1
|
Dutta S, Kataki S, Banerjee I, Pohrmen CB, Jaiswal KK, Jaiswal AK. Microalgal biorefineries in sustainable biofuel production and other high-value products. N Biotechnol 2025; 87:39-59. [PMID: 40023220 DOI: 10.1016/j.nbt.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Microalgae has been emerging as a promising solution against the backdrop of the global need for sustainable, eco-friendly alternatives. This review article analyses the use of photosynthetic microalgae as an important resource for sustainable biofuel and high value bioproduct production, emphasizing the potential of self-sustaining microalgae biorefineries. A closed-loop, integrated multi-product producing microalgal biorefinery approach could significantly reduce the indicated negative environmental and energy impact from standalone microalgal biofuel generation. The economic feasibility of these biorefineries is linked to their recovery rate, improved by integrating various unit operations as well as multiple product dimensions under optimal conditions, enhancing resource recovery, process efficiency, and profitability. This approach ensures profitability and ubiquitous implementation of microalgal biorefineries, offering a sustainable solution to market demands. In conclusion, making microalgae biorefineries a major player in sustainable bioeconomy underscores the necessity of interdisciplinary research to surmount current challenges and completely realize their advantages.
Collapse
Affiliation(s)
- Swapnamoy Dutta
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam 784001, India
| | - Ishita Banerjee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cheryl Bernice Pohrmen
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry 605014, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry 605014, India.
| | - Amit K Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland.
| |
Collapse
|
2
|
Thakkar A, Patel B, Sahu SK, Yadav VK, Patel R, Sahoo DK, Joshi M, Patel A. Potato starch bioplastic films reinforced with organic and inorganic fillers: A sustainable packaging alternative. Int J Biol Macromol 2025; 306:141630. [PMID: 40032099 DOI: 10.1016/j.ijbiomac.2025.141630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The bioplastics have increased the demand against synthetic plastics for their non-toxic properties. This study focused on the effects of organic filler (charcoal), inorganic metal filler (aluminium metal powder), and inorganic salt filler (calcium sulfate) on potato starch-based bioplastic films. CH-F (charcoal containing-film), AMP-F (aluminium metal powder containing-film), and CS-F (calcium sulfate containing-film) were produced and analyzed mechanical (tensile strength, elongation at break) physical (thickness and density), thermal (TGA and DSC) and biodegradation properties of bioplastic. The various properties analysis results revealed the highest tensile strength of 29.91 MPa, moisture content of 6.79 %, and moisture absorption of 60.59 %, was observed in AMP-F. The FTIR spectra of the O-H, N-H, C-H, and C-C groups present in the bioplastic can enhance the tensile strength of the bioplastic. The bioplastic film surface morphology (SEM) showed cracks, voids, and small granules, indicating weak bonding and incomplete gelatinization. The maximum WVTR observed in CS-F of 43 × 10-3 g day-1 m-2. The soil burial test was used for the analysis of biodegradability of bioplastic, in which AMP-F degraded more than 105 days and CH-F completely degraded in 60 days. The results revealed that CH-F, AMPF, and CS-F have effectively enhanced potato starch-based bioplastic characteristics and can serve as a bioplastic alternative to petroleum-based plastics in food applications.
Collapse
Affiliation(s)
- Avani Thakkar
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Bhakti Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Santosh Kumar Sahu
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rajat Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), M. S. Building, Gandhinagar 382011, Gujarat, India.
