1
|
Liu M, Shi W, Liu H, Guo Y, Yang B, Chang B. Dynamic Tailoring Porosity and Surface Chemistry of Ultramicroporous Carbon Spheres for Highly Selective Post-combustion CO 2 Capture. ACS MATERIALS AU 2025; 5:397-408. [PMID: 40093834 PMCID: PMC11907289 DOI: 10.1021/acsmaterialsau.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 03/19/2025]
Abstract
Carbon capture has emerged as a pivotal carbon neutrality technology for addressing greenhouse effect challenges. Porous carbons are one of the most promising adsorbents for CO2 capture and separation from flue gas, yet their traditional synthesis necessitates inert atmospheres to avoid oxidation, which greatly restricts the large-scale production at a low cost and advanced industrial applications. Herein, we propose an innovative pathway for large-scale fabrication of porous carbons via one-step pyrolysis in an air environment. Porosity and surface chemistry can be concurrently tailored by controlling the air-assisted pyrolysis process, and the optimization mechanism is unveiled in detail. The resultant materials feature well-interconnected hierarchical porosity with highly proportioned ultramicroporosity, uniform spherical morphology, and high surface heteroatom doping levels. By leveraging porosity and surface chemistry, the optimal sample exhibits superior CO2 capture behaviors of satisfactory CO2 uptake and ultrahigh selectivity. CO2/N2 selectivity reaches up to 160 at 0.15 bar and 25 °C, and it still achieves up to 76 at 1.0 bar and 25 °C, ranking it in the top 5% of the reported porous carbons. We explore the correlations between porosity, surface heteroatoms, and CO2 capture behaviors. Porosity has a decisive function on CO2 capture capacity and selectivity, especially ultramicroporosity, and surface heteroatoms doping could have a positive promotion in selectivity caused by extra CO2-philic sites. This work pioneers a feasible approach for large-scale directional design of functional porous carbons through air-assisted pyrolysis under mild conditions.
Collapse
Affiliation(s)
- Man Liu
- Henan Provincial Key Laboratory
of Nanocomposites and Applications, Institute of Nanostructured Functional
Materials, Huanghe Science and Technology
College, Zhengzhou, Henan 450006, China
| | - Weiwei Shi
- Henan Provincial Key Laboratory
of Nanocomposites and Applications, Institute of Nanostructured Functional
Materials, Huanghe Science and Technology
College, Zhengzhou, Henan 450006, China
| | - Huili Liu
- Henan Provincial Key Laboratory
of Nanocomposites and Applications, Institute of Nanostructured Functional
Materials, Huanghe Science and Technology
College, Zhengzhou, Henan 450006, China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory
of Nanocomposites and Applications, Institute of Nanostructured Functional
Materials, Huanghe Science and Technology
College, Zhengzhou, Henan 450006, China
| | - Baocheng Yang
- Henan Provincial Key Laboratory
of Nanocomposites and Applications, Institute of Nanostructured Functional
Materials, Huanghe Science and Technology
College, Zhengzhou, Henan 450006, China
| | - Binbin Chang
- Henan Provincial Key Laboratory
of Nanocomposites and Applications, Institute of Nanostructured Functional
Materials, Huanghe Science and Technology
College, Zhengzhou, Henan 450006, China
| |
Collapse
|
2
|
Li H, Huang X, Liu Q, Gong Z, Tang M, Ding J, Yan J, Lu S. Experimental study and mechanism analysis of high-efficiency adsorption of PCDD/Fs on N-doped hierarchical porous biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123525. [PMID: 39642835 DOI: 10.1016/j.jenvman.2024.123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Adsorption removal of PCDD/Fs from flue gas is one of the important technologies for reducing environmental PCDD/Fs emissions. However, due to the lack of systematic research on the adsorption mechanism of PCDD/Fs, commercial activated carbon (AC) with a single pore size distribution and lack of surface functional groups has poor adsorption and removal efficiency for PCDD/Fs. Therefore, this study first used corncob as a raw material and prepared N-doped hierarchical porous biochar (NHPB) using a one-step activation method for efficient removal of PCDD/Fs. The removal efficiency of NHPB for 17 toxic PCDD/Fs and 136 PCDD/Fs in simulated flue gas is as high as 96.21% and 97.21%, respectively. Compared with AC, the adsorption performance of NHPB was significantly less affected by the fluctuation of temperature and concentration