero A, Mateo R, Lacorte S. Legacy and emerging contaminants in flamingos' chicks' blood from the Ebro Delta Natural Park. CHEMOSPHERE 2023; 312:137205. [PMID: 36368533 DOI: 10.1016/j.chemosphere.2022.137205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The Ebro Delta is a wetland of international importance for waterbird conservation but severally affected by intensive agriculture, toxic waste discharges from a past chloro-alkali industry and affluence of tourism. The discharge of contaminants associated to these activities pose waterbirds breeding in the Ebro Delta at risk. The aim of this study is to evaluate the exposure of 91 emerging and legacy micropollutants in flamingo chicks (Phoenicopterus roseus), an emblematic species of the area. Fifty chicks of 45-60 days were captured, biometric parameters measured and whole blood collected. Compounds analyzed included perfluoroalkyl substances (PFASs), pharmaceuticals, organophosphate esters (OPEs), in-use pesticides, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), and polycyclic aromatic hydrocarbons (PAHs). The results indicate a multi-exposure of flamingo's chicks from a very young age. PFASs were the most ubiquitous compounds with ∑PFASs ranging from 9.34 to 576 ng/mL, being PFOA, PFOS and PFHxS detected in all samples. ∑PAHs ranged from 0.19 to 423 ng/mL, ∑PCBs from 0.5 to 15.6 ng/mL and ∑OCs from 1.35 to 37.8 ng/mL. Pharmaceuticals, OPEs and in-use pesticides were not detected. The flamingo's filtering behavior on mud and maternal ovo-transference are the more likely routes of exposure of organic micropollutants to flamingos' chicks. The reported levels of micropollutants were not associated with any alteration in the body condition of chicks. This is the first study to describe flamingos chicks' exposure to multiple contaminants, highlighting the importance of biomonitoring for wildlife conservation and biodiversity preservation.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Albert Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, Trinquet 8, 43580, Deltebre, Spain
| | - Rafael Mateo
- Institute for Game and Wildlife Research (IREC), CSIC-UCLM-JCCM, Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
14
|
Bellot P, Dupont SM, Brischoux F, Budzinski H, Chastel O, Fritsch C, Lourdais O, Prouteau L, Rocchi S, Angelier F. Experimental Exposure to Tebuconazole Affects Metabolism and Body Condition in a Passerine Bird, the House Sparrow (Passer domesticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2500-2511. [PMID: 35899983 DOI: 10.1002/etc.5446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Triazole compounds are among the most widely used fungicides in agroecosystems to protect crops from potential fungal diseases. Triazoles are suspected to have an impact on nontarget species due to their interactions with nonfungal sterol synthesis, and wild birds are likely to be contaminated by triazole fungicides because many of them live in agroecosystems. We experimentally tested whether exposure to environmental concentrations of a triazole could alter key integrative traits (metabolic rates and body condition) of an agroecosystem sentinel species, the house sparrow (Passer domesticus). Wild-caught adult sparrows were maintained in captivity and exposed (exposed group) or not (control group) for 7 continuous months to tebuconazole through drinking water. The metabolic rates of exposed and control sparrows were then measured at two different temperatures (12 °C and 25 °C), which correspond, respectively, to the thermoregulation and thermoneutrality temperatures of this species. We found that exposed sparrows had lower resting metabolic rates (i.e., measured at thermoneutrality, 25 °C) than controls. However, the thermoregulatory metabolic rates (i.e., measured at 12 °C) did not differ between exposed and control sparrows. Although the body mass and condition were not measured at the beginning of the exposure, sparrows at the time of the metabolic measurements 7 months after the onset of such exposure had a higher body condition than controls, supporting further the idea that tebuconazole affects metabolic functions. Our study demonstrates for the first time that the use of tebuconazole can alter metabolism and could potentially lead to adverse effects in birds. Environ Toxicol Chem 2022;41:2500-2511. © 2022 SETAC.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Sophie Marie Dupont
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Hélène Budzinski
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Louise Prouteau
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
- Service de Parasitologie-Mycologie, CHU Jean Minjoz, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| |
Collapse
|
15
|
Ambaye TG, Vaccari M, Prasad S, Rtimi S. Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58405-58428. [PMID: 35754080 DOI: 10.1007/s11356-022-21513-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS) containing materials such as aqueous film-forming foam (AFFF), protective coatings, landfill leachates, and wastewater are produced. Most of the polluted wastewaters are left untreated and discharged into the environment, which causes high environmental risks, a threat to human beings, and hampered socioeconomic growth. Developing sustainable alternatives for removing PFAS from contaminated soil and water has attracted more attention from policymakers and scientists worldwide under various conditions. This paper reviews the recent emerging technologies for the degradation or sorption of PFAS to treat contaminated soil and water. It highlights the mechanisms involved in removing these persistent contaminants at a molecular level. Recent advances in developing nanostructured and advanced reduction remediation materials, challenges, and perspectives in the future are also discussed. Among the variety of nanomaterials, modified nano-sized iron oxides are the best sorbents materials due to their specific surface area and photogenerated holes and appear extremely promising in the remediation of PFAS from contaminated soil and water.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, New Delhi, 110012, India
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, CH-1201, Geneva, Switzerland.