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| |
Collapse
|
3
|
Esteves AF, Gonçalves AL, Vilar VJP, Pires JCM. Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation? Biotechnol Adv 2025; 79:108493. [PMID: 39645210 DOI: 10.1016/j.biotechadv.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J P Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Manochkumar J, Jonnalagadda A, Cherukuri AK, Vannier B, Janjaroen D, Chandrasekaran R, Ramamoorthy S. Machine learning-based prediction models unleash the enhanced production of fucoxanthin in Isochrysis galbana. FRONTIERS IN PLANT SCIENCE 2024; 15:1461610. [PMID: 39479538 PMCID: PMC11521944 DOI: 10.3389/fpls.2024.1461610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Introduction The marine microalga Isochrysis galbana is prolific producer of fucoxanthin, which is a xanthophyll carotenoid with substantial global market value boasting extensive applications in the food, nutraceutical, pharmaceutical, and cosmetic industries. This study presented a novel integrated experimental approach coupled with machine learning (ML) models to predict the fucoxanthin content in I. galbana by altering the type and concentration of phytohormone supplementation, thus overcoming the multiple methodological limitations of conventional fucoxanthin quantification. Methods A novel integrated experimental approach was developed, analyzing the effect of varying phytohormone types and concentrations on fucoxanthin production in I. galbana. Morphological analysis was conducted to assess changes in microalgal structure, while growth rate and fucoxanthin yield correlations were explored using statistical analysis and machine learning models. Several ML models were employed to predict fucoxanthin content, with and without hormone descriptors as variables. Results The findings revealed that the Random Forest (RF) model was highly significant with a highR 2 of 0.809 and R M S E of 0.776 when hormone descriptors were excluded, and the inclusion of hormone descriptors further improved prediction accuracy toR 2 of 0.839, making it a useful tool for predicting the fucoxanthin yield. The model that fitted the experimental data indicated methyl jasmonate (0.2 mg/L) as an effective phytohormone. The combined experimental and ML approach demonstrated rapid, reliable, and cost-efficient prediction of fucoxanthin yield. Discussion This study highlights the potential of machine learning models, particularly Random Forest, to optimize parameters influencing microalgal growth and fucoxanthin production. This approach offers a more efficient alternative to conventional methods, providing valuable insights into improving fucoxanthin production in microalgal cultivation. The findings suggest that leveraging diverse ML models can enhance the predictability and efficiency of fucoxanthin production, making it a promising tool for industrial applications.
Collapse
Affiliation(s)
- Janani Manochkumar
- Laboratory of Plant Biotechnology, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Annapurna Jonnalagadda
- School of Computer Science & Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aswani Kumar Cherukuri
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Brigitte Vannier
- Cell Communications and Microenvironment of Tumors Laboratory UR 24344, University of Poitiers, Poitiers, France
| | - Dao Janjaroen
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkom University, Bangkok, Thailand
| | - Rajasekaran Chandrasekaran
- Laboratory of Plant Biotechnology, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Siva Ramamoorthy
- Laboratory of Plant Biotechnology, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Li S, Xing D, Sun C, Jin C, Zhao Y, Gao M, Guo L. Effect of light intensity and photoperiod on high-value production and nutrient removal performance with bacterial-algal coupling system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120595. [PMID: 38520851 DOI: 10.1016/j.jenvman.2024.120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Direct discharge of mariculture wastewater can lead to eutrophication, posing a threat to aquatic ecosystems. A novel Bacteria-Algae Coupled Reactor (BACR) offers advantages in treating mariculture wastewater, which can effectively remove pollutants while simultaneously obtaining microalgal products. However, there is limited information available on how illumination affects the cultivation of mixotrophic microalgae in this bacteria-algae coupling system. Therefore, a combined strategy of photoperiod and light intensity regulation was employed to improve the biological mariculture wastewater remediation, promote microalgae biomass accumulation, and increase the high-value product yield in this study. Optimal light conditions could effectively enhance microalgal carbohydrate, protein, lipid accumulation and photosynthetic activity, with the carbohydrate, protein and lipid contents reached 44.11, 428.57 and 399.68 mg/L, respectively. Moreover, excellent removal rates were achieved for SCOD, NH4+-N and TP, reaching 86.68%, 87.35% and 95.13% respectively. This study proposes a comprehension of BACR processes in mariculture wastewater under different light conditions.
