1
|
Hu H, Lu X, Wu M, Bai Z, Liu X. Effects of Environmental Pollutants on Tryptophan Metabolism. TOXICS 2025; 13:311. [PMID: 40278627 PMCID: PMC12031123 DOI: 10.3390/toxics13040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Tryptophan (Trp) is an important essential amino acid that plays a variety of physiological functions in the human body, including being a precursor of neurotransmitter and participating in immune regulation. Currently, more and more studies show that some pollutants in the environment can affect the metabolism of Trp and consequently affect human health. The present paper offers a comprehensive overview of prior research investigating the impact of environmental pollutants, including inorganic and organic contaminants, microplastics, and nanoplastics on the nervous system, immune system, digestive system, and maternal-fetal pregnancy, revealing their detrimental effects on Trp metabolism and human well-being.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoshan Liu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (H.H.); (X.L.); (M.W.); (Z.B.)
| |
Collapse
|
2
|
Guo YS, Gong S, Xie SM, Chen AZ, Jin HY, Liu J, Wang Q, Kang S, Li P, Wei F, Zuo TT, Ma SC. Mass Spectrometry-Based Metabolomics Investigation on Two Different Seaweeds Under Arsenic Exposure. Foods 2024; 13:4055. [PMID: 39766997 PMCID: PMC11675553 DOI: 10.3390/foods13244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Arsenic is a common toxic heavy metal contaminant that is widely present in the ocean, and seaweeds have a strong ability to concentrate arsenic, posing a potential risk to human health. This study first analyzed the arsenic content in two different seaweeds and then used an innovative method to categorize the seaweeds into low-arsenic and high-arsenic groups based on their arsenic exposure levels. Finally, a non-targeted metabolomic analysis based on mass spectrometry was conducted on seaweed from different arsenic exposure groups. The results indicated that as the arsenic concentration increased in the seaweeds, linolenic acid, tyrosine, pheophorbide a, riboflavin, and phenylalanine were upregulated, while arachidonic acid, eicosapentaenoic acid (EPA), betaine, and oleamide were downregulated. The following four key metabolic pathways involving unsaturated fatty acids and amino acids were identified: isoquinoline alkaloid biosynthesis, tyrosine metabolism, phenylalanine metabolism, and riboflavin metabolism. The identification of biomarkers and the characterization of key metabolic pathways will aid in the selection and breeding of low-arsenic-accumulating seaweed varieties, providing insights into the metabolic and detoxification mechanisms of arsenic in seaweeds.
Collapse
Affiliation(s)
- Yuan-sheng Guo
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Shuo Gong
- School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Si-min Xie
- Guangzhou Institute for Drug Control, Key Laboratory for Quality Evaluation of Chinese Patent Medicine, National Medical Products Administration, Guangzhou 510160, China;
| | - An-zhen Chen
- Qingdao Institute for Food and Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao 266073, China;
| | - Hong-yu Jin
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Jing Liu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Qi Wang
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Shuai Kang
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Ping Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Feng Wei
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Tian-tian Zuo
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Shuang-cheng Ma
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| |
Collapse
|
3
|
Li X, Shen K, Yuan D, Li X, Quan J, Tian F, Yang Y, Zhang L, Wang J. Sodium arsenite impairs sperm quality via downregulating the ZMYND15 and ZMYND10. ENVIRONMENTAL TOXICOLOGY 2024; 39:4385-4396. [PMID: 38798119 DOI: 10.1002/tox.24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Zinc finger MYND-type containing 15 (ZMYND15) has been documented to play important roles in spermatogenesis, and mutants contribute to recessive azoospermia, severe oligozoospermia, non-obstructive azoospermia, teratozoospermia, even male infertility. ZMYND10 is involved in sperm motility. Whether environmental pollutants impair male fertility via regulating the expression of ZMYND15 and ZMYND10 has not been studied. Arsenic exposure results in poor sperm quality and male infertility. In order to investigate whether arsenic-induced male reproductive toxicity is related to the expression of ZMYND15, ZMYND10 and their target genes, we established a male rat model of sodium arsenite exposure-induced reproductive injury, measured sperm quality, serum hormone levels, mRNA and protein expressions of intratesticular ZMYND15 and ZMYND10 as well as their target genes. The results showed that, in addition to the increased mRNA expression of Tnp1, sodium arsenite exposure reduced sperm quality, serum hormone levels, and mRNA and protein expression of intratesticular ZMYND15 and ZMYND10 and their target genes in male rats compared with the control group (p < .05). Therefore, our study first showed that the environmental pollutant arsenic impairs sperm quality in male rats by reducing the expression of ZMYND10 and ZMYND15 and their regulatory genes, which provides a possible diagnostic marker for environmental pollutants-induced male infertility.
