1
|
Lin J, Li J, Liang X, Zhang H, Peng B, Xu L, Jia Y, Huang B, Liu F, Liu P, Ye M, Wu F, Xia J, Li P, Jin P. Proteomics analysis reveals the antagonistic interaction between high CO 2 and warming in the adaptation of the marine diatom Thalassiosira weissflogii in future oceans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125755. [PMID: 39880349 DOI: 10.1016/j.envpol.2025.125755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/28/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
While it is known that warming and rising CO2 level might interactively affect the long-term adaptation of marine diatoms, the molecular and physiological mechanisms underlying these interactions in the marine diatom Thalassiosira weissflogii on an evolutionary scale remain largely unexplored. In this study, we investigated the changes in metabolic pathways and physiological responses of T. weissflogii under long-term ocean acidification and/or warming conditions (∼3.5 years), integrating proteomics analyses and physiological measurements. Our findings reveal that proteins involved in central carbon metabolisms (e.g., tricarboxylic acid cycle and glycolysis) and fatty acid metabolism were significantly up-regulated in the long-term warming-adapted populations. However, the long-term adaptation to high CO2 acted antagonistically with warming, slowing down the central carbon metabolism and fatty acid metabolism by down-regulating protein expressions in the key metabolic pathways of the glycolysis and tricarboxylic acid cycle. Additionally, amino acid synthesis was accelerated in the long-term warming and its combination with high CO2-adapted populations. Physiological measurements further supported these findings, showing altered growth rates and metabolic activity under the combined warming and high CO2 conditions. Our results provide new insights into the molecular mechanisms underpinning the antagonistic interaction between high CO2 and warming on marine phytoplankton in the context of global change.
Collapse
Affiliation(s)
- Jiamin Lin
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China
| | - Jingyao Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiao Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hao Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Baoyi Peng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Leyao Xu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuan Jia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Bin Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fangzhou Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peixuan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fenghuang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ping Li
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China.
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Liang X, Raven JA, Beardall J, Overmans S, Xia J, Jin P. The trade-offs associated with the adaptions of marine microalgae to high CO 2 and warming. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106853. [PMID: 39577375 DOI: 10.1016/j.marenvres.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Trade-offs play vital roles in evolutionary theory, linking organism performance to changing environments in the context of global change. Marine microalgae, as one of the most important groups of primary producers in the biosphere, exhibit significant trade-offs across multiple traits in response to environmental changes, such as elevated CO2 (and consequent ocean acidification) and warming. In this review, we synthesize recent findings on the trade-offs associated with both short-term phenotypic acclimation and long-term genotypic adaptation of marine microalgae. Specifically, we discuss distinct classes of trade-offs (i.e., allocation trade-offs, acquisition trade-offs and specialist-generalist trade-offs) between multiple traits, such as growth rate, photosynthesis, nutrient acquisition, and stress tolerance. We also explored the underlying mechanisms driving these trade-offs. Finally, we discuss the broader ecological consequences of these trade-offs, such as potential shifts in species composition and ecosystem functions, and outline key research directions to better predict marine ecosystem responses to future global change scenarios.
Collapse
Affiliation(s)
- Xiao Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; School of Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Climate Change Cluster, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia; State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361105, China
| | - Sebastian Overmans
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Wu F, Zhou Y, Beardall J, Raven JA, Peng B, Xu L, Zhang H, Li J, Xia J, Jin P. The dynamics of adaptive evolution in microalgae in a high-CO 2 ocean. THE NEW PHYTOLOGIST 2025; 245:1608-1624. [PMID: 39611545 DOI: 10.1111/nph.20323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Marine microalgae demonstrate a notable capacity to adapt to high CO2 and warming in the context of global change. However, the dynamics of their evolutionary processes under simultaneous high CO₂ and warming conditions remain poorly understood. Here, we analyze the dynamics of evolution in experimental populations of a model marine diatom Phaeodactylum tricornutum. We conducted whole-genome resequencing of populations under ambient, high-CO2, warming and high CO2 + warming at 2-yr intervals over a 4-yr adaptation period. The common genes selected between 2- and 4-yr adaptation were found to be involved in protein ubiquitination and degradation and the tricarboxylic acid (TCA) cycle, and were consistently selected regardless of the experimental conditions or adaptation duration. The unique genes selected only by 4-yr adaptation function in respiration, fatty acid, and amino acid metabolism, facilitating adaptation to prolonged high CO2 with warming conditions. Corresponding changes at the metabolomic level, with significant alterations in metabolites abundances involved in these pathways, support the genomic findings. Our study, integrating genomic and metabolomic data, demonstrates that long-term adaptation of microalgae to high CO2 and/or warming can be characterized by a complex and dynamic genetic process and may advance our understanding of microalgae adaptation to global change.
Collapse
Affiliation(s)
- Fenghuang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Climate Change Cluster, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Baoyi Peng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Leyao Xu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hao Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingyao Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Sun Y, Yang F, Duan R, Xu D, Zhang Y, Liang C, Wang Z, Huang X, Wang B, Wang Y, Sun H, Ye N, Fu FX, Li F. Long-term warming and acidification interaction drives plastic acclimation in the diatom Pseudo-nitzschia multiseries. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106901. [PMID: 39671990 DOI: 10.1016/j.marenvres.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Ocean warming (OW) and acidification (OA) are expected to interactively impact key phytoplankton groups such as diatoms, but the underlying mechanisms, particularly under long-term acclimation, remain poorly understood. In this study, we investigated the responses of the toxic diatom Pseudo-nitzschia multiseries to combined changes in temperature (20 °C and 30 °C) and CO2 concentration (pCO2 400 μatm and 1000 μatm) using a multi-omics approach over an acclimation period of at least 251 generations. Physiological data suggest that elevated temperature, either alone or in combination with CO2, reduced the net photosynthesis and nitrate uptake rate, thus inhibiting P. multiseries growth. Conversely, elevated CO2 alone stimulated P. multiseries growth. Comparative genome analysis revealed the phenotypic plasticity in response to temperature and pCO2 variations, even after more than 251 generations acclimation period. Temperature was identified as the dominant environmental factor, showing stronger effects than CO2. Transcriptomic profiles indicated that genes involved in stress- and intracellular homeostasis such as Hsps, ubiquitination process and antioxidant defense were mostly down-regulated under long-term warming acclimation. This study demonstrates that P.multiseries responds similarly to both short-term and long-term experimental selection, suggesting that short-term experiments can be used to predict long-term responses.
