1
|
Smalling KL, Romanok KM, Bradley PM, Hladik ML, Gray JL, Kanagy LK, McCleskey RB, Stavreva DA, Alexander-Ozinskas AK, Alonso J, Avila W, Breitmeyer SE, Bustillo R, Gordon SE, Hager GL, Jones RR, Kolpin DW, Newton S, Reynolds P, Sloop J, Ventura A, Von Behren J, Ward MH, Solomon GM. Mixed contaminant exposure in tapwater and the potential implications for human-health in disadvantaged communities in California. WATER RESEARCH 2024; 267:122485. [PMID: 39368187 DOI: 10.1016/j.watres.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Water is an increasingly precious resource in California as years of drought, climate change, pollution, as well as an expanding population have all stressed the state's drinking water supplies. Currently, there are increasing concerns about whether regulated and unregulated contaminants in drinking water are linked to a variety of human-health outcomes particularly in socially disadvantaged communities with a history of health risks. To begin to address this data gap by broadly assessing contaminant mixture exposures, the current study was designed to collect tapwater samples from communities in Gold Country, the San Francisco Bay Area, two regions of the Central Valley (Merced/Fresno and Kern counties), and southeast Los Angeles for 251 organic chemicals and 32 inorganic constituents. Sampling prioritized low-income areas with suspected water quality challenges and elevated breast cancer rates. Results indicated that mixtures of regulated and unregulated contaminants were observed frequently in tapwater throughout the areas studied and the types and concentrations of detected contaminants varied by region, drinking-water source, and size of the public water system. Multiple exceedances of enforceable maximum contaminant level(s) (MCL), non-enforceable MCL goal(s) (MCLG), and other health advisories combined with frequent exceedances of benchmark-based hazard indices were also observed in samples collected in all five of the study regions. Given the current focus on improving water quality in socially disadvantaged communities, our study highlights the importance of assessing mixed-contaminant exposures in drinking water at the point of consumption to adequately address human-health concerns (e.g., breast cancer risk). Data from this pilot study provide a foundation for future studies across a greater number of communities in California to assess potential linkages between breast cancer rates and tapwater contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diana A Stavreva
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Jesus Alonso
- Clean Water Action/Clean Water Fund, Oakland, CA, USA
| | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | | | | | - Gordon L Hager
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rena R Jones
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Seth Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peggy Reynolds
- University of California San Francisco, San Francisco, CA, USA
| | - John Sloop
- ORISE, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - Mary H Ward
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gina M Solomon
- University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Abioye SO, Majooni Y, Moayedi M, Rezvani H, Kapadia M, Yousefi N. Graphene-based nanomaterials for the removal of emerging contaminants of concern from water and their potential adaptation for point-of-use applications. CHEMOSPHERE 2024; 355:141728. [PMID: 38499073 DOI: 10.1016/j.chemosphere.2024.141728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Considering the plethora of work on the exceptional environmental performance of 2D nanomaterials, there is still a missing link in addressing their practical application in point-of-use (POU) water treatment. By reviewing the exceptional environmental performance of 2D nanomaterials with specific emphasis on graphene and its derivatives, this review aims at inspiring further discussions and research in graphene-based POU water treatment with particular focus on the removal of emerging contaminants of concern (ECCs), which is largely missing in the literature. We outlined the prevalence of ECCs in the environment, their health effects both on humans and marine life, and the potential of efficiently removing them from water using three-dimensional graphene-based macrostructures to ensure ease of adsorbent recovery and reuse compared to nanostructures. Given various successful studies showing superior adsorption capacity of graphene nanosheets, we give an account of the recent developments in graphene-based adsorbents. Moreover, several cost-effective materials which can be easily self-assembled with nanosheets to improve their environmental performance and safety for POU water treatment purposes were highlighted. We highlighted the strategy to overcome challenges of adsorbent regeneration and contaminant degradation; and concluded by noting the need for policy makers to act decisively considering the conservative nature of the water treatment industry, and the potential health risks from ingesting ECCs through drinking water. We further justified the need for the development of advanced POU water treatment devices in the face of the growing challenges regarding ECCs in surface water, and the rising cases of drinking water advisories across the world.