Collapse
Affiliation(s)
- Xiangli Li
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Kaina Shen
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Dunxuan Yuan
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Xi Li
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Jinrou Quan
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Fangzhou Tian
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Yan Yang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Li Zhang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Junling Wang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
5
|
Zhao P, Lu W, Avellán-Llaguno RD, Liao X, Ye G, Pan Z, Hu A, Huang Q. Gut microbiota related response of Oryzias melastigma to combined exposure of polystyrene microplastics and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167359. [PMID: 37769716 DOI: 10.1016/j.scitotenv.2023.167359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The co-existence of microplastics (MPs) and antibiotics in the coastal environment poses a combined ecological risk. Single toxic effects of MPs or antibiotics on aquatic organisms have been verified, however, the exploration of their combined toxic effects remains limited. Here, foodborne polystyrene microplastics (PS-MPs, 10 μm, 0.1 % w/w in food) and waterborne tetracyclines (TC, 50 μg/L) were used to expose an estuarine fish Oryzias melastigma for four weeks. We found that the aqueous availability of TC was not significantly altered coexisting with MPs. The fish body weight gain was significantly slower in TC alone or combined groups than the control group, consistent with the lower lipid content in livers. The body length gain was significantly inhibited by the combined presence compared to the single exposure. Both exposures led to a shift of gut microbiota composition and diversity. TC and the combined group possessed similar gut microbiota which is distinct from PS-MPs and the control group. The Firmicutes/Bacteroidetes (F/B) ratio in the TC and combined groups were significantly lower compared to the control, while the PS-MPs group showed no significant impact. Metabolomic analysis of the fish liver confirmed the shift of metabolites in specific pathways after different exposures. More, a number of gut microbiota-related metabolites on lipid metabolism was perturbed, which were annotated in arachidonic acid metabolism and linoleic acid metabolism. In all, TC modulates bacterial composition in the fish gut and disturbs their liver metabolites via the gut-liver axis, which led to the slower growth of O. melastigma. More, the adverse impact was aggravated by the co-exposure to foodborne PS-MPs.
Collapse
Affiliation(s)
- Peiqiang Zhao
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Public Utilities, Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ricardo David Avellán-Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Liao
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhizhen Pan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Basic Science Data Center, Beijing 100190, China.
| |
Collapse
|
6
|
Li J, Nan B, Xu Z, Chang H, Xu S, Ren M, Zhang Y, Wu Y, Chen Y, Guo D, Shen H. Arsenic exposure caused male infertility indicated by testis and sperm metabolic dysfunction in SD rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166838. [PMID: 37689206 DOI: 10.1016/j.scitotenv.2023.166838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/12/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Arsenic containment is one of the most severe environmental problems. It has been reported that arsenic exposure could cause male reproductive damage. However, the evidence chain from sodium arsenite (NaAsO2) exposure to adverse male fertility outcomes has not been completed by molecular events. In this study, adult male rats were exposed to NaAsO2 for eight weeks via drinking water for verifying their reproductive capacity by checking the phenotypes of testis damage, sperm quality, and female pregnancy rate. H&E staining indicated testicular cells had atrophied, and necrosis was observed under transmission electron microscopy. Sperm viability tended to decrease, and sperm malformation increased. Notably, metabolites in the testes and sperm showed substantial disruption, especially sperm metabolites. The pregnancy rate tests showed that arsenic decreased male rats' reproduction, with some adverse outcomes of the increased numbers of unpregnant females. However, the fetal crown-rump length remained unaltered, indicating that the pregnancy rate was impacted by arsenic exposure but not fetal growth. On arsenic toxicometabolomics analysis, docosahexaenoic acid (DHA) in sperm was the clearest metabolic sign to correlate with the unpregnant rate. In summary, arsenic exposure can cause male infertility via the injured sperm, which results in decreased female pregnancy. The DHA information may imply the dietary intervention for improving sperm quality. Although the fetal growth of the successful pregnancy has not been affected, the changes in epigenetic phenotypes carried by sperms still need to be verified.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Zehua Xu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Song Xu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Miaomiao Ren
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yike Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yaru Wu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yujie Chen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Dongbei Guo
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, PR China.