Collapse
Affiliation(s)
- Yanmin Sun
- Qingdao University of Science and Technology, Qingdao, China; National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Fan Yang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ran Duan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yanan Zhang
- Qingdao University of Science and Technology, Qingdao, China; National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chengwei Liang
- Qingdao University of Science and Technology, Qingdao, China; National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhuonan Wang
- Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, 80521, USA
| | - Xintong Huang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Bingkun Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yapeng Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haoming Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Fang Li
- Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Díaz-Santos E, Heredia-Martínez LG, López-Maury L, Hervás M, Ortega JM, Navarro JA, Roncel M. Combined Effect of Temperature and Different Light Regimes on the Photosynthetic Activity and Lipid Accumulation in the Diatom Phaeodactylum tricornutum. PLANTS (BASEL, SWITZERLAND) 2025; 14:329. [PMID: 39942891 PMCID: PMC11820123 DOI: 10.3390/plants14030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
The aim of this study was to investigate the combined effects of temperature and light on the photosynthetic parameters and lipid accumulation in the diatom Phaeodactylum tricornutum, a model organism widely used for studies on diatom physiology, ecology, and biotechnology. Our results highlight the importance of the interaction between temperature and light intensity in influencing growth rates, pigments and active photosystems content, photosynthetic efficiency, lipid production and fatty acid composition in P. tricornutum. Measurements of the maximum electron transport rate (rETRmax) and rETR at maximum PAR (830 µmol m-2 s-1) confirmed that P. tricornutum exhibits significantly higher light sensitivity as growth temperature increases under light/dark cycles at two light intensities (25-60 µmol m-2 s-1). However, this trend was reversed under continuous light (25 µmol m-2 s-1). Moreover, higher rETRmax values (up to double) were observed at higher irradiance, either in intensity or under continuous light regimes, at the two temperatures tested. On the other hand, increasing light intensity amplified the observed effect of temperature on photosystem I (PSI) activity under light/dark regimes, but not under continuous light conditions. This resulted in a greater deficiency in PSI activity, likely due to limitations in electron supply to this photosystem. Furthermore, increasing the culture temperature from 20 °C to 25 °C triggered an increase in the number and size of cytoplasmic lipid droplets under conditions of increased light intensity, with an even more pronounced effect under continuous illumination. Notably, the combination of 25 °C and continuous illumination resulted in a more than twofold increase in triacylglyceride (TAG) content, reaching approximately 17 mg L-1. This condition also caused a substantial rise (up to ≈90%) in the proportions of palmitoleic and palmitic acids in the TAG fatty acid profile.
Collapse
Affiliation(s)
- Encarnación Díaz-Santos
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
| | - Luis G. Heredia-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - José M. Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - José A. Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
6
|
Briddon CL, Nicoară M, Hegedűs A, Thomas MK, Drugă B. Quantifying evolutionary changes to temperature-CO 2 growth response surfaces in Skeletonema marinoi after adaptation to extreme conditions. ISME COMMUNICATIONS 2025; 5:ycaf069. [PMID: 40371177 PMCID: PMC12075770 DOI: 10.1093/ismeco/ycaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Global warming and ocean acidification are having an unprecedented impact on marine ecosystems, yet we do not yet know how phytoplankton will respond to simultaneous changes in multiple drivers. To better comprehend the combined impact of oceanic warming and acidification, we experimentally estimated how evolution shifted the temperature-CO2 growth response surfaces of two strains of Skeletonema marinoi that were each previously adapted to four different temperature × CO2 combinations. These adapted strains were then grown under a factorial combination of five temperatures and five CO2 concentrations to capture the temperature-CO2 response surfaces for their unacclimated growth rates. The development of the first complete temperature-CO2 response surfaces showed the optimal CO2 concentration for growth to be substantially higher than expected future CO2 levels (~6000 ppm). There was minimal variation in the optimal CO2 concentration across the tested temperatures, suggesting that temperature will have a greater influence on growth rates compared to enhanced CO2. Optimal temperature did not show a unimodal response to CO2, either due to the lack of acclimation or the highly efficient CO2 concentrating mechanisms, which diatoms (e.g. Skeletonema) can up-/downregulate depending on the CO2 conditions. We also found that both strains showed evidence of evolutionary shifts as a result of adaptation to temperature and CO2. The evolutionary response differed between strains, underscoring how genetic differences (perhaps related to historical regimes) can impact phytoplankton performance. Understanding how a dominant algal species responds to multiple drivers provides insight into real-world scenarios and helps construct theoretical predictions of environmental change.
Collapse
Affiliation(s)
- Charlotte L Briddon
- GIMM - Gulbenkian Institute, R. Q.ta Grande 6 2780, Oeiras, Portugal
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania
| | - Maria Nicoară
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania
- Doctoral School of Integrative Biology, Faculty of Biology and Geology, Babeş-Bolyai University, 44 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Adriana Hegedűs
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania
| | - Mridul K Thomas
- Department of F.-A. Forel for Environmental and Aquatic Sciences and Institute for Environmental Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Bogdan Drugă
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania
| |
Collapse
|
7
|
Zhou Y, Wu F, Wu J, Overmans S, Ye M, Xiao M, Peng B, Xu L, Huang J, Lu Y, Wang Y, Liang S, Zhang H, Liang X, Zhong Z, Liu H, Ruan Z, Xia J, Jin P. The adaptive mechanisms of the marine diatom Thalassiosira weissflogii to long-term high CO 2 and warming. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2001-2020. [PMID: 38943614 DOI: 10.1111/tpj.16905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
While it is known that increased dissolved CO2 concentrations and rising sea surface temperature (ocean warming) can act interactively on marine phytoplankton, the ultimate molecular mechanisms underlying this interaction on a long-term evolutionary scale are relatively unexplored. Here, we performed transcriptomics and quantitative metabolomics analyses, along with a physiological trait analysis, on the marine diatom Thalassiosira weissflogii adapted for approximately 3.5 years to warming and/or high CO2 conditions. We show that long-term warming has more pronounced impacts than elevated CO2 on gene expression, resulting in a greater number of differentially expressed genes (DEGs). The largest number of DEGs was observed in populations adapted to warming + high CO2, indicating a potential synergistic interaction between these factors. We further identified the metabolic pathways in which the DEGs function and the metabolites with significantly changed abundances. We found that ribosome biosynthesis-related pathways were upregulated to meet the increased material and energy demands after warming or warming in combination with high CO2. This resulted in the upregulation of energy metabolism pathways such as glycolysis, photorespiration, the tricarboxylic acid cycle, and the oxidative pentose phosphate pathway, as well as the associated metabolites. These metabolic changes help compensate for reduced photochemical efficiency and photosynthesis. Our study emphasizes that the upregulation of ribosome biosynthesis plays an essential role in facilitating the adaptation of phytoplankton to global ocean changes and elucidates the interactive effects of warming and high CO2 on the adaptation of marine phytoplankton in the context of global change.
Collapse
Affiliation(s)
- Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fenghuang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiao Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Sebastian Overmans
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Baoyi Peng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Leyao Xu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yipeng Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hao Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiao Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhirong Zhong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haobin Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zuoxi Ruan
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
9
|
Adhikary S, Tiwari SP, Banerjee S, Dwivedi AD, Rahman SM. Global marine phytoplankton dynamics analysis with machine learning and reanalyzed remote sensing. PeerJ 2024; 12:e17361. [PMID: 38737741 PMCID: PMC11088370 DOI: 10.7717/peerj.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Phytoplankton are the world's largest oxygen producers found in oceans, seas and large water bodies, which play crucial roles in the marine food chain. Unbalanced biogeochemical features like salinity, pH, minerals, etc., can retard their growth. With advancements in better hardware, the usage of Artificial Intelligence techniques is rapidly increasing for creating an intelligent decision-making system. Therefore, we attempt to overcome this gap by using supervised regressions on reanalysis data targeting global phytoplankton levels in global waters. The presented experiment proposes the applications of different supervised machine learning regression techniques such as random forest, extra trees, bagging and histogram-based gradient boosting regressor on reanalysis data obtained from the Copernicus Global Ocean Biogeochemistry Hindcast dataset. Results obtained from the experiment have predicted the phytoplankton levels with a coefficient of determination score (R2) of up to 0.96. After further validation with larger datasets, the model can be deployed in a production environment in an attempt to complement in-situ measurement efforts.
