1
|
Belli IM, Cavali M, Garbossa LHP, Franco D, Bayard R, de Castilhos Junior AB. A review of plastic debris in the South American Atlantic Ocean coast - Distribution, characteristics, policies and legal aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173197. [PMID: 38772490 DOI: 10.1016/j.scitotenv.2024.173197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The presence of plastics in the oceans has already become a pervasive phenomenon. Marine pollution by plastics surpasses the status of an emerging threat to become a well-established environmental problem, boosting research on this topic. However, despite many studies on the main seas and oceans, it is necessary to compile information on the South American Atlantic Ocean Coast to identify the lack of research and expand knowledge on marine plastic pollution in this region. Accordingly, this paper conducted an in-depth review of monitoring methods, sampling, and identification of macroplastics and microplastics (MPs) in water, sediments, and biota, including information on legal requirements from different countries as well as non-governmental initiatives. Brazil was the country with the highest number of published papers, followed by Argentina. MPs accounted for 75 % of the papers selected, with blue microfibers being the most common morphology, whereas PE and PP were the most abundant polymers. Also, a lack of standardization in the methodologies used was identified; however, the sites with the highest concentrations of MPs were the Bahía Blanca Estuary (Argentina), Guanabara Bay (Brazil), and Todos os Santos Bay (Brazil), regardless of the method applied. Regarding legislation, Uruguay and Argentina have the most advanced policies in the region against marine plastic pollution due to their emphasis on the life cycle and the national ban on certain single-use plastics. Therefore, considering its content, this expert review can be useful to assist researchers dealing with plastic pollution along the South American Atlantic Ocean Coast.
Collapse
Affiliation(s)
- Igor Marcon Belli
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | - Davide Franco
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Rémy Bayard
- INSA Lyon, DEEP, UR7429, 69621 Villeurbanne, France
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
2
|
Bothma F, Uren RC, Iordachescu L, van der Lingen CD, Bouwman H. Microplastics in the Indian and South Atlantic oceans translocate to gills, digestive glands, and muscle of the chokka squid Loligo reynaudii. MARINE POLLUTION BULLETIN 2024; 202:116371. [PMID: 38657492 DOI: 10.1016/j.marpolbul.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Comparative microplastic (MP) data for cephalopods between oceans is scarce. Our aim was to quantify, characterise, and compare MPs in gills, digestive gland, and mantle of chokka squid from the South Atlantic Ocean (SAO) and Indian Ocean (IO) off the coast of South Africa. South African squid had more MPs compared with other studies (means = 2.0 and 0.4 in SAO and IO squid mantle, respectively). Blue fibres were dominant. Identifiable MPs were polyethylene. Despite IO water having higher MP concentrations than the SAO, SAO squid had higher MP concentrations. Dilution by growth is the likely reason for the lower MP concentrations. Fibres were shorter in SAO than IO squid. However, we could not explain why fibre and mantle lengths from both oceans were positively correlated. Squid may not be the best indicator of marine MPs. The characteristics of MPs in squid can be used to track stocks and migrations.