| |
Collapse
|
7
|
Nan B, Sun X, Yang S, Huang Q, Shen H. Integrative proteomics and metabolomics analysis of non-observable acute effect level PM 2.5 induced accumulative effects in AC16 cells. J Appl Toxicol 2023; 43:1613-1629. [PMID: 37278136 DOI: 10.1002/jat.4500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Chronic exposure to very low ambient PM2.5 has been linked to cardiovascular risks in epidemiological observation, which also brought doubts on its safety threshold. In this study, we approached this question by chronic exposure of AC16 to the non-observable acute effect level (NOAEL) PM2.5 5 μg/mL and its positive reference 50 μg/mL, respectively. The doses were respectively defined on the cell viabilities >95% (p = 0.354) and >90% (p = 0.004) when treated acutely (24 h). To mimic the long-term exposure, AC16 was cultured from the 1st to 30th generations and treated with PM2.5 24 h in every three generations. The integration of proteomic and metabolomic analysis was applied, and 212 proteins and 172 metabolites were significantly altered during the experiments. The NOAEL PM2.5 induced both dose- and time-dependent disruption, which showed the dynamic cellular proteomic response and oxidation accumulation, the main metabolomics changes were ribonucleotide, amino acid, and lipid metabolism that have involved in stressed gene expression, and starving for energy metabolism and lipid oxidation. In summary, these pathways interacted with the monotonically increasing oxidative stress and led to the accumulated damage in AC16 and implied that the safe threshold of PM2.5 may be non-existent when a long-term exposure occurred.
Collapse
Affiliation(s)
- Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
| | - Shijing Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Tian X, Yan X, Chen X, Liu P, Sun Z, Niu R. Identifying Serum Metabolites and Gut Bacterial Species Associated with Nephrotoxicity Caused by Arsenic and Fluoride Exposure. Biol Trace Elem Res 2023; 201:4870-4881. [PMID: 36692655 DOI: 10.1007/s12011-023-03568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Co-contamination of arsenic (As) and fluoride (F) is widely distributed in groundwater, which are known risk factors for the nephrotoxicity. Emerging evidence has linked environmentally associated nephrotoxicity with the disturbance of gut microbiota and blood metabolites. In this study, we generated gut microbiota and blood metabolomic profile and identified multiple serum metabolites and gut bacteria species, which were associated with kidney injury on rat model exposed to As and F alone or combined. Combined As and F exposure significantly increased creatinine level. Abnormal autophagosomes and lysosome were observed, and the autophagic genes were enhanced in kidney tissue after single and combined As and F exposure. The metabolome data showed that single and combined As and F exposure remarkably altered the serum metabolites associated with the proximal tubule reabsorption function pathway, with glutamine and alpha-ketoglutarate level decreased in all exposed group. Furthermore, phosphatidylethanolamine (PE), the key contributor of autophagosomes, was decreased significantly in As and F + As exposed groups during the screen of autophagy-animal pathway. Multiple altered gut bacterial microbiota at phylum and species levels post As and F exposure were associated with targeted kidney injury, including p_Bacteroidetes, s_Chromohalobacter_unclassified, s_Halomonas_unclassified, s_Ignatzschineria_unclassified, s_Bacillus_subtilis, and s_Brevundimonas_sp._NA6. Meanwhile, our analysis indicated that As and F co-exposure possessed an interactive influence on gut microbiota. In conclusion, single or combined As and F exposure leads to the disruption of serum metabolic and gut microbiota profiles. Multiple metabolites and bacterial species are identified and associated with nephrotoxicity, which have potential to be developed as biomarkers of As and/or F-induced kidney damage.