Collapse
Affiliation(s)
| | | | | | | | - Syed Masiur Rahman
- King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
10
|
Wu R, Wu Y, Zhai R, Gao K, Xu J. Ocean acidification and desalination increase the growth and photosynthesis of the diatom Skeletonema costatum isolated from the coastal water of the Yellow Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106450. [PMID: 38552454 DOI: 10.1016/j.marenvres.2024.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
Global climate changes induce substantial alterations in the marine system, including ocean acidification (OA), desalination and warming of surface seawater. Here, we examined the combined effects of OA and reduced salinity under different temperatures on the growth and photosynthesis of the diatom Skeletonema costatum. After having been acclimated to 2 CO2 concentrations (400 μatm, 1000 μatm) and 2 salinity levels (20 psu, 30 psu) at temperature levels of 10 °C and 20 °C, the diatom showed enhanced growth rate at the lowered salinity and elevated pCO2 irrespective of the temperature. The OA treatment increased the net photosynthetic rate and biogenic silica (Bsi) contents. Increasing the temperature from 10 to 20 °C raised the net photosynthetic rate by over twofold. The elevated pCO2 increased the net and gross photosynthetic rates by 20%-40% and by 16%-32%, respectively, with the higher enhancement observed at the higher levels of salinity and temperature. Our results imply that OA and desalination along with warming to the levels tested can enhance S. costatum's competitiveness in coastal phytoplankton communities under influence of future climate changes.
Collapse
Affiliation(s)
- Ruijie Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuchen Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rui Zhai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
11
|
Cao L, Bi D, Fan W, Xu J, Beardall J, Gao K, Wu Y. Warming exacerbates the impacts of ultraviolet radiation in temperate diatoms but alleviates the effect on polar species. Photochem Photobiol 2024; 100:491-498. [PMID: 37528525 DOI: 10.1111/php.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Under global change scenarios, the sea surface temperature is increasing steadily along with other changes to oceanic environments. Consequently, marine diatoms are influenced by multiple ocean global change drivers. We hypothesized that temperature rise mediates the responses of polar and temperate diatoms to UV radiation (UVR) to different extents, and exposed the temperate centric diatoms, Thalassiosira weissflogii and Skeletonema costatum, and a polar pennate diatom Entomoneis sp., to warming (+5°C) for 10 days, then performed short-term incubations under different radiation treatments with or without UVR. The effective quantum yields of the three diatoms were stable during exposure to PAR, but decreased when exposed to PAR + UVR, leading to significant UV-induced inhibition, which was 3% and 9%, respectively, for T. weissflogii and S. costatum under ambient temperature but increased to 12% and 17%, respectively, in the cells acclimated to the warming treatment. In contrast, UVR induced much higher inhibition, by about 45%, in the polar diatom Entomoneis sp. at ambient temperature, and the warming treatment alleviated the UV-induced inhibition, which dropped to 36%. The growth rates were significantly inhibited by UVR in S. costatum under the warming treatment and in Entomoneis sp. under ambient temperature, while there was no significant effect for T. weissflogii. Our results indicate that the polar diatom was more sensitive to UVR though warming could alleviate its impact, whereas the temperate diatoms were less sensitive to UVR but warming exacerbated its impacts, implying that diatoms living in different regions may exhibit differential responses to global changes.
Collapse
Affiliation(s)
- Lixin Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Dongquan Bi
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Wei Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Yaping Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
12
|
Bi D, Cao L, An Y, Xu J, Wu Y. Short-term responses of temperate and subarctic marine diatoms to Irgarol 1051 and UV radiation: Insights into temperature interactions. PLoS One 2024; 19:e0295686. [PMID: 38324513 PMCID: PMC10849241 DOI: 10.1371/journal.pone.0295686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 02/09/2024] Open
Abstract
Phytoplankton face numerous pressures resulting from chemical and physical stressors, primarily induced by human activities. This study focuses on investigating the interactive effects of widely used antifouling agent Irgarol 1051 and UV radiation on the photo-physiology of marine diatoms from diverse latitudes, within the context of global warming. Our findings clearly shown that both Irgarol and UV radiation have a significant inhibitory impact on the photochemical performance of the three diatoms examined, with Irgarol treatment exhibiting more pronounced effects. In the case of the two temperate zone diatoms, we observed a decrease in the inhibition induced by Irgarol 1051 and UVR as the temperature increased up to 25°C. Similarly, for the subarctic species, an increase in temperature resulted in a reduction in the inhibition caused by Irgarol and UVR. These results suggest that elevated temperatures can mitigate the short-term inhibitory effects of both Irgarol and UVR on diatoms. Furthermore, our data indicate that increased temperature could significantly interact with UVR or Irgarol for temperate diatoms, while this was not the case for cold water diatoms, indicating temperate and subarctic diatoms may respond differentially under global warming.
Collapse
Affiliation(s)
- Dongquan Bi
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lixin Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yuheng An
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| | - Yaping Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
13
|
Yan W, Wang Z, Pei Y, Zhou B. How does ocean acidification affect Zostera marina during a marine heatwave? MARINE POLLUTION BULLETIN 2023; 194:115394. [PMID: 37598524 DOI: 10.1016/j.marpolbul.2023.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Extreme ocean events caused by global warming, such as marine heatwaves (MHWs) and ocean acidification (OA), are projected to intensify. A combination of extreme events may have severe consequences for marine ecosystems. Zostera marina was selected to understand how seagrass adapts to OA in extremely hot conditions. By combining morphology, transcriptomics, and metabolomics under mesoscale experimental conditions, we systematically investigated the response characteristics of Z. marina. Extremely high temperatures had a pronounced effect on growth, and the combined effect of OA mitigated the inhibitory effect of MHW. Both transcriptomic and metabolomic results showed that Z. marina resisted OA and MHW by upregulating the TCA cycle, glycolysis, amino acid metabolism, and relevant genes, as well as by activating the antioxidant system. The results of this study serve to improve our understanding of dual effects of factors of climate change on seagrass and may be used to direct future management and conservation efforts.
Collapse
Affiliation(s)
- Wenjie Yan
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China.
| | - Zhaohua Wang
- First Institute of Oceanography, MNR, Qingdao 266061, China
| | - Yanzhao Pei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bin Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Jia R, Li P, Chen C, Liu L, Li ZH. Shellfish-algal systems as important components of fisheries carbon sinks: Their contribution and response to climate change. ENVIRONMENTAL RESEARCH 2023; 224:115511. [PMID: 36801235 DOI: 10.1016/j.envres.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In the context of global climate change, ocean acidification and warming are becoming increasingly serious. Adding carbon sinks in the ocean is an important part of efforts to mitigate climate change. Many researchers have proposed the concept of a fisheries carbon sink. Shellfish-algal systems are among the most important components of fisheries carbon sinks, but there has been limited research on the impact of climate change on shellfish-algal carbon sequestration systems. This review assesses the impact of global climate change on shellfish-algal carbon sequestration systems and provides a rough estimate of the global shellfish-algal carbon sink capacity. This review evaluates the impact of global climate change on shellfish-algal carbon sequestration systems. We review relevant studies that have examined the effects of climate change on such systems from multiple levels, perspectives, and species. There is an urgent need for more realistic and comprehensive studies given expectations about the future climate. Such studies should provide a better understanding of the mechanisms by which the carbon cycle function of marine biological carbon pumps may be affected in realistic future environmental conditions and the patterns of interaction between climate change and ocean carbon sinks.