| |
Collapse
|
16
|
Choy ES, Elliott KH, Esparza I, Patterson A, Letcher RJ, Fernie KJ. Potential disruption of thyroid hormones by perfluoroalkyl acids in an Arctic seabird during reproduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119181. [PMID: 35378199 DOI: 10.1016/j.envpol.2022.119181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/12/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Arctic marine ecosystems are experiencing rapid change, such as ocean warming and enhanced pollutants. Perfluoroalkyl acids (PFAAs) arriving via long-range transport have been detected in Arctic wildlife, including seabirds which are considered sentinels of marine ecosystem health. There is evidence that PFAA exposure leads to the disruption of thyroid hormones (THs), such as thyroxine (T4) and triiodothyronine (T3), which play important roles in metabolism, incubation, and thermoregulation in seabirds. Here, we investigated relationships between PFAAs and THs [total T4 (TT4), free T4 (FT4), total T3 (TT3) and free T3 (FT3)] in blood plasma collected from 63 thick-billed murres (Uria lomvia) at a colony located in northern Hudson Bay (2016-2018). We then tested if PFAAs and TH levels were related to fitness-associated reproductive traits, such as body mass and hatch dates. PFUdA, PFOS, and PFTrDA were the dominant PFAAs in murre blood, accounting for approximately 77% of ∑PFAA. Females had higher PFAAs than males, possibly due to higher trophic feeding. While FT3 increased with PFOS, PFNA, PFDA, PFDoA, PFTeDA, ∑PFCA7, and ∑PFAA in murres, TT3 decreased with PFOS, PFDoA, and PFTeDA in males, but not females, suggesting thyroid disruption. TT3 increased with body mass, whereas several long-chain PFAAs were negatively correlated with body mass. Negative relationships between PFNA, PFDoA, PFTrDA, PFTeDA, and ∑PFAA with hatch dates may be the result of a disruption in incubation behaviour, resulting in earlier hatch dates. Consequently, TT3 concentrations were highest in males and females in 2018, a year in which PFAAs were lowest and hatch dates were delayed relative to 2017. As an Arctic seabird experiencing several indirect effects of climate change, the interaction of PFAAs on thyroid activity may cause additional stress to murres.
Collapse
Affiliation(s)
- Emily S Choy
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Ilse Esparza
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada
| | - Kim J Fernie
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC, H9X 3V9, Canada; Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
17
|
Distefano GG, Zangrando R, Basso M, Panzarin L, Gambaro A, Volpi Ghirardini A, Picone M. Assessing the exposure to human and veterinary pharmaceuticals in waterbirds: The use of feathers for monitoring antidepressants and nonsteroidal anti-inflammatory drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153473. [PMID: 35093362 DOI: 10.1016/j.scitotenv.2022.153473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Exposure to active pharmaceutical ingredients (APIs) from both human and veterinary sources is an increasing threat to wildlife welfare and conservation. Notwithstanding, tracking the exposure to pharmaceuticals in non-target and sensitive vertebrates, including birds, is seldom performed and relies almost exclusively on analysing internal organs retrieved from carcasses or from experimentally exposed and sacrificed birds. Clearly, this excludes the possibility of performing large-scale monitoring. Analysing feathers collected from healthy birds may permit this, by detecting APIs in wild birds, including protected and declining species of waterbirds, without affecting their welfare. To this end, we set up a non-destructive method for analysing the presence of non-steroidal anti-inflammatory drugs (NSAIDs), selective serotonin reuptake inhibitors (SSRIs) and noradrenaline reuptake inhibitors (SNRIs) in the feathers of fledglings of both the Mediterranean gull (Ichtyaetus melanocephalus) and the Sandwich tern (Thalasseus sandvicensis). The presence of several NSAIDs and SSRIs above the method quantification limits have confirmed that feathers might be a suitable means of evaluating the exposure of birds to APIs. Moreover, the concentrations indicated that waterbirds are exposed to NSAIDs, such as diclofenac, ibuprofen and naproxen, and SSRIs, such as citalopram, desmethylcitalopram, fluvoxamine and sertraline, possibly due to their widespread use and incomplete removal in wastewater treatment plants (WWTPs). The active ingredient diclofenac raises a the primary concern for the ecosystem and the welfare of the waterbirds, due to its high prevalence (100% and 83.3% in Mediterranean gull and Sandwich tern, respectively), its concentrations detected in feathers (11.9 ng g-1 and 6.7 ng g-1 in Mediterranean gull and Sandwich tern, respectively), and its documented toxicity toward certain birds.