Collapse
Affiliation(s)
- Francois Bothma
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Ryan Christian Uren
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lucian Iordachescu
- Department of the Built Environment, Division of Civil and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Carl D van der Lingen
- Formerly, Branch: Fisheries Management, Department of Forestry, Fisheries and the Environment, Cape Town, South Africa; Department of Biodiversity and Conservation Biology, University of the Western Cape Town, Cape Town, South Africa
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Doshi M, Rabari V, Patel A, Yadav VK, Sahoo DK, Trivedi J. A systematic review on microplastic contamination in marine Crustacea and Mollusca of Asia: Current scenario, concentration, characterization, polymeric risk assessment, and future Prospectives. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11029. [PMID: 38708452 DOI: 10.1002/wer.11029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 05/07/2024]
Abstract
Microplastics (MPs) pollution has wreaked havoc on biodiversity and food safety globally. The false ingestion of MPs causes harmful effects on organisms, resulting in a decline in biodiversity. The present review comprehended the current knowledge of MP contamination in Crustacea and Mollusca from 75 peer-reviewed articles published in Asia between 2015 and 2023. A total of 79 species (27 Crustacea and 52 Mollusca) have been recorded to be contaminated with MPs. Out of the total 27 species of Crustacea, Metopograpsus quadridentatus (327.56 MPs/individual) and Balanus albicostatus (0.42 MPs/individual) showed the highest and lowest contamination, respectively. Out of the total 52 species of Mollusca, Dolabella auricularia (2325 MPs/individual) and Crassostrea gigas and Mytilus edulis (0.2 MPs/individual) showed the highest and lowest contamination, respectively. In terms of country-wise MP contamination, China has the highest number of contaminated species in both phylums among Asia. Findings of pollution indices revealed a very high risk of MP contamination in all the countries. Fiber was reported predominantly in both groups. Blue and black-colored MPs having <500 μm and <500 μm-1 mm size were found dominantly in Crustacea and Mollusca, respectively. Polypropylene was recorded as the dominant plastic polymer in both Crustacea and Mollusca. In essence, this review has provided a comprehensive insight into MP concentration in Crustacea and Mollusca of Asia, highlighting variations among species and geographic locations. This understanding is crucial for tackling urgent environmental challenges, safeguarding human health, and promoting global sustainability initiatives amid the escalating issue of plastic pollution. PRACTITIONER POINTS: Microplastic pollution has created havoc on biodiversity and food safety. A total of 27 and 52 species of crustaceans and Mollusca have been recorded to be contaminated with MPs. Metopograpsus quadridentate and Dolabella auricularia have shown higher MPs contamination. Polypropylene was recorded as the dominant plastic polymer in both crustacean and Mollusca. Findings of pollution indices revealed a very high risk of MP contamination in all the countries.
Collapse
Affiliation(s)
- Mahima Doshi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Vasantkumar Rabari
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jigneshkumar Trivedi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
4
|
Aramendia J, García-Velasco N, Amigo JM, Izagirre U, Seifert A, Soto M, Castro K. Evidence of internalized microplastics in mussel tissues detected by volumetric Raman imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169960. [PMID: 38211850 DOI: 10.1016/j.scitotenv.2024.169960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Microplastics are a global ecological concern due to their potential risk to wildlife and human health. Animals ingest microplastics, which can enter the trophic chain and ultimately impact human well-being. The ingestion of microplastics can cause physical and chemical damage to the animals' digestive systems, affecting their health. To estimate the risk to ecosystems and human health, it is crucial to understand the accumulation and localization of ingested microplastics within the cells and tissues of living organisms. However, analyzing this issue is challenging due to the risk of sample contamination, given the ubiquity of microplastics. Here, an analytical approach is employed to confirm the internalization of microplastics in cryogenic cross-sections of mussel tissue. Using 3D Raman confocal microscopy in combination with chemometrics, microplastics measuring 1 μm in size were detected. The results were further validated using optical and fluorescence microscopy. The findings revealed evidence of microplastics being internalized in the digestive epithelial tissues of exposed mussels (Mytilus galloprovincialis), specifically within the digestive cells forming digestive alveoli. This study highlights the need to investigate the internalization of microplastics in organisms like mussels, as it helps us understand the potential risks they pose to aquatic biota and ultimately to human health. By employing advanced imaging techniques, challenges associated with sample contamination can be overcome and valuable insights into the impact of microplastics on marine ecosystems and human consumers are provided.