Collapse
Affiliation(s)
- Xiaolin Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
9
|
Wang K, Lin X, Wang T, Zhang X, Cheng W, Xu F, Wang L, Li B, Wang M, Wang W, Zhang M, Ding S, Jin G, Zhu Y, Yang W, Hu A, Zhao Q. Synergistic effects of low-dose arsenic and N-methyl-N'-nitro-N-nitrosoguanidine co-exposure by altering gut microbiota and intestinal metabolic profile in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115195. [PMID: 37418937 DOI: 10.1016/j.ecoenv.2023.115195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Biological organisms are exposed to low-dose arsenic or N-nitro compounds (NOCs) alone or in combination worldwide, especially in areas with high cancer prevalence through drinking water or food exposure; however, information on their combined exposure effects is limited. Here, we conducted an in-depth study of the effects on the gut microbiota, metabolomics, and signaling pathways using rat models exposed to arsenic or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), one of the most active carcinogenic NOCs, separately or in combination with metabolomics and high-throughput sequencing. Compared to exposure alone, combined exposure to arsenic and MNNG exacerbated damage to gastric tissue morphology, interfered with intestinal microflora and substance metabolism, and exerted a stronger carcinogenic effect. This may be related to intestinal microbiota disorders, including Dyella, Oscillibacter, Myroides, and metabolic pathways such as glycine, serine, and threonine metabolism, arginine biosynthesis, central carbon metabolism in cancer, and purine and pyrimidine metabolism, thereby enhancing the cancer-causing effects of gonadotrophin-releasing hormone (GnRH), P53, and Wnt signaling pathways.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaohui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wenli Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Fang Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Bin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wuqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Shaopeng Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Guoqing Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yuting Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China.
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Chen X, Cheng Y, Tian X, Li J, Ying X, Zhao Q, Wang M, Liu Y, Qiu Y, Yan X, Ren X. Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115010. [PMID: 37211000 DOI: 10.1016/j.ecoenv.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Inorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer.
Collapse
Affiliation(s)
- Xushen Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiuyi Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuefeng Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
11
|
Huang L, Ye Z, Zhao Q, Li Y, Yu ZG, Zhang W. Role of microbial microbes in arsenic bioaccumulation and biotransformation in mice. Toxicol Appl Pharmacol 2023; 464:116447. [PMID: 36889513 DOI: 10.1016/j.taap.2023.116447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Although gut microbes can affect the accumulation and metabolism of arsenic (As), the microbes contributing to these processes remain largely unknown. Therefore, this study aimed to investigate the bioaccumulation and biotransformation of arsenate [As(V)] and arsenobetaine (AsB) in mice with a disordered gut microbiome. We used cefoperazone (Cef) to construct a mouse model of gut microbiome disruption along with 16S rRNA sequencing to elucidate the effect of gut microbiome destruction on the biotransformation and bioaccumulation of As(V) and AsB. This revealed the role of specific bacteria in As metabolism. Gut microbiome destruction increased the bioaccumulation of As(V) and AsB in various organs and reduced the excretion of As(V) and AsB in the feces. Further, gut microbiome destruction was found to be important for the biotransformation of As(V). Interference with Cef can significantly decrease Blautia and Lactobacillus while increasing Enterococcus, leading to increase As accumulation in mice and enhanced methylation. We also identified Lachnoclostridium, Erysipelatoclostridium, Blautia, Lactobacillus, and Enterococcus as biomarkers involved in As bioaccumulation and biotransformation. In conclusion, specific microbes can increase As accumulation in the host, exacerbating its potential health risks.
Collapse
Affiliation(s)
- Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yujie Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhi-Guo Yu
- School of Hydrology and Water Resources, Nanjing University of InformationScience and Technology, Nanjing, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Sun Y, Zhang J, Zhang H, Hou H. Effects of long-term intake of whole wheat and aleurone-enriched Chinese steamed bread on gut microbiome and liver metabolome in mice fed high-fat diet. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2022.103614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, Zhang W, Lin Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. ECO-ENVIRONMENT & HEALTH 2022; 1:229-243. [PMID: 38077254 PMCID: PMC10702911 DOI: 10.1016/j.eehl.2022.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2024]
Abstract
Heavy metal(loid)s (HMs) have caused serious environmental pollution and health risks. Although the past few years have witnessed the achievements of studies on environmental behavior of HMs, the related toxicity mechanisms, and pollution control, their relationship remains a mystery. Researchers generally focused on one topic independently without comprehensive considerations due to the knowledge gap between environmental science and human health. Indeed, the full life cycle control of HMs is crucial and should be reconsidered with the combination of the occurrence, transport, and fate of HMs in the environment. Therefore, we started by reviewing the environmental behaviors of HMs which are affected by a variety of natural factors as well as their physicochemical properties. Furthermore, the related toxicity mechanisms were discussed according to exposure route, toxicity mechanism, and adverse consequences. In addition, the current state-of-the-art of available technologies for pollution control of HMs wastewater and solid wastes were summarized. Finally, based on the research trend, we proposed that advanced in-operando characterizations will help us better understand the fundamental reaction mechanisms, and big data analysis approaches will aid in establishing the prediction model for risk management.