Collapse
Affiliation(s)
- Ruolan Jia
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
15
|
Jin P, Wan J, Dai X, Zhou Y, Huang J, Lin J, Lu Y, Liang S, Xiao M, Zhao J, Xu L, Li M, Peng B, Xia J. Long-term adaptation to elevated temperature but not CO 2 alleviates the negative effects of ultraviolet-B radiation in a marine diatom. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105929. [PMID: 36863076 DOI: 10.1016/j.marenvres.2023.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Multifaceted changes in marine environments as a result of anthropogenic activities are likely to have a compounding impact on the physiology of marine phytoplankton. Most studies on the combined effects of rising pCO2, sea surface temperature, and UVB radiation on marine phytoplankton were only conducted in the short-term, which does not allow to test the adaptive capacity of phytoplankton and associated potential trade-offs. Here, we investigated populations of the diatom Phaeodactylum tricornutum that were long-term (∼3.5 years, ∼3000 generations) adapted to elevated CO2 and/or elevated temperatures, and their physiological responses to short-term (∼2 weeks) exposure of two levels of ultraviolet-B (UVB) radiation. Our results showed that while elevated UVB radiation showed predominantly negative effects on the physiological performance of P. tricornutum regardless of adaptation regimes. Elevated temperature alleviated these effects on most of the measured physiological parameters (e.g., photosynthesis). We also found that elevated CO2 can modulate these antagonistic interactions, and conclude that long-term adaptation to sea surface warming and rising CO2 may alter this diatom's sensitivity to elevated UVB radiation in the environment. Our study provides new insights into marine phytoplankton's long-term responses to the interplay of multiple environmental changes driven by climate change.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jingyuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Leyao Xu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mingke Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Baoyi Peng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
16
|
Xu D, Zheng G, Brennan G, Wang Z, Jiang T, Sun K, Fan X, Bowler C, Zhang X, Zhang Y, Wang W, Wang Y, Li Y, Wu H, Li Y, Fu FX, Hutchins DA, Tan Z, Ye N. Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification. THE ISME JOURNAL 2023; 17:525-536. [PMID: 36658395 PMCID: PMC10030627 DOI: 10.1038/s41396-023-01370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Ocean warming (OW) and acidification (OA) are recognized as two major climatic conditions influencing phytoplankton growth and nutritional or toxin content. However, there is limited knowledge on the responses of harmful algal bloom species that produce toxins. Here, the study provides quantitative and mechanistic understanding of the acclimation and adaptation responses of the domoic acid (DA) producing diatom Pseudo-nitzschia multiseries to rising temperature and pCO2 using both a one-year in situ bulk culture experiment, and an 800-day laboratory acclimation experiment. Ocean warming showed larger selective effects on growth and DA metabolism than ocean acidification. In a bulk culture experiment, increasing temperature +4 °C above ambient seawater temperature significantly increased DA concentration by up to 11-fold. In laboratory when the long-term warming acclimated samples were assayed under low temperatures, changes in growth rates and DA concentrations indicated that P. multiseries did not adapt to elevated temperature, but could instead rapidly and reversibly acclimate to temperature shifts. However, the warming-acclimated lines showed evidence of adaptation to elevated temperatures in the transcriptome data. Here the core gene expression was not reversed when warming-acclimated lines were moved back to the low temperature environment, which suggested that P. multiseries cells might adapt to rising temperature over longer timescales. The distinct strategies of phenotypic plasticity to rising temperature and pCO2 demonstrate a strong acclimation capacity for this bloom-forming toxic diatom in the future ocean.
Collapse
Affiliation(s)
- Dong Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guanchao Zheng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | - Zhuonan Wang
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Tao Jiang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ke Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Xiaowen Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haiyan Wu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Youxun Li
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao, China
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Zhijun Tan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
Liang D, Xiang H, Jin P, Xia J. Response mechanism of harmful algae Phaeocystis globosa to ocean warming and acidification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121008. [PMID: 36608724 DOI: 10.1016/j.envpol.2023.121008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Simultaneous ocean warming and acidification will alter marine ecosystem structure and directly affect marine organisms. The alga Phaeocystis globosa commonly causes harmful algal blooms in coastal areas of eastern China. P. globosa often outcompetes other species due to its heterotypic life cycle, primarily including colonies and various types of solitary cells. However, little is known about the adaptive response of P. globosa to ocean warming and acidification. This study aimed to reveal the global molecular regulatory networks implicated in the response of P. globosa to simultaneous warming and acidification. After exposure to warming and acidification, the phosphatidylinositol (PI) and mitogen-activated protein kinase (MAPK) signaling pathways of P. globosa were activated to regulate other molecular pathways in the cell, while the light harvesting complex (LHC) genes were downregulated to decrease photosynthesis. Exposure to warming and acidification also altered the intracellular energy flow, with more energy allocated to the TCA cycle rather than to the biosynthesis of fatty acids and hemolytic substances. The upregulation of genes associated with glycosaminoglycan (GAG) degradation prevented the accumulation of polysaccharides, which led to a reduction in colony formation. Finally, the upregulation of the Mre11 and Rad50 genes in response to warming and acidification implied an increase in meiosis, which may be used by P. globosa to increase the number of solitary cells. The increase in genetic diversity through sexual reproduction may be a strategy of P. globosa that supports rapid response to complex environments. Thus, the life cycle of P. globosa underwent a transition from colonies to solitary cells in response to warming and acidification, suggesting that this species may be able to rapidly adapt to future climate changes through life cycle transitions.
Collapse
Affiliation(s)
- Dayong Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hua Xiang
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Wahyudi AJ, Febriani F, Triana K. Multi-temporal variability forecast of particulate organic carbon in the Indonesian seas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:388. [PMID: 36773202 DOI: 10.1007/s10661-023-10981-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The current global condition characterized by high levels of CO2 is altering the carbon cycle and elemental biogeochemistry, resulting in subsequent global warming, climate change, ocean acidification, and the indirect response of deoxygenation. The features of Indonesia's coastal ecosystems and continental shelf waters also contribute to spatio-temporal ocean carbon variability. For instance, the level of particulate organic carbon (POC) will change annually, and thus, over a decadal period, ocean dynamics may affect the temporal variability of POC. Motivated by such conditions, future forecasting is needed to envision the productivity of Indonesian seas by predicting vital parameters such as POC. This research aimed to forecast the temporal variability of POC in Indonesian waters. The Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model was used by considering the lowest value of the Akaike information criterion (AIC) and the mean absolute percentage error/MAPE (threshold < 10%). Using the highest correlation coefficient (threshold: 0.75), we obtained the best fit for forecasting POC temporal variability. Hindcast POC data (2002-2020/2021) was used to train the forecasting model. The result shows that forecasting of POC temporal variability can be conducted up to 2030. The validity of prediction is ensured for less than 5 years forward after 2020 with correlation coefficients of 0.65 and 0.83 for seasonal and monthly POC, respectively. The hindcast and forecast estimates of POC in the Indonesian seas show a decreasing trend. The present study emphasizes the different forecasting results obtained using the different approaches of annual versus inter-annual variability. A sustained research effort is still required to assess POC forecasting for its potential benefits in marine system monitoring and assessment.
Collapse
Affiliation(s)
- A'an Johan Wahyudi
- Research Center for Oceanography, National Research and Innovation Agency of the Republic of Indonesia, Pasir Putih Raya 1, Ancol Timur, Jakarta, 14430, Indonesia.