Collapse
Affiliation(s)
- Gabriele Giuseppe Distefano
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Roberta Zangrando
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy; Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche, Via Torino 155, I-30170 Mestre, Venezia, Italy
| | | | - Lucio Panzarin
- Associazione Naturalistica Sandonatese, c/o Centro Didattico Naturalistico il Pendolino, via Romanziol 130, 30020 Noventa di Piave, Venezia, Italy
| | - Andrea Gambaro
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Annamaria Volpi Ghirardini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy.
| |
Collapse
|
18
|
Evaluation and validation of methodologies for the extraction of per- and polyfluoroalkyl substances (PFASs) in serum of birds and mammals. Anal Bioanal Chem 2022; 414:3017-3032. [PMID: 35182167 PMCID: PMC8934760 DOI: 10.1007/s00216-022-03962-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Advances in analytical techniques have allowed greater detection of environmental contaminants from small volumes of sample. Four methodologies were evaluated for the extraction of 53 per- and polyfluoroalkyl substances (PFASs) from eight classes in 200 µL of avian and mammal serum. Spiked serums at four concentrations (0, 0.5, 5.0 and 25 ng mL−1) were prepared by protein precipitation (PPT), enhanced matrix removal (EMR), weak anion exchange (WAX), and hydrophilic-lipophilic balance (HLB) solid-phase extraction cartridges. The extract from each methodology was analysed by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS), and concentrations were compared with known concentrations in the spiked media. EMR performed the best overall, with 40 of 53 compounds effectively recovered at 5 ng mL−1. Furthermore, EMR was effective overall at concentrations ranging from 0.5 to 25 ng mL−1 for 39 out of 53. Similarly, PPT was effective for 35 of 53 compounds at all spiked serum concentrations. There was a negative correlation between internal standard recovery for compounds with increasing octanol–water coefficients (Kow) for WAX (R = − 0.65, p = 0.0043) and HLB (R = − 0.62, p = 0.0077) extractions, indicating methanol may not be a suitable solvent for long-chain PFAS extraction from protein-rich tissues. EMR and PPT represent fast and effective methodologies for the extraction of PFASs from low volumes of serum which allows greater accuracy and precision that can be applied to future human and wildlife biomonitoring programmes.
Collapse
|
19
|
Jia S, Marques Dos Santos M, Li C, Snyder SA. Recent advances in mass spectrometry analytical techniques for per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 2022; 414:2795-2807. [PMID: 35132477 DOI: 10.1007/s00216-022-03905-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 11/29/2022]
Abstract
The ubiquitous presence of per- and polyfluoroalkyl substances (PFAS) in various environments has led to increasing concern, and these chemicals have been confirmed as global contaminants. Following the chemical regulatory restrictions imposed, PFAS alternatives that are presumed to be less toxic have been manufactured to replace the traditional ones in the market. However, owing to the original release and alternative usage, continuous accumulation of PFAS has been reported in environmental and human samples, with uncertain consequences for ecosystem and human health. It is crucial to promote and improve existing analytical techniques to facilitate the detection of trace amounts of PFAS in diverse environmental matrices. This review summarizes analytical methods that have been applied to and advanced for targeted detection and suspect screening of PFAS, which mainly include (i) sampling and sample preparation methods for various environment matrices and organisms, and quality assurance/quality control during the analysis process, and (ii) quantitative methods for targeted analysis and automated suspect screening strategies for non-targeted PFAS analysis, together with their applications, advantages, shortcomings, and need for new method development.