than AC because the adsorption performance changed little with the chlorine substitution number of PCDD/Fs, and showed excellent adsorption performance under various adsorption conditions. Subsequently, the adsorption mechanism of PCDD/Fs on NHPB was systematically studied using theoretical calculations. Molecular simulations show that the optimal adsorption pore size for PCDD/Fs is mainly micropores above 1 nm and mesopores between 2 and 5 nm. Therefore, the hierarchical pore structure of NHPB exhibits superior adsorption performance. Density functional theory (DFT) calculations show that all three N-doping forms on the surface of biochar can enhance the adsorption energy of PCDD/Fs on biochar, thereby further enhancing the adsorption performance of NHPB for PCDD/Fs.
Collapse
Affiliation(s)
- Hongxian Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Xinlei Huang
- Chongqing 2D Material Institute, Liangjiang New Area, Chongqing, 400044, China
| | - Qi Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyuan Gong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China; Qingshanhu Energy Research Center Zhejiang University, 1699 Dayuan Road, Qingshanhu Science and Technology City, Hangzhou, 311305, China.
| | - Jiamin Ding
- Taizhou Institute of Zhejiang University, Taizhou, 318012, Zhejiang, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China; Qingshanhu Energy Research Center Zhejiang University, 1699 Dayuan Road, Qingshanhu Science and Technology City, Hangzhou, 311305, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China; Taizhou Institute of Zhejiang University, Taizhou, 318012, Zhejiang, China
| |
Collapse
|
3
|
Zhao J, Zhang S, Zhang X, Zhou W, Zhao Q, Wu F, Xing B. Machine learning and experimentally exploring the controversial role of nitrogen in CO 2 uptake by waste-derived nitrogen-containing porous carbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173471. [PMID: 38788946 DOI: 10.1016/j.scitotenv.2024.173471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Waste-derived nitrogen-containing porous carbons were widely accepted as promising carbon capture materials. However, roles of nitrogen in CO2 uptake were highly controversial, posing a challenge in designing high CO2 uptake porous carbons. Herein, nitrogen-containing species was firstly introduced into machine learning (ML) models to uncover the complex relationship of nitrogen, micropore and CO2 uptake by combining ML models, DFT computations and experiments. The results revealed that micropore volume (Vmicro) was the most important property influencing CO2 uptake, but was not the only determinant factor. Nitrogen-containing species (pyrrolic/pyridonic-N (N5) and pyridinic-N (N6)) rather than total nitrogen content, also played an essential role. On the one hand, they can enhanced CO2 adsorption by Lewis acid-base and hydrogen bonding. On the other hand, they promoted development of micropores by participating in activation reactions. The model further indicated that excessive N5 (>1.5 wt%) or N6 (>1.7 wt%) led to restriction on developments of micropores, which was attributed to enlargement of pore size, collapses or blockage of micropores. The double edged-sword effect of N5 and N6 on changes of microporous structures was responsible for the long-standing controversy over nitrogen. The result was further verified by synthesizing eight porous carbons with different textural and chemical properties. This study provided not only a new perspective for resolving the controversy of nitrogen in CO2 uptake, but also a graphical user interface prediction software meaningful for designing porous carbons.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenneng Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Wuhu Haichuang Environmental Protection Technology Co., Ltd, Wuhu 241000, China.
| | - Fengchang Wu
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
5
|
Khosrowshahi MS, Mashhadimoslem H, Shayesteh H, Singh G, Khakpour E, Guan X, Rahimi M, Maleki F, Kumar P, Vinu A. Natural Products Derived Porous Carbons for CO 2 Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304289. [PMID: 37908147 PMCID: PMC10754147 DOI: 10.1002/advs.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 11/02/2023]
Abstract
As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO2 ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO2 sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO2 capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO2 capture.
