1
|
Lu C, Zhang Y, Setälä H, Chen QL. Labile carbon input substantially increases priming effect in urban greenspace soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177258. [PMID: 39471950 DOI: 10.1016/j.scitotenv.2024.177258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Urban greenspace soils can store equal amount of carbon, or even more, compared to agricultural and forest soils, and play an important role in carbon sequestration. Despite its importance, the patterns and drivers of the priming effect-a key and complex process in soil organic matter decomposition-in urban ecosystems remain poorly understood. Here, we sampled soils in urban lawns, suburban lawns, and forests, and conducted a 30-day microcosm incubation with 13C-labelled glucose and nitrogen additions to explore whether and how the intensity of soil organic matter priming effect differs between urbanized and forest ecosystems. We found that lawn soils in urban (7.01 mg C g-1 SOC) and suburban (5.86) areas had a significantly higher intensity of priming effect than forest soils (1.34), with further enhancement observed in urban lawn soils through simulated nitrogen deposition. Moreover, the alpha diversity of soil bacteria and fungi was found to play a crucial role in modulating the priming effect, exhibiting a positive correlation with its intensity. These findings advance our understanding of the potential mechanisms behind the soil priming effect in urban greenspaces, providing crucial insights for predicting soil carbon stocks and environmental impacts of urban development.
Collapse
Affiliation(s)
- Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yifang Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heikki Setälä
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FIN-15140, Finland
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
2
|
Hao Y, Sun A, Lu C, Su JQ, Chen QL. Protists and fungi: Reinforcing urban soil ecological functions against flash droughts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175274. [PMID: 39117190 DOI: 10.1016/j.scitotenv.2024.175274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Rising instances of flash droughts are contributing to notable variability in soil moisture across terrestrial ecosystems. These phenomena challenge urban ecosystem services, yet the reaction of soil ecological functions (SEFs) to such events is poorly understood. This study investigates the responses of SEFs (about nutrient metabolism capacity and potential) and the microbiome under two specific scenarios: a flooding-drought sequence and a direct drought condition. Using quantitative microbial element cycling analysis, high-throughput sequencing, and enzyme activity measurements, we found that unlike in forests, the microbial composition in urban soils remained unchanged during flash drought conditions. However, SEFs were affected in both settings. Correlation analysis and Mantel test showed that forest soils exhibited more complex interactions among soil moisture, properties, and microbial communities. Positive linear correlation revealed that bacteria were the sole drivers of SEFs. Interestingly, while multi-threshold results suggested bacterial α diversity impeded the maximization of SEFs in urban soils, fungi and protists had a beneficial impact. Cross-domain network of urban soils had higher number of nodes and edges, but lower average degree and robustness than forest soils. Mantel test revealed that fungi and protist had significant correlations with bacterial composition in forest soils, but not in urban soils. In the urban network, the degree and eigenvector centrality of bacterial, fungal and protistan ASVs were significantly lower compared to those in the forest. These results suggest that the lower robustness of the microbial network in urban soils is attributed to limited interactions among fungi, consumer protists, and bacteria, contributing to the failure of microbial-driven ecological functions. Overall, our findings emphasize the critical role of fungi and protists in shielding urban soils from drought-induced disturbances and in enhancing the resistance of urban ecological functions amidst environmental changes.