Collapse
Affiliation(s)
- Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Cheng Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao, 266100, China.
| |
Collapse
|
6
|
Gao X, jing X, Li J, Guo M, Liu L, Li Z, Liu K, Zhu D. Exploitation of inland salt lake water by dilution and nutrient enrichment to cultivate Vischeria sp. WL1 (Eustigmatophyceae) for biomass and oil production. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00823. [PMID: 38179180 PMCID: PMC10765011 DOI: 10.1016/j.btre.2023.e00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Salt lakes are significant components of global inland waters. Salt lake (SL) water can provide precious mineral resource for microbial growth. The prospect of utilizing diluted SL water for cultivation of a terrestrial oil-producing microalga Vischeria sp. WL1 was evaluated under laboratory conditions. Based on the detected mineral element composition, the water from Gouchi Salt Lake was diluted 2, 4, 6 and 8 folds and used with supplementation of additional nitrogen, phosphorus and iron (SL+ water). It was found that 4 folds diluted SL+ water was most favorable for biomass and oil production. When cultivated in this condition, Vischeria sp. WL1 gained a biomass yield of 0.82 g L-1 and an oil yield of 0.56 g L-1 after 24 days of cultivation, which is comparable to the optimum productivity we previously established. In addition, total monounsaturated fatty acid contents (64.4∼68.1 %) of the oils resulted from cultures in diluted SL+waters were higher than that in the control (55.5 %). It was also noteworthy that in all these cultures the oil contents (652.0∼681.0 mg g-1) accounted for the most of the biomass, which are far more than the protein and starch contents. This study demonstrates the feasibility of using SL water as a cost-effective mineral resource to cultivate microalgae for biomass and oil production.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin jing
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Jiahong Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Min Guo
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, Qinghai 810016, China
| | - Lei Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Derui Zhu
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, Qinghai 810016, China
| |
Collapse
|
7
|
Hassanien A, Saadaoui I, Schipper K, Al-Marri S, Dalgamouni T, Aouida M, Saeed S, Al-Jabri HM. Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Front Bioeng Biotechnol 2023; 10:1104914. [PMID: 36714622 PMCID: PMC9881887 DOI: 10.3389/fbioe.2022.1104914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, the increased demand for and regional variability of available water resources, along with sustainable water supply planning, have driven interest in the reuse of produced water. Reusing produced water can provide important economic, social, and environmental benefits, particularly in water-scarce regions. Therefore, efficient wastewater treatment is a crucial step prior to reuse to meet the requirements for use within the oil and gas industry or by external users. Bioremediation using microalgae has received increased interest as a method for produced water treatment for removing not only major contaminants such as nitrogen and phosphorus, but also heavy metals and hydrocarbons. Some research publications reported nearly 100% removal of total hydrocarbons, total nitrogen, ammonium nitrogen, and iron when using microalgae to treat produced water. Enhancing microalgal removal efficiency as well as growth rate, in the presence of such relevant contaminants is of great interest to many industries to further optimize the process. One novel approach to further enhancing algal capabilities and phytoremediation of wastewater is genetic modification. A comprehensive description of using genetically engineered microalgae for wastewater bioremediation is discussed in this review. This article also reviews random and targeted mutations as a method to alter microalgal traits to produce strains capable of tolerating various stressors related to wastewater. Other methods of genetic engineering are discussed, with sympathy for CRISPR/Cas9 technology. This is accompanied by the opportunities, as well as the challenges of using genetically engineered microalgae for this purpose.