Collapse
Affiliation(s)
- Shenglan Jia
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Mauricius Marques Dos Santos
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Caixia Li
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
20
|
Mortensen ÅK, Verreault J, François A, Houde M, Giraudo M, Dam M, Jenssen BM. Flame retardants and their associations with thyroid hormone-related variables in northern fulmars from the Faroe Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150506. [PMID: 34601176 DOI: 10.1016/j.scitotenv.2021.150506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Flame retardants (FRs) are widely reported in tissues of seabirds including birds sampled from remote areas. There is evidence that FRs can disrupt the hypothalamic-pituitary-thyroid (HPT) axis in seabirds, although information is limited on thyroid-related mechanisms and effects. This study investigated the associations between concentrations of polybrominated diphenyl ethers (PBDEs) and other FRs, and changes in the HPT axis in northern fulmars (Fulmarus glacialis) from the Faroe Islands (North Atlantic). Plasma concentrations of thyroid hormones (THs), hepatic deiodinase type 1 (D1) activity, and transcription of selected TH-related genes in liver were used as markers of HPT axis changes. Liver concentrations of a certain PBDE congeners and other FRs including pentabromoethylbenzene (PBEB), dechlorane 602 (Dec-602), and dechlorane plus (DP) were associated with changes in thyroid status. Specifically, liver PBDE, PBEB and Dec-602 concentrations were associated with plasma TH levels (free thyroxine [FT4] and total triiodothyronine [TT3]). Liver DP concentrations were positively correlated with the TT4:FT4 ratios and mRNA levels of UDP-glucuronyltransferase-1, while those of PBEB were negatively associated with TT4:TT3 ratios and D1 activity. D1 activity was also positively associated with the tri-, tetra- and hexa-BDE congeners. Moreover, transcription of ABCC2, a hepatic TH transporter, was associated with certain liver PBDE concentrations. Although PBDEs and other FRs may be potential inhibitors of D1 activity, only a few of the targeted FRs had modest associations with hepatic D1 activity. Regardless, the relationships reported herein indicated that exposure to moderate levels of FRs can be associated with thyroid axis perturbation at the molecular/biochemical levels in this North Atlantic seabird species.
Collapse
Affiliation(s)
- Åse-Karen Mortensen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Anthony François
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maria Dam
- IVF Evnaskyn, Fjosagoeta 2, FO-100 Torshavn, Faroe Islands
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
21
|
Sebastiano M, Messina S, Marasco V, Costantini D. Hormesis in ecotoxicological studies: a critical evolutionary perspective. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Xiong X, Chen B, Wang Z, Ma L, Li S, Gao Y. Association between perfluoroalkyl substances concentration and bone mineral density in the US adolescents aged 12-19 years in NHANES 2005-2010. Front Endocrinol (Lausanne) 2022; 13:980608. [PMID: 36277702 PMCID: PMC9581310 DOI: 10.3389/fendo.2022.980608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Reports on the association of perfluoroalkyl substances (PFASs) exposure with adolescent bone health are scarce, and studies have primarily targeted maternal serum. OBJECTIVE We evaluated the relationship between autologous serum perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) levels and bone mineral density (BMD) in adolescents. METHODS We analyzed data from 1228 adolescents aged 12-19 years in the National Health and Nutrition Examination Survey (NHANES) 2005-2010 and used multiple regression analysis to identify the relationship between serum PFOA, PFOS, PFHxS, and PFNA concentrations and total femur, femoral neck, and lumbar spine BMD, in addition to multiple stratified subgroup analyses. RESULTS The mean age of participants was 15 years, males had higher serum PFAS concentrations than females. The results of multiple regression analysis showed that the natural log(ln)-transformed serum PFOA, PFOS, and PFNA concentrations were negatively correlated with total femur, femoral neck, and lumbar spine BMD (all p < 0.05), and ln-PFHxS was positively correlated with total femur and femoral neck BMD (all p< 0.05). In males, ln-PFOA was negatively associated with total femur and lumbar spine BMD (all p< 0.05), ln-PFOS was associated with the reduced total femur, femoral neck, and lumbar spine BMD (all p< 0.05), while ln-PFHxS and ln-PFNA were not observed to correlate with BMD at these three sites. In females, both ln-PFOA and ln-PFOS were negatively correlated with total femur and lumbar spine BMD (all p< 0.05), ln-PFHxS is associated with the increased total femur and femoral neck BMD (all p< 0.05), and ln-PFNA was negatively correlated with total femur and femoral neck BMD (all p< 0.05), most of the associations were confined to females. The associations of ln-PFOS with femoral neck BMD and ln-PFNA with total femur BMD were more significant in those who were overweight/obese and had anemia, respectively (all p for interaction < 0.05). CONCLUSIONS In this representative sample of US adolescents aged 12-19 years, certain PFAS were associated with lower bone mineral density, and most of the associations were confined to females. The negative effect of PFAS on BMD is more pronounced in those who are overweight/obese and have anemia. However, further studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Xianmei Xiong