| | - Febty Febriani
- Research Center for Geological Disaster, National Research and Innovation Agency of the Republic of Indonesia, PUSPIPTEK Complex, South Tangerang City, Banten, 15314, Indonesia
| | - Karlina Triana
- Research Center for Oceanography, National Research and Innovation Agency of the Republic of Indonesia, Pasir Putih Raya 1, Ancol Timur, Jakarta, 14430, Indonesia
| |
Collapse
|
19
|
Thangaraj S, Liu H, Guo Y, Ding C, Kim IN, Sun J. Transitional traits determine the acclimation characteristics of the coccolithophore Chrysotila dentata to ocean warming and acidification. Environ Microbiol 2023. [PMID: 36721374 DOI: 10.1111/1462-2920.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
Ocean warming and acidification interactively affect the coccolithophore physiology and drives major biogeochemical changes. While numerous studies investigated coccolithophore under short-term conditions, knowledge on how different transitional periods over long-exposure could influence the element, macromolecular and metabolic changes for its acclimation are largely unknown. We cultured the coccolithophore Chrysotila dentata, (culture generations of 1st, 10th, and 20th) under present (low-temperature low-carbon-dioxide [LTLC]) and projected (high-temperature high-carbon-dioxide [HTHC]) ocean conditions. We examined elemental and macromolecular component changes and sequenced a transcriptome. We found that with long-exposure, most physiological responses in HTHC cells decreased when compared with those in LTLC, however, HTHC cell physiology showed constant elevation between each generation. Specifically, compared to 1st generation, the 20th generation HTHC cells showed increases in quota carbon (Qc:29%), nitrogen (QN :101%), and subsequent changes in C:N-ratio (68%). We observed higher lipid accumulation than carbohydrates within HTHC cells under long-exposure, suggesting that lipids were used as an alternative energy source for cellular acclimation. Protein biosynthesis pathways increased their efficiency during long-term HTHC condition, indicating that cells produced more proteins than required to initiate acclimation. Our findings suggest that the coccolithophore resilience increased between the 1st-10th generation to initiate the acclimation process under ocean warming and acidifying conditions.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Department of Marine Science, Incheon National University, Incheon, South Korea.,Department of Physiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Yiyan Guo
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Changling Ding
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
20
|
Wang YJ, Tüzün N, De Meester L, Feuchtmayr H, Sentis A, Stoks R. Rapid evolution of unimodal but not of linear thermal performance curves in Daphnia magna. Proc Biol Sci 2023; 290:20222289. [PMID: 36629114 PMCID: PMC9832573 DOI: 10.1098/rspb.2022.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea Daphnia magna. The heat-selected Daphnia showed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather than per capita) top-down impact of D. magna may increase under rapid thermal evolution.
Collapse
Affiliation(s)
- Ying-Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), 12587 Berlin, Germany
| | - Luc De Meester
- Laboratory of Aquatic Ecology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), 12587 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidrun Feuchtmayr
- UK Centre for Ecology and Hydrology, Lancaster Environment Center, Lancaster LA1 4AP, UK
| | - Arnaud Sentis
- INRAE, Aix-Marseille Université, UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Xu D, Huang S, Fan X, Zhang X, Wang Y, Wang W, Beardall J, Brennan G, Ye N. Elevated CO 2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana. Front Microbiol 2023; 13:1113388. [PMID: 36687610 PMCID: PMC9853397 DOI: 10.3389/fmicb.2022.1113388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The projected ocean acidification (OA) associated with increasing atmospheric CO2 alters seawater chemistry and hence the bio-toxicity of metal ions. However, it is still unclear how OA might affect the long-term resilience of globally important marine microalgae to anthropogenic metal stress. To explore the effect of increasing pCO2 on copper metabolism in the diatom Thalassiosira pseudonana (CCMP 1335), we employed an integrated eco-physiological, analytical chemistry, and transcriptomic approach to clarify the effect of increasing pCO2 on copper metabolism of Thalassiosira pseudonana across different temporal (short-term vs. long-term) and spatial (indoor laboratory experiments vs. outdoor mesocosms experiments) scales. We found that increasing pCO2 (1,000 and 2,000 μatm) promoted growth and photosynthesis, but decreased copper accumulation and alleviated its bio-toxicity to T. pseudonana. Transcriptomics results indicated that T. pseudonana altered the copper detoxification strategy under OA by decreasing copper uptake and enhancing copper-thiol complexation and copper efflux. Biochemical analysis further showed that the activities of the antioxidant enzymes glutathione peroxidase (GPX), catalase (CAT), and phytochelatin synthetase (PCS) were enhanced to mitigate oxidative damage of copper stress under elevated CO2. Our results provide a basis for a better understanding of the bioremediation capacity of marine primary producers, which may have profound effect on the security of seafood quality and marine ecosystem sustainability under further climate change.
Collapse
Affiliation(s)
- Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shujie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Georgina Brennan
- Institute of Marine Sciences, ICM-CSIC, Barcelona, Spain,*Correspondence: Georgina Brennan, ✉
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Naihao Ye, ✉
| |
Collapse
|
22
|
Mozdzer TJ, McCormick MK, Slette IJ, Blum MJ, Megonigal JP. Rapid evolution of a coastal marsh ecosystem engineer in response to global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:157846. [PMID: 35948126 DOI: 10.1016/j.scitotenv.2022.157846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
There is increasing evidence that global change can alter ecosystems by eliciting rapid evolution of foundational plants capable of shaping vital attributes and processes. Here we describe results of a field-scale exposure experiment and multilocus assays illustrating that elevated CO2 (eCO2) and nitrogen (N) enrichment can result in rapid shifts in genetic and genotypic variation in Phragmites australis, an ecologically dominant plant that acts as an ecosystem engineer in coastal marshes worldwide. Compared to control treatments, genotypic diversity declined over three years of exposure, especially to N enrichment. The magnitude of loss also increased over time under conditions of N enrichment. Comparisons of genotype frequencies revealed that proportional abundances shifted with exposure to eCO2 and N in a manner consistent with expected responses to selection. Comparisons also revealed evidence of tradeoffs that constrained exposure responses, where any particular genotype responded favorably to one factor rather than to different factors or to combinations of factors. These findings challenge the prevailing view that plant-mediated ecosystem outcomes of global change are governed primarily by differences in species responses to shifting environmental pressures and highlight the value of accounting for organismal evolution in predictive models to improve forecasts of ecosystem responses to global change.
Collapse
Affiliation(s)
- Thomas J Mozdzer
- Bryn Mawr College, Department of Biology, 101 N. Merion Ave, Bryn Mawr, PA 19010, United States of America; Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| | - Melissa K McCormick
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| | - Ingrid J Slette
- Colorado State University, Department of Biology and Graduate Degree Program in Ecology, 251 W Pitkin St, Fort Collins, CO 80523, United States of America
| | - Michael J Blum
- University of Tennessee, Department of Ecology & Evolutionary Biology, 1416 Circle Dr, Knoxville, TN 37996, United States of America.
| | - J Patrick Megonigal
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| |
Collapse
|
23
|
Wang ZF, Jia LP, Fang LC, Wang ZH, Liu FJ, Li SX, Huang XG. Thalassiosira weissflogii grown in various Zn levels shows different ecophysiological responses to seawater acidification. MARINE POLLUTION BULLETIN 2022; 185:114327. [PMID: 36356339 DOI: 10.1016/j.marpolbul.2022.114327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The presence of zinc (Zn), a vital element for algal physiological functions, coupled with the silicification of diatoms implies that it plays an integral role in the carbon and silicon cycles of the sea. In this study, we examined the effects of different pCO2 and Zn levels on growth rate, elemental compositions and silicification by Thalassiosira weissflogii. The results showed that under normal pCO2 (400 μatm), cultures of T. weissflogii were depressed for growth rate and silica incorporation rate, but encouraged for cellular silicon content, Si/C, Si/N, and sinking rate when Zn deficient (0.3 pmol L-1). However, cellular silicon and sinking rate of Zn-deficient and Zn-replete (25 pmol L-1) T. weissflogii were decreased and increased at higher pCO2 (800 μatm), respectively. Thus, acidification may affect diatoms significantly differently depending on the Zn levels of the ocean and then alter the biochemical cycling of carbon and silica.