Collapse
Affiliation(s)
- Mobin Safarzadeh Khosrowshahi
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hossein Mashhadimoslem
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hadi Shayesteh
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Elnaz Khakpour
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Mohammad Rahimi
- Department of Biosystems EngineeringFaculty of AgricultureFerdowsi University of MashhadMashhad9177948974Iran
| | - Farid Maleki
- Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyNo. 424, Hafez StTehran15875‐4413Iran
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| |
Collapse
|
6
|
Mi Y, Zhang S, Zhao Y, Sun G, Cao Z. Pyrrolic N and Persistent Free Radical Synergistically Promote Catalytic Degradation of Dyes via Fe2O3/Activated Biochar Derived from Taihu Blue Algae. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
7
|
Lotus seed pot-derived nitrogen enriched porous carbon for CO2 capture application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Yuan X, Xiao J, Yılmaz M, Zhang TC, Yuan S. N, P Co-doped porous biochar derived from cornstalk for high performance CO2 adsorption and electrochemical energy storage. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Liu X, Yang F, Li M, Wang S, Sun C. From polyvinyl chloride waste to activated carbons: the role of occurring additives on porosity development and gas adsorption properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154894. [PMID: 35364165 DOI: 10.1016/j.scitotenv.2022.154894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Conversion of waste plastic to carbon materials has been considered as a potential approach for plastic recycling. In this study, polyvinyl chloride (PVC) plastic, one of the most widely used polymers, was used as a single precursor to prepare porous carbons via chemical activation process. The results showed that KOH activation followed by acid washing was an effective strategy to recover all calcium- and up to 92% of titanium-based compounds, the main metal additives in PVC, in the form of soluble salt. Those metal additives in PVC acted as a type of hard template, which benefit the development of microporosity and carbon dioxide (CO2) adsorption. Textural characterization demonstrated that the prepared carbons possessed high surface area and pore volume of up to 2507 m2/g and 1.11 cm3/g, respectively. At 0 °C and 100 kPa, the PVC-derived carbon, PH_73, which has highest ultra-micropore volume among all samples, exhibited excellent CO2 adsorption capacity of 6.90 mmol/g and high CO2/N2 selectivity. Converting the non-degradable PVC into high-quality porous carbon materials could be considered as a potential strategy for plastic waste recycling.
Collapse
Affiliation(s)
- Xin Liu
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Fangming Yang
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; School of Energy and Power Engineering, Shandong University, Jinan, PR China
| | - Mengbin Li
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Shaobo Wang
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chenggong Sun
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
10
|
Tian J, Ding X, Wang Q, Yang Y, Ma S, Hou Y, Huang Z, Liu L. Spontaneous Formation of Nitrogen - Doped Hierarchical Porous Microcrystalline Nanosheets with Improved CO2 Capture at Low and Medium Pressures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Performance and mechanism of As(III/Ⅴ) removal from aqueous solution by novel positively charged animal-derived biochar. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Wang H, Wang H, Yan Q. Peroxymonosulfate activation by algal carbocatalyst for organic dye oxidation: Insights into experimental and theoretical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151611. [PMID: 34774953 DOI: 10.1016/j.scitotenv.2021.151611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Preparation of nitrogen-doped algal carbocatalyst (NC) for peroxymonosulfate (PMS) activation to oxidative degrade methylene blue (MB), and the mechanism of radical and nonradical pathway in N-C/PMS system are investigated. Firstly, a series of N-doped carbonaceous materials (NC) were prepared using nitrogen-rich Taihu blue algae biomass as precursor at different annealing temperatures. It was found that the NC prepared by annealing at 800 °C (N-C-8) showed an optimal MB degradation performance of over 99% after 60 min. Confirmed by electron paramagnetic resonance (EPR) analyses and radical quenching experiments, radical and nonradical pathway (1O2 oxidation and electron-transfer) are both involved in MB degraded process. Moreover, both graphitic N derived from the intrinsic Taihu blue algae, and nitrogen vacancy evolved from nitrogen dopants decomposition exhibited high correlation with the MB removal rate in the N-C/PMS system. Finally, three possible degradation pathways of MB were proposed based on the Density Functional Theory (DFT) calculation and identified intermediates. Overall, this work provides a new insight into the intrinsic roles of nitrogen-dopants and nitrogen vacancies on the as-prepared carbocatalyst for PMS activation, and advances the understanding of the resource utilization of algal biomass.