Collapse
Affiliation(s)
- Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
3
|
Garg S, Nain P, Kumar A, Joshi S, Punetha H, Sharma PK, Siddiqui S, Alshaharni MO, Algopishi UB, Mittal A. Next generation plant biostimulants & genome sequencing strategies for sustainable agriculture development. Front Microbiol 2024; 15:1439561. [PMID: 39104588 PMCID: PMC11299335 DOI: 10.3389/fmicb.2024.1439561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
The best environment for plant growth and development contains certain essential metabolites. A broad category of metabolites known as "plant biostimulants" (PBs) includes biomolecules such as proteins, carbohydrates, lipids, and other secondary metabolites related to groups of terpenes, specific nitrogen-containing compounds, and benzene ring-conjugated compounds. The formation of biomolecules depends on both biotic and abiotic factors, such as the release of PB by plants, animals, and microorganisms, or it can result from the control of temperature, humidity, and pressure in the atmosphere, in the case of humic substances (HSs). Understanding the genomic outputs of the concerned organism (may be plants or others than them) becomes crucial for identifying the underlying behaviors that lead to the synthesis of these complex compounds. For the purposes of achieving the objectives of sustainable agriculture, detailed research on PBs is essential because they aid in increasing yield and other growth patterns of agro-economic crops. The regulation of homeostasis in the plant-soil-microbe system for the survival of humans and other animals is mediated by the action of plant biostimulants, as considered essential for the growth of plants. The genomic size and gene operons for functional and regulation control have so far been revealed through technological implementations, but important gene annotations are still lacking, causing a delay in revealing the information. Next-generation sequencing techniques, such as nanopore, nanoball, and Illumina, are essential in troubleshooting the information gaps. These technical advancements have greatly expanded the candidate gene openings. The secondary metabolites being important precursors need to be studied in a much wider scale for accurate calculations of biochemical reactions, taking place inside and outside the synthesized living cell. The present review highlights the sequencing techniques to provide a foundation of opportunity generation for agricultural sustainability.
Collapse
Affiliation(s)
- Shivanshu Garg
- Department of Biochemistry, CBSH-GBPUA&T, Pantnagar, India
| | - Pooja Nain
- Department of Soil Science, College of Agriculture, GBPUA&T, Pantnagar, India
| | - Ashish Kumar
- Department of Microbiology, CBSH-GBPUA&T, Pantnagar, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | | | - Pradeep Kumar Sharma
- Department of Environment Science, Graphic Era Deemed to be University, Dehradun, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | - Amit Mittal
- School of Allied Sciences, Graphic Era Hill University, Bhimtal, India
| |
Collapse
|
4
|
Lu C, Xiao Z, Li H, Han R, Sun A, Xiang Q, Zhu Z, Li G, Yang X, Zhu YG, Chen QL. Aboveground plants determine the exchange of pathogens within air-phyllosphere-soil continuum in urban greenspaces. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133149. [PMID: 38056267 DOI: 10.1016/j.jhazmat.2023.133149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The microbiome in the air-phyllosphere-soil continuum of urban greenspaces plays a crucial role in re-connecting urban populations with biodiverse environmental microbiomes. However, little is known about whether plant type affects the airborne microbiomes, as well as the extent to which soil and phyllosphere microbiomes contribute to airborne microbiomes. Here we collected soil, phyllosphere and airborne microbes with different plant types (broadleaf tree, conifer tree, and grass) in urban parks. Despite the significant impacts of plant type on soil and phyllosphere microbiomes, plant type had no obvious effects on the diversity of airborne microbes but shaped airborne bacterial composition in urban greenspaces. Soil and phyllosphere microbiomes had a higher contribution to airborne bacteria in broadleaf trees (37.56%) compared to conifer trees (9.51%) and grasses (14.29%). Grass areas in urban greenspaces exhibited a greater proportion of potential pathogens compared to the tree areas. The abundance of bacterial pathogens in phyllosphere was significantly higher in grasses compared to broadleaf and conifer trees. Together, our study provides novel insights into the microbiome patterns in air-phyllosphere-soil continuum, highlighting the potential significance of reducing the proportion of extensively human-intervened grass areas in future urban environment designs to enhance the provision of ecosystem services in urban greenspaces.