Collapse
Affiliation(s)
- Zhao-Fei Wang
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China
| | - Li-Ping Jia
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Ling-Chuan Fang
- Status Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Zhen-Hong Wang
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Feng-Jiao Liu
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Shun-Xing Li
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xu-Guang Huang
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
24
|
Jin P, Wan J, Zhou Y, Gao K, Beardall J, Lin J, Huang J, Lu Y, Liang S, Wang K, Ma Z, Xia J. Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO 2. THE ISME JOURNAL 2022; 16:2587-2598. [PMID: 35948613 PMCID: PMC9561535 DOI: 10.1038/s41396-022-01302-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 05/30/2023]
Abstract
Although high CO2 and warming could act interactively on marine phytoplankton, little is known about the molecular basis for this interaction on an evolutionary scale. Here we explored the adaptation to high CO2 in combination with warming in a model marine diatom Phaeodactylum tricornutum. Whole-genome re-sequencing identifies, in comparison to populations grown under control conditions, a larger genetic diversity loss and a higher genetic differentiation in the populations adapted for 2 years to warming than in those adapted to high CO2. However, this diversity loss was less under high CO2 combined with warming, suggesting that the evolution driven by warming was constrained by high CO2. By integrating genomics, transcriptomics, and physiological data, we found that the underlying molecular basis for this constraint is associated with the expression of genes involved in some key metabolic pathways or biological processes, such as the glyoxylate pathway, amino acid and fatty acid metabolism, and diel variability. Our results shed new light on the evolutionary responses of marine phytoplankton to multiple environmental changes in the context of global change and provide new insights into the molecular basis underpinning interactions among those multiple drivers.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, 361005, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, 361005, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kaiqiang Wang
- Gene Denovo Biotechnology Co, Guangzhou, 510006, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Dai X, Zhang J, Zeng X, Huang J, Lin J, Lu Y, Liang S, Ye M, Xiao M, Zhao J, Overmans S, Xia J, Jin P. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure. MARINE POLLUTION BULLETIN 2022; 183:114056. [PMID: 36058179 DOI: 10.1016/j.marpolbul.2022.114056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Most previous studies investigating the interplay of ocean acidification (OA) and heavy metal on marine phytoplankton were only conducted in short-term, which may provide conservative estimates of the adaptive capacity of them. Here, we examined the physiological responses of long-term (~900 generations) OA-adapted and non-adapted populations of the diatom Phaeodactylum tricornutum to different concentrations of the two heavy metals Cd and Cu. Our results showed that long-term OA selected populations exhibited significantly lower growth and reduced photosynthetic activity than ambient CO2 selected populations at relatively high heavy metal levels. Those findings suggest that the adaptations to high CO2 results in an increased sensitivity of the marine diatom to toxic metal exposure. This study provides evidence for the costs and the cascading consequences associated with the adaptation of phytoplankton to elevated CO2 conditions, and improves our understanding of the complex interactions of future OA and heavy metal pollution in marine waters.
Collapse
Affiliation(s)
- Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiale Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaopeng Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingyuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Liu S, Storti M, Finazzi G, Bowler C, Dorrell RG. A metabolic, phylogenomic and environmental atlas of diatom plastid transporters from the model species Phaeodactylum. FRONTIERS IN PLANT SCIENCE 2022; 13:950467. [PMID: 36212359 PMCID: PMC9546453 DOI: 10.3389/fpls.2022.950467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Diatoms are an important group of algae, contributing nearly 40% of total marine photosynthetic activity. However, the specific molecular agents and transporters underpinning the metabolic efficiency of the diatom plastid remain to be revealed. We performed in silico analyses of 70 predicted plastid transporters identified by genome-wide searches of Phaeodactylum tricornutum. We considered similarity with Arabidopsis thaliana plastid transporters, transcriptional co-regulation with genes encoding core plastid metabolic pathways and with genes encoded in the mitochondrial genomes, inferred evolutionary histories using single-gene phylogeny, and environmental expression trends using Tara Oceans meta-transcriptomics and meta-genomes data. Our data reveal diatoms conserve some of the ion, nucleotide and sugar plastid transporters associated with plants, such as non-specific triose phosphate transporters implicated in the transport of phosphorylated sugars, NTP/NDP and cation exchange transporters. However, our data also highlight the presence of diatom-specific transporter functions, such as carbon and amino acid transporters implicated in intricate plastid-mitochondria crosstalk events. These confirm previous observations that substrate non-specific triose phosphate transporters (TPT) may exist as principal transporters of phosphorylated sugars into and out of the diatom plastid, alongside suggesting probable agents of NTP exchange. Carbon and amino acid transport may be related to intricate metabolic plastid-mitochondria crosstalk. We additionally provide evidence from environmental meta-transcriptomic/meta- genomic data that plastid transporters may underpin diatom sensitivity to ocean warming, and identify a diatom plastid transporter (J43171) whose expression may be positively correlated with temperature.
Collapse
Affiliation(s)
- Shun Liu
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| | - Mattia Storti
- Univ. Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique Energies Alternatives (CEA), Institut National Recherche Agriculture Alimentation Environnement (INRAE), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique Energies Alternatives (CEA), Institut National Recherche Agriculture Alimentation Environnement (INRAE), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| |
Collapse
|
27
|
Cai T, Feng Y, Wang Y, Li T, Wang J, Li W, Zhou W. The Differential Responses of Coastal Diatoms to Ocean Acidification and Warming: A Comparison Between Thalassiosira sp. and Nitzschia closterium f.minutissima. Front Microbiol 2022; 13:851149. [PMID: 35801105 PMCID: PMC9253669 DOI: 10.3389/fmicb.2022.851149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022] Open
Abstract
Marine diatoms are one of the marine phytoplankton functional groups, with high species diversity, playing important roles in the marine food web and carbon sequestration. In order to evaluate the species-specific responses of coastal diatoms to the combined effects of future ocean acidification (OA) and warming on the coastal diatoms, we conducted a semi-continuous incubation on the large centric diatom Thalassiosira sp. (~30 μm) and small pennate diatom Nitzschia closterium f.minutissima (~15 μm). A full factorial combination of two temperature levels (15 and 20°C) and pCO2 (400 and 1,000 ppm) was examined. The results suggest that changes in temperature played a more important role in regulating the physiology of Thalassiosira sp. and N. closterium f.minutissima than CO2. For Thalassiosira sp., elevated temperature significantly reduced the cellular particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphate (POP), biogenic silica (BSi), chlorophyll a (Chl a), and protein contents, and the C:N ratio. CO2 only had significant effects on the growth rate and the protein content. However, for the smaller pennate diatom N. closterium f.minutissima, the growth rate, POC production rate, and the C:P ratio significantly increased with an elevated temperature, whereas the cellular POP and BSi contents significantly decreased. CO2 had significant effects on the POC production rate, cellular BSi, POC, and PON contents, the C:P, Si:C, N:P, and Si:P ratios, and sinking rate. The interaction between OA and warming showed mostly antagonistic effects on the physiology of both species. Overall, by comparison between the two species, CO2 played a more significant role in regulating the growth rate and sinking rate of the large centric diatom Thalassiosira sp., whereas had more significant effects on the elemental compositions of the smaller pennate diatom N. closterium f.minutissima. These results suggest differential sensitivities of different diatom species with different sizes and morphology to the changes in CO2/temperature regimes and their interactions.