Collapse
Affiliation(s)
- Alaa Hassanien
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Tasneem Dalgamouni
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, Qatar Foundation, College of Health and Life Sciences, Education City, Hamad Bin Khalifa University, Doha, Qatar
| | - Suhur Saeed
- ExxonMobil Research Qatar (EMRQ), Doha, Qatar
| | - Hareb M. Al-Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar,*Correspondence: Hareb M. Al-Jabri,
| |
Collapse
|
8
|
Alfaro-Sayes DA, Amoah J, Aikawa S, Matsuda M, Hasunuma T, Kondo A, Ogino C. Alginate immobilization as a strategy for improving succinate production during autofermentation using cyanobacteria Synechocystis sp. PCC 6803. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Hossain N, Chowdhury MA, Noman TI, Rana MM, Ali MH, Alruwais RS, Alam MS, Alamry KA, Aljabri MD, Rahman MM. Synthesis and Characterization of Eco-Friendly Bio-Composite from Fenugreek as a Natural Resource. Polymers (Basel) 2022; 14:polym14235141. [PMID: 36501535 PMCID: PMC9739852 DOI: 10.3390/polym14235141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
The present study show the usability of starch (tamarind) based-bio-composite film reinforced by fenugreek by various percentages to replace the traditional petrochemical plastics. The prepared bio-composite films were systematically characterized using the universal testing machine (UTM), soil degradation, scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), and antibacterial tests. The experiments showed that a lower percentage of fenugreek improves biodegradation and mechanical strength. More than 60% of biodegradation occurred in only 30 days. Almost 3 N/mm2 tensile strength and 6.5% tensile strain were obtained. The presence of micropores confirmed by SEM images may accelerate the biodegradation process. Antibacterial activity was observed with two samples of synthesized bio-composite, due to photoactive compounds confirmed by FTIR spectra. The glass transition temperature was shown to be higher than the room temperature, with the help of thermal analysis. The prepared bio-composite containing 5% and 10% fenugreek showed antibacterial activities.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1700, Bangladesh
- Correspondence: (M.A.C.); (M.D.A.); (M.M.R.)
| | - Tauhidul Islam Noman
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1700, Bangladesh
| | - Md. Masud Rana
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1700, Bangladesh
| | - Md. Hasan Ali
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1700, Bangladesh
| | - Raja Saad Alruwais
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi 11912, Saudi Arabia
| | - Md. Shafiul Alam
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur 1700, Bangladesh
| | - Khalid A. Alamry
- Chemistry Department, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mahmood D. Aljabri
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Correspondence: (M.A.C.); (M.D.A.); (M.M.R.)
| | - Mohammed M. Rahman
- Chemistry Department, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellent for Advanced Materials Research (CEAMR) & Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.C.); (M.D.A.); (M.M.R.)
| |
Collapse
|
10
|
Khan MJ, Gordon R, Varjani S, Vinayak V. Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153667. [PMID: 35131253 DOI: 10.1016/j.scitotenv.2022.153667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Algal culturing in photobioreactors for biofuel and other value-added products is a challenge globally specifically due to expensive closed or open photobioreactors associated with the high cost, problems of water loss and contamination. Among the wide varieties of microalgae, diatoms have come out as potential source for crude oil in the form of Diafuel™ (biofuel from diatoms). However, culturing diatoms at large scale hypothesized as diatom solar panels for biofuel production is still facing a need for facile and economical production of value-added products. The aim of this work was to culture diatom (microalgae) in a closed system by sealing the reactor rim tightly with very cheap priced and used plastic bubble wrap material which is generally discarded in a lodging and transportation of goods. To optimize it, different plastic wraps discarded from a plastic industry were tested first for their permeability to gases and impermeability to water loss. It was found that among different varieties of plastic bubble wraps, low density polyethylene (LDPE) bubble wrap material which was used to seal glass containers as photobioreactors allowed harvest of maximum Diafuel™ (37%), lipid (35 μgmL-1), highest cell count (1152 × 102 cells mL-1), maximum CO2 absorbance (0.084) with almost no water loss and nutrient uptake for 40 days of experiments. This was due to its permeability to gases and impermeability to water. To check usability of such LDPE bubble wrap on other microalgae it was therefore tested on the red-green microalgae Haematococcus pluvialis, which showed scope to be scaled up for astaxanthin production using discarded bubble wrap packing material. This study thus would open up a new way for decreasing plastic disposal and with reuse for sustainable development and application of diatom in biofuel production which could find applications in environmental and industrial sectors.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive Panacea, FL 32346, USA; C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India.