Collapse
Affiliation(s)
- Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Kang KA, Marín-Spiotta E, Vaughan E, Ferring CR, Ponette-González AG. Soil Black Carbon Increases Under Urban Trees with Road Density and Time: Opportunity Hotspots for Carbon Storage in Urban Ecosystems. ENVIRONMENTAL MANAGEMENT 2023:10.1007/s00267-023-01911-z. [PMID: 37993546 DOI: 10.1007/s00267-023-01911-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
Black carbon (BC) can comprise a significant fraction of the soil carbon pool in cities. However, vegetation cover and human activity influence the spatial distribution of urban soil BC. We quantified soil total carbon (TC), soil organic carbon (SOC), BC, and total nitrogen (TN) in a medium-sized city in Dallas-Fort Worth, Texas. Soils were sampled to 20 cm depth from underneath 16 paired Quercus stellata (post oak) trees and open lawns. Effects of vegetation cover, road density, and building age (a proxy for time since development) on soil C and N were analyzed. Soil OC concentrations were higher under post oak trees (5.5%) compared to open lawns (3.6%) at 0-10 cm, but not at 10-20 cm depth. In contrast, soil BC and TN did not differ by vegetation cover. There were significant interaction effects between vegetation cover and road density and vegetation cover and building age on soil BC. At 0-10 cm, soil BC concentrations, stock, and BC/SOC ratios increased more with road density under trees than lawns, indicating enhanced atmospheric BC deposition to tree canopies. Black carbon in tree soils also increased with building age as compared to lawn soils, likely due to higher BC retention under trees, enhanced BC losses under lawns, or both. Our findings show that urban tree soils are localized opportunity hotspots for BC storage in areas with elevated emissions and longer time since development. Conserving and planting urban trees above permeable surfaces and soils could contribute to long-term carbon storage in urban ecosystems.
Collapse
Affiliation(s)
- Katherina A Kang
- Department of Geography and the Environment, University of North Texas, Denton, TX, 76203, USA
- Department of Plant and Soil Science, University of Delaware, Newark, DE, 19716, USA
| | - Erika Marín-Spiotta
- Department of Geography, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Elliot Vaughan
- Department of Geography, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Evironmental Science Program, Southwest Minnesota State University, 1501 State St., Marshall, MN, 56258, USA
| | - C Reid Ferring
- Department of Geography and the Environment, University of North Texas, Denton, TX, 76203, USA
| | - Alexandra G Ponette-González
- Department of Geography and the Environment, University of North Texas, Denton, TX, 76203, USA.
- Department of City and Metropolitan Planning, University of Utah, Salt Lake City, UT, 84112, USA.
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
6
|
Jaeger FC, Handa IT, Paquette A, Parker WC, Messier C. Young temperate tree species show different fine root acclimation capacity to growing season water availability. PLANT AND SOIL 2023; 496:485-504. [PMID: 38510944 PMCID: PMC10948563 DOI: 10.1007/s11104-023-06377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 03/22/2024]
Abstract
Background and aims Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years. Methods Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Acer saccharum Marsh., Betula papyrifera Marsh., Larix laricina K. Koch, Pinus strobus L., Picea glauca (Moench) Voss and Quercus rubra L. established at the International Diversity Experiment Network with Trees (IDENT) field experiment in Sault Ste. Marie, Ontario, Canada. Four replicates of each monoculture were subjected to high or low water availability treatments. Results Absorptive fine root density increased by 67% for Larix laricina, and 90% for Picea glauca, under the high-water availability treatment at 0-5 cm soil depth. The two late successional, slower growing tree species, Acer saccharum and Picea glauca, showed higher plasticity in absorptive fine root biomass in the upper 5 cm of soil (PIv = 0.36 & 0.54 respectively), and lower plasticity in fine root depth over the entire 30 cm soil profile compared to the early successional, faster growing tree species Betula papyrifera and Larix laricina. Conclusion Temperate tree species show contrasting acclimation responses in absorptive fine root biomass and rooting depth to differences in water availability. Some of these responses vary with tree species successional status and seem to benefit both early and late successional tree species. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06377-w.