Collapse
Affiliation(s)
- Ting Cai
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Frontiers Science Center of Polar Science, Shanghai, China
| | - Yanan Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Tongtong Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Jiancai Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Wei Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Weihua Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China
- Sanya National Marine Ecosystem Research Station and Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
28
|
A Novel Algicidal Bacterium and Its Effects against the Toxic Dinoflagellate Karenia mikimotoi (Dinophyceae). Microbiol Spectr 2022; 10:e0042922. [PMID: 35616372 PMCID: PMC9241683 DOI: 10.1128/spectrum.00429-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxic dinoflagellate Karenia mikimotoi is a harmful algal bloom-forming species in coastal areas around the world. It produces ichthyotoxins and hemolytic toxins, with deleterious effects on marine ecosystems. In this study, the bacterium Pseudoalteromonas sp. FDHY-MZ2, with high algicidal efficiency against K. mikimotoi, was isolated from a bloom event. Based on the results, it completely lysed K. mikimotoi cells within 24 h 0.5% (vol/vol), with the algicidal activity of the supernatant of the bacterium culture. Algal cell wall fragmentation occurred, leading to cell death. There was a marked decline in various photochemical traits. When treated with the supernatant, cellulase, pheophorbide a oxygenase (PAO) and cyclin B genes were significantly increased, suggesting induced cell wall deterioration, chloroplast degradation and cell cycle regulation of K. mikimotoi cells. In addition, the expression levels of reactive oxygen species (ROS) scavenging gene was significantly inhibited, indicating that the ROS removal system was damaged. The bacterial culture was dried to obtain the spray-dried powder, which showed algicidal activity rates of 92.2 and 100% against a laboratory K. mikimotoi culture and a field microcosm of Karlodinium sp. bloom within 24 h with the addition of 0.04% mass fraction powder. Our results demonstrate that FDHY-MZ2 is a suitable strain for K. mikimotoi and Karlodinium sp. blooms management. In addition, this study provides a new strategy for the anthropogenic control of harmful algal bloom-forming species in situ. IMPORTANCE K. mikimotoi is a noxious algal bloom-forming species that cause damaging of the aquaculture industry and great financial losses. Bacterium with algicidal activity is an ideal agency to inhibit the growth of harmful algae. In this approach application, the bacterium with high algicidal activity is required and the final management material is ideal for easy-to-use. The algicidal characteristics are also needed to understand the effects of the bacterium for managing strategy exploration. In this study, we isolated a novel algicidal bacterium with extremely high lysis efficiency for K. mikimotoi. The algicidal characteristics of the bacterium as well as the chemical and molecular response of K. mikimotoi with the strain challenge were examined. Finally, the algicidal powder was explored for application. The results demonstrate that FDHY-MZ2 is suitable for K. mikimotoi and Karlodinium sp. blooms controlling, and this study provides a new strategy for algicidal bacterium application.
Collapse
|
29
|
Collins S, Whittaker H, Thomas MK. The need for unrealistic experiments in global change biology. Curr Opin Microbiol 2022; 68:102151. [PMID: 35525129 DOI: 10.1016/j.mib.2022.102151] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
Climate change is an existential threat, and our ability to conduct experiments on how organisms will respond to it is limited by logistics and resources, making it vital that experiments be maximally useful. The majority of experiments on phytoplankton responses to warming and CO2 use only two levels of each driver. However, to project the characters of future populations, we need a mechanistic and generalisable explanation for how phytoplankton respond to concurrent changes in temperature and CO2. This requires experiments with more driver levels, to produce response surfaces that can aid in the development of predictive models. We recommend prioritising experiments or programmes that produce such response surfaces on multiple scales for phytoplankton.
Collapse
Affiliation(s)
- Sinéad Collins
- University of Edinburgh, Institute of Evolutionary Biology, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Harriet Whittaker
- University of Edinburgh, Institute of Evolutionary Biology, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Mridul K Thomas
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences and Institute for Environmental Sciences, CH-1211 Geneva, Switzerland
| |
Collapse
|
30
|
Jin P, Wan J, Zhang J, Overmans S, Xiao M, Ye M, Dai X, Zhao J, Gao K, Xia J. Additive impacts of ocean acidification and ambient ultraviolet radiation threaten calcifying marine primary producers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151782. [PMID: 34800448 DOI: 10.1016/j.scitotenv.2021.151782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA) represents a threat to marine organisms and ecosystems. However, OA rarely exists in isolation but occurs concomitantly with other stressors such as ultraviolet radiation (UVR), whose effects have been neglected in oceanographical observations. Here, we perform a quantitative meta-analysis based on 373 published experimental assessments from 26 studies to examine the combined effects of OA and UVR on marine primary producers. The results reveal predominantly additive stressor interactions (69-84% depending on the UV waveband), with synergistic and antagonistic interactions being rare but significantly different between micro- and macro-algae. In microalgae, variations in interaction type frequencies are related to cell volume, with antagonistic interactions accounting for a higher proportion in larger sized species. Despite additive interactions being most frequent, the small proportion of antagonistic interactions appears to have a stronger power, leading to neutral effects of OA in combination with UVR. High levels of UVR at near in situ conditions in combination with OA showed additive inhibition of calcification, but not when UVR was low. The results also reveal that the magnitude of responses is strongly dependent on experimental duration, with the negative effects of OA on calcification and pigmentation being buffered and amplified by increasing durations, respectively. Tropical primary producers were more vulnerable to OA or UVR alone compared to conspecifics from other climatic regions. Our analysis highlights that further multi-stressor long-term adaptation experiments with marine organisms of different cell volumes (especially microalgae) from different climatic regions are needed to fully disclose future impacts of OA and UVR.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiale Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingyuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Cheng LM, Zhang SF, Xie ZX, Li DX, Lin L, Wang MH, Wang DZ. Metabolic Adaptation of a Globally Important Diatom following 700 Generations of Selection under a Warmer Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5247-5255. [PMID: 35352563 DOI: 10.1021/acs.est.1c08584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diatoms, accounting for 40% of the marine primary production and 20% of global carbon dioxide fixation, are threatened by the ongoing ocean warming (OW). However, whether and how these ecologically important phytoplankton adapt to OW remains poorly unknown. Here, we experimentally examined the metabolic adaptation of a globally important diatom species Skeletonema dohrnii (S. dohrnii) to OW at two elevated temperatures (24 and 28 °C compared with 20 °C) under short-term (∼300 generations) and long-term (∼700 generations) selection. Both warming levels significantly increased the cell growth rate but decreased the chlorophyll a content. The contents of particulate organic carbon (POC) and particulate organic nitrogen (PON) decreased significantly initially (i.e., until 300 generations) at two temperature treatments but completely recovered after 700 generations of selection, suggesting that S. dohrnii ultimately developed thermal adaptation. Proteomic analysis demonstrated that elevated temperatures upregulated energy metabolism via glycolysis, tricarboxylic acid cycle, and fatty acid oxidation as well as nitrogen acquisition and utilization, which in turn reduced substance storage because of trade-off in the 300th generation, thus decreasing POC and PON. Interestingly, populations at both elevated temperatures exhibited significant proteome plasticity in the 700th generation, as primarily demonstrated by the increased lipid catabolism and glucose accumulation, accounting for the recovery of POC and PON. Changes occurring in cells at the 300th and 700th generations demonstrate that S. dohrnii can adapt to the projected OW, and readjusting the energy metabolism is an important adaptive strategy.