Collapse
Affiliation(s)
- Julene Aramendia
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain.
| | - Nerea García-Velasco
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Jose Manuel Amigo
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain; IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain
| | - Urtzi Izagirre
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Andreas Seifert
- IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain; CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastian, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET+) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Kepa Castro
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| |
Collapse
|
5
|
Pedroza RHP, David C, Lodeiro P, Rey-Castro C. Interactions of humic acid with pristine poly (lactic acid) microplastics in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168366. [PMID: 37939936 DOI: 10.1016/j.scitotenv.2023.168366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Microplastics and natural organic matter are present in the aquatic environment and their reciprocal interaction plays important roles in the transport and behavior of nutrients and contaminants. Nevertheless, we lack mechanistic understanding on these interactions, especially in the case of biodegradable plastics. Here we investigate the adsorption of a commercial humic acid onto poly (lactic acid) (PLA) microplastics in aqueous solution. While the pseudo-second order kinetic model provided a more accurate representation of the adsorption kinetics, the Elovich model also produced a good fit, suggesting that chemisorption may be the rate-limiting step. The equilibrium data was better fit by the Langmuir model, that provided a maximum adsorption capacity of 0.118 ± 0.006 mg·g-1. The obtained values for the separation factor (RL) and free energy (E) suggest that adsorption of humic acid onto PLA is controlled by physisorption. We studied the effects of pH, ionic strength, and PLA concentration on the adsorption of humic acid onto PLA and demonstrated that electrostatic interactions and aggregation are important. The humic acid was characterized by Fourier-transform infrared (FTIR) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, and parallel factor analysis (PARAFAC), before and after interacting with PLA. This set of analyses demonstrated that PLA caused alterations in the molecular structure of humic acid, primarily attributed to modifications in hydrogen bonding and hydrophobic interactions. Therefore, we hypothesize that the carboxylic groups of humic acid formed dimers in contact with PLA. This study provides new insights into the interactions between organic matter and a biodegradable microplastic in aqueous systems.
Collapse
Affiliation(s)
- Ricardo H P Pedroza
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Calin David
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Pablo Lodeiro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
| | - Carlos Rey-Castro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
6
|
Gong H, Li R, Li F, Xu L, Gan L, Li J, Huang H, Yan M, Wang J. Microplastic pollution in water environment of typical nature reserves and scenery districts in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166628. [PMID: 37640084 DOI: 10.1016/j.scitotenv.2023.166628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Microplastics were frequently detected in the ocean, freshwater environment and wastewater treatment plants. This study aims to fill up the knowledge gap of microplastic distribution in nature reserves and scenery districts. Microplastic samples were collected, the distribution characteristics were analyzed with a stereoscopic microscope and a Fourier transform infrared spectrometer, and the ecological risks of microplastic pollution were calculated. Microplastics were detected in all the collected water samples and the average abundances of microplastics in the surface water of eleven investigated nature reserves and scenery districts ranged from 542 to 5500 items/m3. The degrees of microplastic pollution of all the surveyed nature reserves and scenery districts were classified as hazard level I. Fiber microplastics represented the largest average proportion (67.4 %) and 91.7 % of the detected microplastics were smaller than 2 mm. Corresponding to the frequent detection of fiber microplastics, cotton was the most abundant (25.5 %) polymer type of the suspected microplastics, followed by polyamide (PA, 20.6 %), polyester (PET, 17.0 %), and cellulose (15.6 %). For the ecological risk of the microplastic polymers, six, two and three nature reserves and scenery districts were defined to be at hazard level I, II and III, respectively. In brief, microplastic pollution occurred in all the surveyed nature reserves/scenery districts and posed different degrees of ecological risks.