Collapse
Affiliation(s)
- Samson Oluwafemi Abioye
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Yalda Majooni
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada; Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mahsa Moayedi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Hadi Rezvani
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mihir Kapadia
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Nariman Yousefi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada.
| |
Collapse
|
3
|
Stavreva DA, Varticovski L, Raziuddin R, Pegoraro G, Schiltz RL, Hager GL. Novel biosensor for high-throughput detection of progesterone receptor-interacting endocrine disruptors. Sci Rep 2024; 14:5567. [PMID: 38448539 PMCID: PMC10917811 DOI: 10.1038/s41598-024-55254-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Progesterone receptor (PR)-interacting compounds in the environment are associated with serious health hazards. However, methods for their detection in environmental samples are cumbersome. We report a sensitive activity-based biosensor for rapid and reliable screening of progesterone receptor (PR)-interacting endocrine disrupting chemicals (EDCs). The biosensor is a cell line which expresses nuclear mCherry-NF1 and a green fluorescent protein (GFP)-tagged chimera of glucocorticoid receptor (GR) N terminus fused to the ligand binding domain (LBD) of PR (GFP-GR-PR). As this LBD is shared by the PRA and PRB, the biosensor reports on the activation of both PR isoforms. This GFP-GR-PR chimera is cytoplasmic in the absence of hormone and translocates rapidly to the nucleus in response to PR agonists or antagonists in concentration- and time-dependent manner. In live cells, presence of nuclear NF1 label eliminates cell fixation and nuclear staining resulting in efficient screening. The assay can be used in screens for novel PR ligands and PR-interacting contaminants in environmental samples. A limited screen of river water samples indicated a widespread, low-level contamination with PR-interacting contaminants in all tested samples.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA.
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Razi Raziuddin
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA.
| |
Collapse
|
4
|
Li Z, Gao X, Li M, Yan Q, Zhang N, Yu B, Zhang B, Zhang S, Helal MH, Abu Ali OA, Nassan MA, Qyyum MA, Asif S, Bokhari A. Steroid hormone-inducible biosensor based on EGFP-tagged and environmental application. ENVIRONMENTAL RESEARCH 2022; 215:114303. [PMID: 36116500 DOI: 10.1016/j.envres.2022.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Steroid hormones as a class of emerging organic pollutant and high concern, due to their potential risks for human and environmental. Accurate analytical methods of steroid hormones are necessary in quantifying and monitoring. Biosensor is a promising technique. In this study, though part of 3α-HSD DNA to construct a regulatory plasmid and with the EGFP reporter gene to generate a reporter plasmid. Separately transformed into Escherichia coli strain BL21 and extracted the cell lysates as novel biosensor reagents. Analyzed the total amounts of steroid hormones in water, sediment, and soil samples using biosensor reagents, and compared these results with those obtained by HPLC. In summary, detection method using an EGFP reporter that can detect trace amounts of steroid hormones to reached fg/L. The optimal reaction time range and temperature were 30 min and 30 °C, respectively, while the most suitable organic solvent for the steroid hormone was 100% ethanol, up to 96-well plate format. This method is very suitable for high-throughput detection of environmental steroid hormone pollutants.
Collapse
Affiliation(s)
- Zhonghe Li
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xingai Gao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Ming Li
- Jilin Jianzhu University, Changchun, 130118, China
| | - Qiuliang Yan
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Nan Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Boyang Yu
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Bimi Zhang
- Economic Management Institute of Jilin Province, Changchun, 130012, China
| | - Shuying Zhang
- Animal Disease Prevention and Control Center of Jilin Province, China.
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, 91911, PO 840, Saudi Arabia.
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Abdul Qyyum
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman
| | - Saira Asif
- Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, 54000, Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Li J, Xu Y, Yin K, Wang R, Guo X, Wang J, Zheng L. Exploring the influence mechanism of dissolved organic matter on the bioavailability and thyroid hormone disrupting effect of zinc: A case study of effluents from galvanizing plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113747. [PMID: 35709670 DOI: 10.1016/j.ecoenv.2022.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The effect of dissolved organic matter (DOM) on metal bioavailability and toxicity is a complex process. Effluents from galvanizing plants containing large amounts of DOM and Zn were selected to investigate the potential influence and mechanism of DOM on Zn bioavailability and its role in inducing thyroid hormone disrupting effects. Thyroid hormone disrupting effects were evaluated using a recombinant thyroid hormone receptor β gene yeast assay. The results suggest that Zn could be the main metal contributor to the toxic effects. Then, Zn-binding characteristics with different fluorescent components of DOM were analyzed using three-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM) and revealed that Zn was more susceptible to interactions with fulvic-like materials. Furthermore, DOM altered the cellular biouptake and compartmentalization processes of Zn by downregulating Zn transmembrane transport-related genes (ZRT1, ZRT2 and ZAP1) and upregulating detoxification-related genes (COT1 and ZRC1), thus altering thyroid toxicity. These results provide comprehensive insights into the influence and mechanism of DOM on bioavailability and thyroid toxicity of Zn and suggest that the influence is associated with complex physical, chemical and biological processes, indicating that more refined medium constraints along with subtle biological reactions should be considered when predicting the bioavailability and toxicity of Zn in environmental water samples.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Kun Yin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Rongfang Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xueru Guo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| | - Lei Zheng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