Collapse
Affiliation(s)
- Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuling Tu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ziyi Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanyu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
14
|
Guo H, Li X, Zhang Y, Li J, Yang J, Jiang H, Sun G, Huo T. Metabolic characteristics related to the hazardous effects of environmental arsenic on humans: A metabolomic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113459. [PMID: 35367889 DOI: 10.1016/j.ecoenv.2022.113459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) is a toxic metalloid exist ubiquitously in environment. Epidemiological studies and laboratory animal studies have verified that As damages multiple organs or tissues in the body and is associated with a variety of diseases. Changes in metabolites usually indicate disturbances in metabolic pathways and specific metabolites are considered as biomarkers of diseases or drugs/toxins or environmental effects. Metabolomics is the quantitative measurement of the dynamic multi-parameter metabolic responses of biological systems due to pathophysiological or genetic changes. Current years, some metabolomic studies on the hazardous effect of environmental As on humans have been reported. In this paper, we first overviewed the metabolomics studies of environmental As exposure in humans since 2011, emphasizing on the data mining process of metabolic characteristics related to the hazardous effects of environmental As on humans. Then, the relationship between metabolic characteristics and the toxic mechanism of environmental As exposure in humans were discussed, and finally, the prospects of metabolomics studies on populations exposed to environmental As were put forward. Our paper may shed light on the study of mechanisms, prevention and individualized treatment of As poisoning.
Collapse
Affiliation(s)
- Haoqi Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaohong Li
- The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Yuwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jian Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jing Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
15
|
Chen F, Luo Y, Li C, Wang J, Chen L, Zhong X, Zhang B, Zhu Q, Zou R, Guo X, Zhou Y, Guo L. Sub-chronic low-dose arsenic in rice exposure induces gut microbiome perturbations in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112934. [PMID: 34755630 DOI: 10.1016/j.ecoenv.2021.112934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Long-term consumption of arsenic-contaminated rice has become a public health issue that urgently needs to be addressed. In this study, mice were exposed to arsenic in rice (low dose, 0.91 mg/kg; medium dose, 9.1 mg/kg) for 30 days and 60 days, respectively, and the effects on pathological structures of spleen and skin, as well as the structure of the fecal microbiome were examined. The findings revealed dose/time cumulative effects on pathological changes, with even a low dose exposure for 30 days causing destruction of splenic follicular structure and thickening of dermal keratinized and epidermal layers. The Firmicutes/Bacteroidetes ratio in the community and the positive/negative ratio in network links were higher in arsenic groups, suggesting that arsenic resulted in a less healthy and unstable microbiome for the host. Thus lifetime consumption of arsenic in rice may have potential health effects on humans and must be carefully assessed to safeguard human health. Furthermore, in arsenic groups, arsenic-resistant bacteria or arsenic hazards remediation bacteria changed to be the dominant bacteria and acted as the core bacteria in the network modules. Some microbial arsenic transforming genes (arsC, arsR, arsA, ACR3, and aoxB) differed, indicating that the gut microbiome changed to withstand arsenic stress. Furthermore, Faecalibaculum, Lachnospiraceae_NK4A136_group, Angelakisella, Ruminiclostridium, and Desulfovibrionaceae are positively associated with arsenic dosage and may be useful in the early detection of arsenicals.
Collapse
Affiliation(s)
- Fubin Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Jiating Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China..
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Qijiong Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Rong Zou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Xuming Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| | - Yubin Zhou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| |
Collapse
|