Collapse
Affiliation(s)
- Florentin C. Jaeger
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - I. Tanya Handa
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - Alain Paquette
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - William C. Parker
- Forest Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON Canada
| | - Christian Messier
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
- Institut des Sciences de La Forêt tempérée, Université du Québec en Outaouais, Ripon, Canada
| |
Collapse
|
7
|
Zhu J, Cao Y, He W, Xu Q, Xu C, Zhang X. Leaf functional traits differentiation in relation to covering materials of urban tree pits. BMC PLANT BIOLOGY 2021; 21:556. [PMID: 34814837 PMCID: PMC8609817 DOI: 10.1186/s12870-021-03316-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Understanding the ecological strategies of urban trees to the urban environment is crucial to the selection and management of urban trees. However, it is still unclear whether urban tree pit cover will affect plant functional traits. Here, we study the response of urban trees to different tree pit covers, analyzed the effects of different cover types on soil properties and their trade-off strategies based on leaf functional traits. RESULTS We found that there were obvious differences in the physical properties of the soil in different tree pit covers. Under the different tree pit cover types, soil bulk density and soil porosity reached the maximum under cement cover and turf cover, respectively. We found that tree pit cover significantly affected the leaf properties of urban trees. Leaf thickness, chlorophyll content index and stomatal density were mainly affected by soil bulk density and non-capillary porosity in a positive direction, and were affected by soil total porosity and capillary porosity in a negative direction. Leaf dry matter content and stomata area were mainly negatively affected by soil bulk density and non-capillary porosity, and positively affected by soil total porosity and capillary porosity. Covering materials of tree pits promoted the functional adjustment of plants and form the best combination of functions. CONCLUSION Under the influence of tree pit cover, plant have low specific leaf area, stomata density, high leaf thickness, chlorophyll content index, leaf dry matter content, leaf tissue density and stomata area, which belong to "quick investment-return" type in the leaf economics spectrum.
Collapse
Affiliation(s)
- Jiyou Zhu
- Research Center for Urban Forestry, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yujuan Cao
- Research Center for Urban Forestry, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Weijun He
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, Guangdong, China
| | - Qing Xu
- Research Center for Urban Forestry, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Chengyang Xu
- Research Center for Urban Forestry, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Xinna Zhang
- Research Center for Urban Forestry, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
8
|
MacGregor-Fors I, García-Arroyo M, Kotze DJ, Ojala E, Setälä H, Vauramo S. A more sustainable urban future calls for action: the city of Lahti as European Green Capital 2021. JOURNAL OF URBAN ECOLOGY 2021. [DOI: 10.1093/jue/juab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
In 2020, a small urban center from southern Finland, the City of Lahti, was awarded the 2021 European Green Capital, which recognizes and rewards local efforts that seek to improve the urban environment, together with its economy and the quality of life for its inhabitants, further posing ambitious goals for ecological improvement. In this commentary, we describe some of the key elements that made Lahti the 2021 European Green Capital, as well as some of the future plans for the city. We also highlight the importance of research-based knowledge as the foundation for achieving better outcomes in urban decision making.
Collapse
Affiliation(s)
- Ian MacGregor-Fors
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Michelle García-Arroyo
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - D Johan Kotze
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Elina Ojala
- Environmental Development, City of Lahti, Askonkatu 2, Lahti FI-15100, Finland
| | - Heikki Setälä
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Saara Vauramo
- Sustainable Lahti Foundation, Rautatienkatu 20, Lahti FI-15100, Finland
| |
Collapse
|
9
|
Kotze DJ, Ghosh S, Hui N, Jumpponen A, Lee BPYH, Lu C, Lum S, Pouyat R, Szlavecz K, Wardle DA, Yesilonis I, Zheng B, Setälä H. Urbanization minimizes the effects of plant traits on soil provisioned ecosystem services across climatic regions. GLOBAL CHANGE BIOLOGY 2021; 27:4139-4153. [PMID: 34021965 DOI: 10.1111/gcb.15717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics-even in old urban greenspaces where plant-soil interactions have a long history-clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.
Collapse
Affiliation(s)
- D Johan Kotze
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Subhadip Ghosh
- Centre for Urban Greenery and Ecology, National Parks Board, Singapore, Singapore
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, NY, USA
| | - Benjamin P Y-H Lee
- Wildlife Management Division, National Parks Board, Singapore, Singapore
| | - Changyi Lu
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Shawn Lum
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Richard Pouyat
- Emeritus USDA Forest Service, NRS, Affiliate Faculty Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | - Katalin Szlavecz
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Ian Yesilonis
- USDA Forest Service, Baltimore Field Station, Baltimore, MD, USA
| | - Bangxiao Zheng
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heikki Setälä
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|