6
|
Lv X, Chen G, Wu Y, Yu L, Zhou Y, Yu Y, Lan S, Hu J. Ecological and AhR-mediated risk assessment of polycyclic aromatic hydrocarbons and polybrominated diphenyl ethers on multiple aquatic species in river water: A combined chemical analysis and in silico approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153287. [PMID: 35066031 DOI: 10.1016/j.scitotenv.2022.153287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Assessing the adverse health risks at molecular endpoints to various aquatic organisms could be an urgent issue. In this manuscript, the ecological and AhR-mediated risk of sixteen polycyclic aromatic hydrocarbons (PAHs) and six polybrominated diphenyl ethers (PBDEs) in surface water of Dongjiang River, Southern China was evaluated using chemical analysis and in silico approaches. Average concentrations of ∑16PAHs and ∑6PBDEs were 586.3 ng/L and 2.672 ng/L in the dry season (DS), and 366.8 ng/L and 2.554 ng/L in the wet season (WS). Concentrations of PAHs during the DS were significantly higher than that in the WS, while no obvious seasonal distribution was observed for PBDEs. Only Ant and BaP in all congers of PAHs posed low to medium ecological risks, and PBDEs posed a low ecological risk. Moreover, AhR-mediated risk from PAHs was two orders of magnitude higher that from PBDEs, and the AhR-mediated toxicity on frog and eel were higher than those on other aquatic organisms in Dongjiang River. Phe and BDE209 were the significant contributor to the AhR-mediated risk induced by PAHs and PBDEs, respectively. This study is the first attempt to assess AhR-mediated risk of river water in multiple aquatic organisms.
Collapse
Affiliation(s)
- Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Guilian Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Yicong Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Yi Zhou
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Shanhong Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| |
Collapse
|
7
|
Hamilton CM, Winter MJ, Margiotta-Casaluci L, Owen SF, Tyler CR. Are synthetic glucocorticoids in the aquatic environment a risk to fish? ENVIRONMENT INTERNATIONAL 2022; 162:107163. [PMID: 35240385 DOI: 10.1016/j.envint.2022.107163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The glucocorticosteroid, or glucocorticoid (GC), system is largely conserved across vertebrates and plays a central role in numerous vital physiological processes including bone development, immunomodulation, and modification of glucose metabolism and the induction of stress-related behaviours. As a result of their wide-ranging actions, synthetic GCs are widely prescribed for numerous human and veterinary therapeutic purposes and consequently have been detected extensively within the aquatic environment. Synthetic GCs designed for humans are pharmacologically active in non-mammalian vertebrates, including fish, however they are generally detected in surface waters at low (ng/L) concentrations. In this review, we assess the potential environmental risk of synthetic GCs to fish by comparing available experimental data and effect levels in fish with those in mammals. We found the majority of compounds were predicted to have insignificant risk to fish, however some compounds were predicted to be of moderate and high risk to fish, although the dataset of compounds used for this analysis was small. Given the common mode of action and high level of inter-species target conservation exhibited amongst the GCs, we also give due consideration to the potential for mixture effects, which may be particularly significant when considering the potential for environmental impact from this class of pharmaceuticals. Finally, we also provide recommendations for further research to more fully understand the potential environmental impact of this relatively understudied group of commonly prescribed human and veterinary drugs.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental & Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9NH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
8
|
Varticovski L, Stavreva DA, McGowan A, Raziuddin R, Hager GL. Endocrine disruptors of sex hormone activities. Mol Cell Endocrinol 2022; 539:111415. [PMID: 34339825 PMCID: PMC8762672 DOI: 10.1016/j.mce.2021.111415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022]
Abstract
Sex hormones, such as androgens, estrogens and progestins are naturally occurring compounds that tightly regulate endocrine systems in a variety of living organisms. Uncontrolled environmental exposure to these hormones or their biological and synthetic mimetics has been widely documented. Furthermore, water contaminants penetrate soil to affect flora, fauna and ultimately humans. Because endocrine systems evolved to respond to very small changes in hormone levels, the low levels found in the environment cannot be ignored. The combined actions of sex hormones with glucocorticoids and other nuclear receptors disruptors creates additional level of complexity including the newly described "dynamic assisted loading" mechanism. We reviewed the extensive literature pertaining to world-wide detection of these disruptors and created a detailed Table on the development and current status of methods used for their analysis.
Collapse
Affiliation(s)
- L Varticovski
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - D A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A McGowan
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Raziuddin
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - G L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|