Collapse
Affiliation(s)
- He Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China.
| |
Collapse
|
13
|
Qiao X, Xia Y, Su X, Wang B, Chen G, Chen H. Preparation of biomass carbon material based on fulvic acid and its application in dye and antibiotic treatments. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Gong Z, Wang H, Vayenas DV, Yan Q. Enhanced electrochemical removal of sulfadiazine using stainless steel electrode coated with activated algal biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114535. [PMID: 35051817 DOI: 10.1016/j.jenvman.2022.114535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
With the increasingly discharging and inappropriately disposing of antibiotics from human disease treatment and breeding industry, extensive development of antibiotic resistance in bacteria raised serious public health concern. In this work, algal biochar was coated onto the stainless steel mesh, and was employed as cathodic electrode for the degradation of sulfadiazine (SDZ) in an electro-Fenton (EF) system. It was found that algal biochar pyrolyzed at 600 °C with 1:1 KOH achieved best catalytic performance to generate H2O2 via oxygen reduction. Moreover, removal efficiency of SDZ reached 96.11% in 4 h with an initial concentration of 25 μg/mL, under the optimized condition as: initial pH at 3, 50 mM of Na2SO4 as electrolyte and an applied current of 20 mA/cm2. In addition, it was found that the SDZ removal kept at about 96.99% even after four repeated degradation process. Moreover, four possible SDZ degradative pathways during the EF process were proposed according to determined intermediates, model optimization and density functional theory calculation. Finally, acute and chronic biotoxicity of the degradative products against fish and green algae was evaluated, to further elaborate the environmental impact of SDZ after electrochemical degradation.
Collapse
Affiliation(s)
- Zhihao Gong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504, Patras, Greece; Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), Stadiou Str., Platani, GR, 26504, Patras, Greece
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, PR China.
| |
Collapse
|
15
|
Bermeo M, Vega LF, Abu-Zahra MRM, Khaleel M. Critical assessment of the performance of next-generation carbon-based adsorbents for CO 2 capture focused on their structural properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151720. [PMID: 34861307 DOI: 10.1016/j.scitotenv.2021.151720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide emissions and their sharply rising effect on global warming have encouraged research efforts to develop efficient technologies and materials for CO2 capture. Post-combustion CO2 capture by adsorption using solid materials is considered an attractive technology to achieve this goal. Templated materials, such as Zeolite Templated-Carbons and MOF-Derived Carbons, are considered as the next-generation carbon adsorbent materials, owing to their outstanding textural properties (high surface areas of ca. 4000 m2 g-1 and micropore volumes of ca. 1.7 cm3 g-1) and their versatility for surface functionalization. These materials have demonstrated remarkable CO2 adsorption capacities and CO2/N2 selectivities up to ca. 5 mmol g-1 and 100, respectively, at 298 K and 1 bar, and low isosteric heat of adsorption at zero coverage of ca. 12 kJ mol-1. Herein, a review of the advances in preparation of ZTCs and MDCs for CO2 capture is presented, followed by a critical analysis of the effects of textural properties and surface functionality on CO2 adsorption, including CO2 uptake, CO2/N2 selectivity, and isosteric heat of adsorption. This analysis led to the introduction of a Vmicrox N-content factor to evaluate the interplay between N-content and textural properties to maximize the CO2 uptake. Despite their promising performance in CO2 uptake, further testing using mixtures and impurities, and studies on adsorbent regeneration, and cyclic operation are desirable to demonstrate the stability of the MDCs and ZTCs for large scale processes. In addition, advances in scale-up syntheses and their economics are needed.