Collapse
Affiliation(s)
- Lu-Man Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shu-Feng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhang-Xian Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dong-Xu Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Ming-Hua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
32
|
Jin P, Ji Y, Huang Q, Li P, Pan J, Lu H, Liang Z, Guo Y, Zhong J, Beardall J, Xia J. A reduction in metabolism explains the tradeoffs associated with the long-term adaptation of phytoplankton to high CO 2 concentrations. THE NEW PHYTOLOGIST 2022; 233:2155-2167. [PMID: 34907539 DOI: 10.1111/nph.17917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Phytoplankton are responsible for nearly half of global primary productivity and play crucial roles in the Earth's biogeochemical cycles. However, the long-term adaptive responses of phytoplankton to rising CO2 remains unknown. Here we examine the physiological and proteomics responses of a marine diatom, Phaeodactylum tricornutum, following long-term (c. 900 generations) selection to high CO2 conditions. Our results show that this diatom responds to long-term high CO2 selection by downregulating proteins involved in energy production (Calvin cycle, tricarboxylic acid cycle, glycolysis, oxidative pentose phosphate pathway), with a subsequent decrease in photosynthesis and respiration. Nearly similar extents of downregulation of photosynthesis and respiration allow the high CO2 -adapted populations to allocate the same fraction of carbon to growth, thereby maintaining their fitness during the long-term high CO2 selection. These results indicate an important role of metabolism reduction under high CO2 and shed new light on the adaptive mechanisms of phytoplankton in response to climate change.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yan Ji
- School of Biological & Chemical Engineering, Qingdao Technical College, Qingdao, 266555, China
| | - Quanting Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peiyuan Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jinmei Pan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hua Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhe Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yingyan Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiahui Zhong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Vic, 3800, Australia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
33
|
Deng Y, Vallet M, Pohnert G. Temporal and Spatial Signaling Mediating the Balance of the Plankton Microbiome. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:239-260. [PMID: 34437810 DOI: 10.1146/annurev-marine-042021-012353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The annual patterns of plankton succession in the ocean determine ecological and biogeochemical cycles. The temporally fluctuating interplay between photosynthetic eukaryotes and the associated microbiota balances the composition of aquatic planktonic ecosystems. In addition to nutrients and abiotic factors, chemical signaling determines the outcome of interactions between phytoplankton and their associated microbiomes. Chemical mediators control essential processes, such as the development of key morphological, physiological, behavioral, and life-history traits during algal growth. These molecules thus impact species succession and community composition across time and space in processes that are highlighted in this review. We focus on spatial, seasonal, and physiological dynamics that occur during the early association of algae with bacteria, the exponential growth of a bloom, and its decline and recycling. We also discuss how patterns from field data and global surveys might be linked to the actions of metabolic markers in natural phytoplankton assemblages.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Marine Vallet
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
34
|
Jin P, Liang Z, Lu H, Pan J, Li P, Huang Q, Guo Y, Zhong J, Li F, Wan J, Overmans S, Xia J. Lipid Remodeling Reveals the Adaptations of a Marine Diatom to Ocean Acidification. Front Microbiol 2021; 12:748445. [PMID: 34721350 PMCID: PMC8551959 DOI: 10.3389/fmicb.2021.748445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Ocean acidification is recognized as a major anthropogenic perturbation of the modern ocean. While extensive studies have been carried out to explore the short-term physiological responses of phytoplankton to ocean acidification, little is known about their lipidomic responses after a long-term ocean acidification adaptation. Here we perform the lipidomic analysis of a marine diatom Phaeodactylum tricornutum following long-term (∼400 days) selection to ocean acidification conditions. We identified a total of 476 lipid metabolites in long-term high CO2 (i.e., ocean acidification condition) and low CO2 (i.e., ambient condition) selected P. tricornutum cells. Our results further show that long-term high CO2 selection triggered substantial changes in lipid metabolites by down- and up-regulating 33 and 42 lipid metabolites. While monogalactosyldiacylglycerol (MGDG) was significantly down-regulated in the long-term high CO2 selected conditions, the majority (∼80%) of phosphatidylglycerol (PG) was up-regulated. The tightly coupled regulations (positively or negatively correlated) of significantly regulated lipid metabolites suggest that the lipid remodeling is an organismal adaptation strategy of marine diatoms to ongoing ocean acidification. Since the composition and content of lipids are crucial for marine food quality, and these changes can be transferred to high trophic levels, our results highlight the importance of determining the long-term adaptation of lipids in marine producers in predicting the ecological consequences of climate change.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhe Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Hua Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jinmei Pan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Peiyuan Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Quanting Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yingyan Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jiahui Zhong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Futian Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
35
|
Experimental Studies on the Impact of the Projected Ocean Acidification on Fish Survival, Health, Growth, and Meat Quality; Black Sea Bream ( Acanthopagrus schlegelii), Physiological and Histological Studies. Animals (Basel) 2021; 11:ani11113119. [PMID: 34827851 PMCID: PMC8614255 DOI: 10.3390/ani11113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This study’s data suggest that under the projected scenarios of ocean acidification by 2100 and beyond, significant negative impacts on growth, health, and meat quality are expected, particularly on black sea bream, and will be susceptible to the scientifically approved fish having a weaker resistance to diseases and environmental changes if CO2 emissions in the atmosphere are not curbed. Knowing the expected consequences, mitigation measures are urgently needed. Abstract Acidification (OA), a global threat to the world’s oceans, is projected to significantly grow if CO2 continues to be emitted into the atmosphere at high levels. This will result in a slight decrease in pH. Since the latter is a logarithmic scale of acidity, the higher acidic seawater is expected to have a tremendous impact on marine living resources in the long-term. An 8-week laboratory experiment was designed to assess the impact of the projected pH in 2100 and beyond on fish survival, health, growth, and fish meat quality. Two projected scenarios were simulated with the control treatment, in triplicates. The control treatment had a pH of 8.10, corresponding to a pCO2 of 321.37 ± 11.48 µatm. The two projected scenarios, named Predict_A and Predict_B, had pH values of 7.80-pCO2 = 749.12 ± 27.03 and 7.40-pCO2 = 321.37 ± 11.48 µatm, respectively. The experiment was preceded by 2 weeks of acclimation. After the acclimation, 20 juvenile black sea breams (Acanthopagrus schlegelii) of 2.72 ± 0.01 g were used per tank. This species has been selected mainly due to its very high resistance to diseases and environmental changes, assuming that a weaker fish resistance will also be susceptibly affected. In all tanks, the fish were fed with the same commercial diet. The seawater’s physicochemical parameters were measured daily. Fish samples were subjected to physiological, histological, and biochemical analyses. Fish growth, feeding efficiency, protein efficiency ratio, and crude protein content were significantly decreased with a lower pH. Scanning electron microscopy revealed multiple atrophies of microvilli throughout the small intestine’s brush border in samples from Predict_A and Predict_B. This significantly reduced nutrient absorption, resulting in significantly lower feed efficiency, lower fish growth, and lower meat quality. As a result of an elevated pCO2 in seawater, the fish eat more than normal but grow less than normal. Liver observation showed blood congestion, hemorrhage, necrosis, vacuolation of hepatocytes, and an increased number of Kupffer cells, which characterize liver damage. Transmission electron microscopy revealed an elongated and angular shape of the mitochondrion in the liver cell, with an abundance of peroxisomes, symptomatic of metabolic acidosis.
Collapse
|
36
|
Zhang B, Wu J, Meng F. Adaptive Laboratory Evolution of Microalgae: A Review of the Regulation of Growth, Stress Resistance, Metabolic Processes, and Biodegradation of Pollutants. Front Microbiol 2021; 12:737248. [PMID: 34484172 PMCID: PMC8416440 DOI: 10.3389/fmicb.2021.737248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
Adaptive laboratory evolution (ALE) experiments are a serviceable method for the industrial utilization of the microalgae, which can improve the phenotype, performance, and stability of microalgae to obtain strains containing beneficial mutations. In this article, we reviewed the research into the microalgae ALE test and assessed the improvement of microalgae growth, tolerance, metabolism, and substrate utilization by ALE. In addition, the principles of ALE and the key factors of experimental design, as well as the issues and drawbacks of the microalgae ALE method were discussed. In general, improving the efficiency of ALE and verifying the stability of ALE resulting strains are the primary problems that need to be solved in future research, making it a promising method for the application of microalgae biotechnology.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|