Collapse
Affiliation(s)
- Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Jingxian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Haisheng Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Aksu M, Başaran A, Sunlu U. Spatio-temporal distribution of microplastic abundances in Izmir Bay (eastern Aegean Sea). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1116. [PMID: 37648952 DOI: 10.1007/s10661-023-11790-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Microplastics (MPs) and their impacts have been extensively studied in the Mediterranean region. However, more research has yet to be conducted on assessing the extent of microplastic (MP) pollution in the eastern Aegean Sea, specifically in Izmir Bay. This study aims to evaluate the current state of MP pollution in surface water and sediment samples collected from Izmir Bay. Ten sampling stations were specifically selected, including locations near stream discharge points, maritime transportation piers, and port areas. Surface water samples were collected using a manta trawl net, while sediment samples were obtained using a Van Veen grab. The mean MP abundances in surface water ranged from 1,083,882 to 8,091,684 items/km2. Fragment type MPs were dominant. In terms of size category, it was found that MP s of 500µm size were dominant. The dominant color of MPs was white. ATR-FTIR analyses revealed that polyethylene and polypropylene were the dominant polymer types. MP concentrations in sediment ranged from 2,125 to 4,925 items/m2, with fiber-type MPs being the most abundant. Black-colored MPs were found to dominate in sediment samples. Overall, the MP levels in Izmir Bay were higher than previous studies findings. Therefore, it is crucial to conduct long-term monitoring studies to obtain more consistent and reliable data on MP pollution levels in Izmir Bay.
Collapse
Affiliation(s)
- Mehmet Aksu
- Fisheries Faculty, Department of Marine-Inland Waters Sciences and Technology, Ege University, 35100, Bornova-Izmir, Türkiye.
| | - Aslı Başaran
- Fisheries Faculty, Department of Marine-Inland Waters Sciences and Technology, Ege University, 35100, Bornova-Izmir, Türkiye
| | - Uğur Sunlu
- Fisheries Faculty, Department of Marine-Inland Waters Sciences and Technology, Ege University, 35100, Bornova-Izmir, Türkiye
| |
Collapse
|
8
|
Suaria G, Cappa P, Perold V, Aliani S, Ryan PG. Abundance and composition of small floating plastics in the eastern and southern sectors of the Atlantic Ocean. MARINE POLLUTION BULLETIN 2023; 193:115109. [PMID: 37327719 DOI: 10.1016/j.marpolbul.2023.115109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/18/2023]
Abstract
We report the distribution of floating plastics in the eastern and southern sectors of the Atlantic Ocean based on 35 neuston net trawl samples collected during two research cruises in 2016 and 2017. Plastic particles (>200 μm) were found in 69% of net tows, with median densities of 1583 items·km-2 and 5.1 g·km-2. Most particles (80% of 158) were microplastics (<5 mm) of secondary origin (88%), followed by industrial pellets (5%), thin plastic films (4%) and lines/filaments (3%). Due to the large mesh size we used, textile fibers were not considered in this study. μFTIR analysis revealed that most particles found in the net were made of polyethylene (63%), followed by polypropylene (32%) and polystyrene (1%). A transect between 0 and 18°E along 35°S in the South Atlantic Ocean revealed higher densities farther west, supporting the accumulation of floating plastics in the South Atlantic gyre, mainly west of 10°E.
Collapse
Affiliation(s)
- Giuseppe Suaria
- CNR-ISMAR (Institute of Marine Sciences - National Research Council), Lerici 19032, La Spezia, Italy.
| | - Paolo Cappa
- Independent Researcher, Sommariva Perno 12040, Italy
| | - Vonica Perold
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Stefano Aliani
- CNR-ISMAR (Institute of Marine Sciences - National Research Council), Lerici 19032, La Spezia, Italy
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
9
|
Lopes LGA, Lopes FC, Quintana KG, Costa PG, de Martinez Gaspar Martins C, Souza MM. Biomineralization biomarkers to assess microplastics toxic effects in the freshwater snail Pomacea canaliculata. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109585. [PMID: 36858139 DOI: 10.1016/j.cbpc.2023.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Microplastics (MPs) pollution has increased the number of reports on the toxic effects on biota, especially aquatic organisms. Recently, studies highlighted changes in ion transport and concentration, especially Ca2+, in organisms exposed to MPs. For calcifying organisms, such as mollusks, Ca2+ homeostasis is critical for their shells construction. We investigated the effects of polyethylene (PE) MPs at 20 μg/L on biomineralization biomarkers (Ca2+ATPase, carbonic anhydrase, hemolymph [Ca2+], and shell regeneration) of the freshwater gastropod Pomacea canaliculata. Two experimental sets were performed: (1) animals in physiological condition and (2) animals with their shells excised. The results of the first set showed that within 24 h, the hemolymph [Ca2+] decreased, and the Ca2+ATPase activity increased in the mantle edge. For carbonic anhydrase (CA), the activity decreased in the gland and increased in the mantle. By 72 h, the hemolymph [Ca2+] had not changed, whereas both enzymes had increased in both tissues. In the second set, the hemolymph [Ca2+] increased after 72 h, whereas Ca2+ATPase activity decreased in both tissues. For AC, the opposite results were observed. At 120 h, calcium pumping was still reduced and CA values increased in the digestive gland. Additionally, MPs exposure increased the capacity of the gastropods to recover their shells. Based on this, our work provides novel data associating PE microplastic exposures (at 20 μg/L) and their potential to stimulate biomineralization enzymes of P. canaliculata, as well as increase shell regeneration in excised animal; a good prerogative for further investigations on both subjects that still lacks of more robust evidence.