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baihang Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqing Wang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liqiong Ma
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijia Gao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yijia Gao,
| |
Collapse
|
23
|
Behnisch PA, Besselink H, Weber R, Willand W, Huang J, Brouwer A. Developing potency factors for thyroid hormone disruption by PFASs using TTR-TRβ CALUX® bioassay and assessment of PFASs mixtures in technical products. ENVIRONMENT INTERNATIONAL 2021; 157:106791. [PMID: 34364217 DOI: 10.1016/j.envint.2021.106791] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Over the last decade, per- and polyfluoroalkyl substances (PFASs) have become one of the most heavily investigated persistent organohalogen compound class of environmental concern. However, knowledge about their toxicology is still scarce, although PFASs as individual compounds and their industrial mixtures were shown to exert effects on the thyroid hormone system. METHODS In vitro toxicity potency factors were established for thyroid hormone transport disruption potential using the novel TTR-TRβ CALUX® bioassay for major PFASs. We assessed technical PFASs mixtures, including aqueous film-forming foam (AFFF) surfactants and chromium mist suppressants (CMS) applications with and without total oxidizable precursor (TOP) by TTR-TRβ CALUX® assay for their thyroid hormone transport disrupting potential. RESULTS All PFASs listed in the German guideline for drinking water (German Environment Agency, 2017) affected the T4 binding to TTR, an important plasma thyroid hormone transport protein. For all tested PFASs, potency factors based on PC80 values relative to PFOA could be obtained and ranged between PFBA (0.0018) and PFOS (2.0). Applying in vitro potency factors obtained from the present in vitro TTR-TRβ CALUX® assay study and recently reported in vivo potency factors (Zeilmaker et al., 2018; Bil et al., 2021) on the above-mentioned German guideline for PFAS in drinking water, showed that the cumulative effect-based trigger values (in vivo and in vitro) are comparable (3.0 vs. 2.9 to 4.6 μg PFOA-EQ/l). Additionally, AFFF surfactants and CMS with and without TOP assay were tested. Highest activities were found in the older AFFF surfactants (2013/2014) due to higher PFOS/PFOA levels, which were already substituted with 6:2 FTS in 2019, resulting in much lower PFOA-EQ levels. As expected also the PFOA-EQ levels increased in the samples with TOP treatment compared to the original AFFF surfactants and CMS as confirmed here by biological and chemical PFOA-equivalents (PFOA-EQ) analysis. Additionally, CMS (which have been used in the electroplating chromium industry since the 1950s) as well as PFOS-free, but not PFAS-free fume suppressants (such as Fumetrol® 21) have been tested in the TTR-TRβ CALUX® assay and showed much lower activity levels then the AFFFs, confirmed by the similar potency determination based on chemical PFASs analysis followed by transformation to PFOA-EQ for comparison. The potency factor of 6:2 FTS, which is the main substitute for PFOS in CMS, indicates that it is approximately 100-times less potent as a thyroid hormone disruptor as compared to PFOS. CONCLUSION Potency factors based on PC80 values from TTR-TRβ CALUX® relative to PFOA have been developed for major PFASs. In AFFF surfactants and CMS a trend of higher activities with higher amounts of PFOS and PFOA have been found. PFOA and PFOS showed high responses in the TTR-TRβ CALUX® assay and had the largest contributions to the PFOA-EQs in the AFFF surfactants and CMS applications. Using potency factors as determined in the TTR-TRβ CALUX® to convert PFASs assessed by chemical analysis to PFOA-EQ led to comparable results as compared to the results from PFASs measured directly by the TTR-TRβ CALUX® assay. This study supports the claim that semiquantitative effect- and group-based in vitro CALUX bioanalysis tools can be applied effectively to assess industrial products containing complex mixtures with PFAS compounds for which no instrumental analysis are established, and for many compounds where in vitro toxicity data are not yet available.
Collapse
Affiliation(s)
- Peter A Behnisch
- BioDetection Systems B.V. (BDS), Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Harrie Besselink
- BioDetection Systems B.V. (BDS), Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Roland Weber
- POPs Environmental Consulting, Lindenfirststrasse 23, 73527 Schwäbisch Gmünd, Germany
| | - Wolfram Willand
- IUW International Consultant on Integrated Environmental Protection and POPs, Hochfirstweg 12, 79853 Lenzkirch, Germany
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Abraham Brouwer
- BioDetection Systems B.V. (BDS), Science Park 406, 1098 XH Amsterdam, the Netherlands; VU University Amsterdam, Faculty of Sciences, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|