Collapse
Affiliation(s)
- Marie Bermeo
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mohammad R M Abu-Zahra
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Maryam Khaleel
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
16
|
Sun M, Bian Z, Cui W, Zhao X, Dong S, Ke X, Zhou Y, Wang J. Pyrolyzing soft template-containing poly(ionic liquid) into hierarchical N-doped porous carbon for electroreduction of carbon dioxide. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to rapid industrialization and urban development across the globe, the emission of carbon dioxide (CO2) has been significantly increased, resulting in adverse effects on the climate and ecosystems. In this regard, carbon capture and storage (CCS) is considered to be a promising technology in reducing atmospheric CO2 concentration. Among the CO2 capture technologies, adsorption has grabbed significant attention owing to its advantageous characteristics discovered in recent years. Porous carbon-based materials have emerged as one of the most versatile CO2 adsorbents. Numerous research activities have been conducted by synthesizing carbon-based adsorbents using different precursors to investigate their performances towards CCS. Additionally, amine-functionalized carbon-based adsorbents have exhibited remarkable potential for selective capturing of CO2 in the presence of other gases and humidity conditions. The present review describes the CO2 emission sources, health, and environmental impacts of CO2 towards the human beings, options for CCS, and different CO2 separation technologies. Apart from the above, different synthesis routes of carbon-based adsorbents using various precursors have been elucidated. The CO2 adsorption selectivity, capacity, and reusability of the current and applied carbon materials have also been summarized. Furthermore, the critical factors controlling the adsorption performance (e.g., the effect of textural and functional properties) are comprehensively discussed. Finally, the current challenges and future research directions have also been summarized.
Collapse
|
18
|
Li QG, Liu GH, Qi L, Wang HC, Ye ZF, Zhao QL. Heavy metal-contained wastewater in China: Discharge, management and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152091. [PMID: 34863767 DOI: 10.1016/j.scitotenv.2021.152091] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 05/22/2023]
Abstract
A large amount of heavy metal-contained wastewater (HMW) was discharged during Chinese industry development, which has caused many environmental problems. This study reviewed discharge, management and treatment of HMW in China through collecting and analyzing data from China's official statistical yearbook, standards, technical specifications, government reports, case reports, and research paper. Results showed that industry wastewater discharged by an amount of about 221.6 × 108 t (in 2012), where emission of heavy metals including Pb, Hg, Cd, Cr(VI), T-Cr was around 388.4 t (in 2012). Heavy metal emission with wastewater in east China and central south China was observed to be graver than that in other areas. However, control of heavy metals in Pb and Cd in northwest China was more difficult compared with other areas. In terms of management, China's government has issued many wastewater discharge standards, strict management policies for controlling HMW discharge in recent years, resulting in reduced HMW discharge. In addition, main HMW treatment technology in China was chemical precipitation, and other technologies such as membrane separation, adsorption, ion exchange, electrochemical and biological methods were also occasionally applied. In the future, chemical industries will be concentrated in northwest China, therefore control of HMW discharge should be paid much more attention in those areas. In addition, more effective and environment-friendly heavy metal removal and regeneration technologies should be developed, such as biomaterials adsorbent.
Collapse
Affiliation(s)
- Qian-Gang Li
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Hong-Chen Wang
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Zheng-Fang Ye
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Quan-Lin Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|