Collapse
Affiliation(s)
- Luiz Gustavo Alves Lopes
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| | - Fernanda Chaves Lopes
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Karine Gularte Quintana
- Universidade Federal do Rio Grande, Graduação em Oceanologia, Instituto de Oceanologia, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Fundação Espírito-santense de Tecnologia - FEST. Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Camila de Martinez Gaspar Martins
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil; Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Marta Marques Souza
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil; Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| |
Collapse
|
10
|
Caracci E, Vega-Herrera A, Dachs J, Berrojalbiz N, Buonanno G, Abad E, Llorca M, Moreno T, Farré M. Micro(nano)plastics in the atmosphere of the Atlantic Ocean. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131036. [PMID: 36857820 DOI: 10.1016/j.jhazmat.2023.131036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The occurrence, long-range atmospheric transport and deposition of micro and nano plastics (MNPLs) remains un-quantified for the oceanic atmosphereopen ocean. Here we show the characterisation of MNPLs and the aerosol composition (PM10) in a north-south Atlantic transect from Vigo (Spain) to Punta Arenas (Chile). The analytical procedure to assess the composition of MNPLs consisted of a double suspect screening approach of the polymers and additives, the two constituents of plastics. Polymers were analysed by size exclusion chromatography coupled with high-resolution mass spectrometry using an atmospheric pressure photoionization source operated in positive and negative conditions (HPLC(SEC)-APPI(+/-)-HRMS). Plastic additives were screened with high-performance liquid chromatography coupled to high-resolution mass spectrometry using an electrospray ionisation source (HPLC-ESI(+/-)-HRMS). The most common polymers were polyethylene (PE), polypropylene (PP), polyisoprene (PI), and polystyrene (PS), with the highest polymer concentration being 51.7 ng·m-3 of PI. The air mass back trajectories showed the variable influence of oceanic and terrestrial air masses. These differences were reflected in the aerosol composition with different contributions of Saharan dust, sea spray aerosol, organic/elemental carbon, and MNPLs. Results showed that samples largely influenced by sea-spray and air masses originating from coastal South America and the north Atlantic subtropical gyre were more contaminated by MNPLs. Moreover, this information was complemented by the characterisation of the largest particles using scanning electron microscopy (SEM) and µ-Fourier Transform Infrared Spectroscopy (µ-FTIR). This work provides the first field evidence of the long-range transport of MNPLs in most of the Atlantic Ocean, as the result of dynamic coupling between the lower atmosphere and the surface ocean. Sea-spray formation arises as a key driver for the aerosolisation of MNPLs, and atmospheric transport followed by dry deposition may modulate the occurrence of MNPLs in large oceanic regions, issues that will require future research efforts.