| | - Vandana Vinayak
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
11
|
Kumar M, Upadhyay LSB, Kerketta A, Vasanth D. Extracellular Synthesis of Silver Nanoparticles Using a Novel Bacterial Strain Kocuria rhizophila BR-1: Process Optimization and Evaluation of Antibacterial Activity. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Khan MJ, Singh N, Mishra S, Ahirwar A, Bast F, Varjani S, Schoefs B, Marchand J, Rajendran K, Banu JR, Saratale GD, Saratale RG, Vinayak V. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: Updates, challenges and innovations. CHEMOSPHERE 2022; 288:132589. [PMID: 34678344 DOI: 10.1016/j.chemosphere.2021.132589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Nikhil Singh
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Felix Bast
- Department of Botany, Central University of Punjab, Ghudda-VPO, Bathinda, 151401, Punjab, 151001, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamilnadu, Thiruvar, 610005, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
13
|
Abstract
Biomass and lipid production by the marine centric diatom Thalassiosira pseudonana were characterized in media based on palm oil mill effluent (POME) as a source of key nutrients. The optimal medium comprised 20% by volume POME, 80 µM Na2SiO3, and 35 g NaCl L−1 in water at pH ~7.7. In 15-day batch cultures (16:8 h/h light–dark cycle; 200 µmol photons m−2 s−1, 26 ± 1 °C) bubbled continuously with air mixed with CO2 (2.5% by vol), the peak concentration of dry biomass was 869 ± 14 mg L−1 corresponding to a productivity of ~58 mg L−1 day−1. The neutral lipid content of the biomass was 46.2 ± 1.1% by dry weight. The main components of the esterified lipids were palmitoleic acid methyl ester (31.6% w/w) and myristic acid methyl ester (16.8% w/w). The final biomass concentration and the lipid content were affected by the light–dark cycle. Continuous (24 h light) illumination at the above-specified irradiance reduced biomass productivity to ~54 mg L−1 day−1 and lipid content to 38.1%.
Collapse
|
14
|
Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149765. [PMID: 34454141 DOI: 10.1016/j.scitotenv.2021.149765] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 05/27/2023]
Abstract
There is a growing global recognition that microalgae-based biofuel are environment-friendly and economically feasible options because they incur several advantages over traditional fossil fuels. Also, the microalgae can be manipulated for extraction of value-added compounds such as lipids (triacylglycerols), carbohydrates, polyunsaturated fatty acids, proteins, pigments, antioxidants, various antimicrobial compounds, etc. Recently, there is an increasing focus on the co-cultivation practices of microalgae with other microorganisms to enhance biomass and lipid productivity. In a co-cultivation strategy, microalgae grow symbiotically with other heterotrophic microbes such as bacteria, yeast, fungi, and other algae/microalgae. They exchange nutrients and metabolites; this helps to increase the productivity, therefore facilitating the commercialization of microalgal-based fuel. Co-cultivation also facilitates biomass harvesting and waste valorization, thereby help to build an algal biorefinery platform for bioenergy production along with multivariate high value bioproducts and simultaneous waste bioremediation. This article comprehensively reviews various microalgae cultivation practices utilizing co-culture approaches with other algae, fungi, bacteria, and yeast. The review mainly focuses on the impact of several binary culture strategies on biomass and lipid yield. The advantages and challenges associated with the procedure along with their respective cultivation modes have also been presented and discussed in detail.