Collapse
Affiliation(s)
- Elisa Caracci
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, FR, Cassino, Italy
| | - Albert Vega-Herrera
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Naiara Berrojalbiz
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, FR, Cassino, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Esteban Abad
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
11
|
Dos Santos ÍE, Fernandes EHL, Pinho GLL, Abdallah PR. Characteristics and fluxes of plastic debris based on socio-economic data for Patos Lagoon-a choked coastal Lagoon in South Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59382-59400. [PMID: 37004619 DOI: 10.1007/s11356-023-26660-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023]
Abstract
Patos Lagoon, located in southern Brazil, is the world's largest choked coastal lagoon. Studies have revealed that plastic pollution affects lagoons; however, to date, they have only focused on a few limited regions of the lagoon. Top-down quantification methods based on socio-economic data from 2010 to 2017 were used to measure the amount of plastic reaching Patos Lagoon, thus broadening the perspective of plastic pollution in this area. According to the findings, Patos Lagoon's hydrographic regions produced an average of 4.54 Mton of plastic during the studied period. 1.86 Mton was consumed on average. High- and low-density polyethylene (HDPE and LDPE, respectively), polypropylene (PP), and polyvinyl chloride (PVC) were the main resins produced. Food-related activities were the largest consumer of plastic (17.98%), indicating a higher amount of single-use plastics being used in the basin. The preforms for plastic bottles, bags, and packaging were the most commonly manufactured plastic utensils. An estimated 8 to 14% of all plastics used to end up as mismanaged waste in the Patos Lagoon hydrographic basin. This resulted in 1.73 and 10.72 Kton, or 0.5 and 3.2 g/per person/per day, of plastic waste flowing into the waters of Patos Lagoon throughout the study period. These findings can help focus on management efforts by providing managers and policymakers with information for better plastic pollution mitigation in this environment.
Collapse
Affiliation(s)
- Ítele E Dos Santos
- Laboratório de Oceanografia Costeira E Estuarina - Instituto de Oceanografia, Universidade Federal Do Rio Grande, Av. Itália Km 8, Rio Grande, RS, 96.201-900, Brazil.
- Laboratório de Microcontaminantes Orgânicos E Ecotoxicologia Aquática - Instituto de Oceanografia, Universidade Federal Do Rio Grande, Av. Itália Km 8, Rio Grande, RS, 96.201-900, Brazil.
| | - Elisa H L Fernandes
- Laboratório de Oceanografia Costeira E Estuarina - Instituto de Oceanografia, Universidade Federal Do Rio Grande, Av. Itália Km 8, Rio Grande, RS, 96.201-900, Brazil
| | - Grasiela L L Pinho
- Laboratório de Microcontaminantes Orgânicos E Ecotoxicologia Aquática - Instituto de Oceanografia, Universidade Federal Do Rio Grande, Av. Itália Km 8, Rio Grande, RS, 96.201-900, Brazil
| | - Patrízia R Abdallah
- Unidade de Pesquisa Em Economia Costeira E Marinha, Universidade Federal Do Rio Grande, Av. Itália Km 8, Rio Grande, RS, 96.201-900, Brazil
| |
Collapse
|
12
|
Liu Y, Shi X, Zhang S, Lu J, Li W, Sun B, Zhao S, Yao D, Huotari J. The spatial distribution and abundance of microplastics in lake waters and ice during ice-free and ice-covered periods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121268. [PMID: 36780975 DOI: 10.1016/j.envpol.2023.121268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Understanding the spatial distribution and characteristics of microplastics (MPs) in lake waters is essential to assessing and addressing lacustrine MP pollution. This study investigated how lake ice affects the abundance, spatial distribution, and characteristics (size, shape) of MPs in Lake Ulansuhai by analyzing samples collected at ten sites uniformly distributed throughout the lake during ice-free and ice-covered periods. The abundance of MPs ranged between 204 ± 28 and 1224 ± 185 n·L-1 in lake waters during the ice-free period, and from 34 ± 8 to 216 ± 21 n·L-1 and 269 ± 84 to 915 ± 117 n·L-1 in water and ice during the ice-covered period, respectively. During the ice-covered period, MPs were 2.74-8.14 times higher in the ice than in water beneath the ice. Ice formation decreased MP abundance in lake waters, in part, by incorporating a relatively high percentage of MPs into the ice mass during freezing and by inhibiting atmospheric MPs from reaching the lake waters. The abundance of MPs in the water during the ice-free period was 4.50-11.30 times greater than during the ice-covered period. Seasonal variations in MP shape also occurred; the proportion of fibrous MPs in water decreased during the ice-covered period. Variations in MP abundance were partly due to differences in sedimentation rates; the settling of fibrous MPs is slower, making it easier for them to be captured during the formation of surface ice. Spatially, MPs were uniformly distributed during the ice-free period, but exhibited a spatially distinct pattern during ice-covered periods, when MPs in lake waters were higher in the northeast and lower in the southwest portions of the lake. During the ice-free period, small MPs (0.05-0.5 mm) were more likely to move with currents in the lake, whereas water velocities were reduced by ice formation, allowing small MPs to accumulate near the lake inlet.