Collapse
Affiliation(s)
- Ayusmita Ray
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
15
|
Zaman F, Ishaq MW, Ul‐Haq N, Rahman WU, Ali MM, Ahmed F, Haq AU. Effect of Different Parameters on Catalytic Production of Biodiesel from Different Oils. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fakhar Zaman
- Beijing University of Chemical Technology Beijing Laboratory of Biomedical Materials 100029 Beijing China
| | - Muhammad Waqas Ishaq
- University of Science and Technology of China Department of Chemical Physics 230026 Hefei Anhui China
| | - Noaman Ul‐Haq
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Wajeeh Ur Rahman
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - M. Muzaffar Ali
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Faisal Ahmed
- COMSATS University Islamabad Department of Chemical Engineering Lahore Campus Lahore Pakistan
| | - Anwar ul Haq
- Riphah International University Department of Basic Sciences I-14 Campus 44000 Islamabad Pakistan
| |
Collapse
|
16
|
Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132313480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae-based carbon dioxide (CO2) biofixation and biorefinery are the most efficient methods of biological CO2 reduction and reutilization. The diversification and high-value byproducts of microalgal biomass, known as microalgae-based biorefinery, are considered the most promising platforms for the sustainable development of energy and the environment, in addition to the improvement and integration of microalgal cultivation, scale-up, harvest, and extraction technologies. In this review, the factors influencing CO2 biofixation by microalgae, including microalgal strains, flue gas, wastewater, light, pH, temperature, and microalgae cultivation systems are summarized. Moreover, the biorefinery of Chlorella biomass for producing biofuels and its byproducts, such as fine chemicals, feed additives, and high-value products, are also discussed. The technical and economic assessments (TEAs) and life cycle assessments (LCAs) are introduced to evaluate the sustainability of microalgae CO2 fixation technology. This review provides detailed insights on the adjusted factors of microalgal cultivation to establish sustainable biological CO2 fixation technology, and the diversified applications of microalgal biomass in biorefinery. The economic and environmental sustainability, and the limitations and needs of microalgal CO2 fixation, are discussed. Finally, future research directions are provided for CO2 reduction by microalgae.
Collapse
|
17
|
Whangchai K, Souvannasouk V, Bhuyar P, Ramaraj R, Unpaprom Y. Biomass generation and biodiesel production from macroalgae grown in the irrigation canal wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2695-2702. [PMID: 34850687 DOI: 10.2166/wst.2021.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The wastewater concentration is commonly acceptable for macroalgae growth; this process consumes water and is applicable for bioremediation. This study evaluated biodiesel's potential production from freshwater macroalga, Nitella sp., using batch experiment. Algae were collected from wastewater saturated from irrigation canals. Water quality and algae growth environment characteristics were monitored and analyzed. COD and BOD values were 18.67 ± 4.62 mg/L and 5.40 ± 0.30 mg/L, respectively. The chemical composition contents were high, demonstrating that water quality and sufficient nutrients could support algae growth. Oil extraction was estimated by the room temperature and heat extraction methods. The biodiesel in room temperature treatment was 0.0383 ± 0.014%, and in heat, extraction treatment was 0.0723 ± 0.029%. Results confirmed that the heat extraction treatment gave a high amount of oil and biodiesel yield. Gas chromatography/mass spectrometry (GC/MS) was used to analyze fatty acid methyl esters (FAME). Results revealed that 9-octadecane was a major portion of the substance. The obtained results confirmed that the wastewater contains many elements that can be utilized for dual-mode, like bioremediation and enhanced macroalgae growth for biodiesel production. Therefore, macroalgae grown in canal wastewater were highly feasible for use in sustainable biodiesel production.
Collapse
Affiliation(s)
- Kanda Whangchai
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Vannasinh Souvannasouk
- Program in Agriculture Economics Natural Resource and Environmental, Faculty of Economics, Maejo University, Chiang Mai 50200, Thailand
| | - Prakash Bhuyar
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand
| | | | - Yuwalee Unpaprom
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand E-mail: ;
| |
Collapse
|
18
|
Exploitation of cost-effective renewable heterogeneous base catalyst from banana (Musa paradisiaca) peel for effective methyl ester production from soybean oil. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01926-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Embong NH, Hindryawati N, Bhuyar P, Govindan N, Rahim MHA, Maniam GP. Enhanced biodiesel production via esterification of palm fatty acid distillate (PFAD) using rice husk ash (NiSO4)/SiO2 catalyst. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01922-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|