Collapse
Affiliation(s)
- Yu Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China.
| | - Sheng Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China
| | - Wenbao Li
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China
| | - Biao Sun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China
| | - Dingwen Yao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jussi Huotari
- Lammi Biological Station, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Lammi, FI-16900, Finland
| |
Collapse
|
13
|
Liu Y, Liu Y, Li Y, Bian P, Hu Y, Zhang J, Shen W. Effects of irrigation on the fate of microplastics in typical agricultural soil and freshwater environments in the upper irrigation area of the Yellow River. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130766. [PMID: 36669409 DOI: 10.1016/j.jhazmat.2023.130766] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Agricultural activities are among the most significant sources of microplastics (MPs) in water. However, few studies have explored the effect of irrigation on the fate of MPs in agricultural systems. This study investigated the distribution of MPs in agricultural soil, surface water, and sediment of adjacent rivers, as well as the "MP communities" in various environments before and after irrigation in a typical agricultural irrigation area of the Yellow River. MPs were detected in all of the examined sites. The number of MPs in surface water and sediment increased after irrigation, whereas those in the surface soil of croplands decreased. In the vertical direction, irrigation accelerated the migration of MPs (< 100 µm) deep into the soil. The vertical mobility of fibers in soil was faster than that of other types of MPs. Moreover, irrigation decreased the correlation between soil properties and MPs in soils. MP community analysis indicated that irrigation enhanced the differences between MP communities among adjacent environments. Collectively, our findings confirmed that river water irrigation caused secondary MP pollution in the soil environment and accelerated MP pollution in deep soil. Therefore, this study provides a theoretical basis for the development of strategies for MP pollution control in agricultural soil.
Collapse
Affiliation(s)
- Yixuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yaxing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yue Li
- College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, PR China
| | - Pengyang Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yue Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jie Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weibo Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
14
|
Yin L, Wu N, Qu R, Zhu F, Ajarem JS, Allam AA, Wang Z, Huo Z. Insight into the photodegradation and universal interactive products of 2,2',4,4'-tetrabromodiphenyl ether on three microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130475. [PMID: 36455331 DOI: 10.1016/j.jhazmat.2022.130475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The transformation process of contaminants on microplastics (MPs) exposed to sunlight has attracted increasing attention. However, the interactions between them are typically disregarded; therefore, this work investigated the photodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on three MPs (polystyrene (PS), polypropylene (PP) and polyethylene (PE)) and the interactions between these two. The inhibition of aged PS on the elimination of BDE-47 was due to light shielding, while aged PP and PE increased the degradation rate. More hydroxyl radicals (HO•) was detected in the PS system, which resulted in the higher degradation rate of BDE-47 on PS. A total of 33 different products were identified and four reaction pathways were presented, and the reaction mechanisms mainly included debromination, hydroxylation, carbon-oxygen-bond breaking and interactive reactions. The Ecological Structure Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (TEST) programs were used to evaluate the toxicity of reaction products, and the results indicated that even though BDE-47 was the most toxic, the interaction products were still toxic or harmful to aquatic organisms. This study provides significant information on the photodegradation of contaminants on common microplastics and their interaction, which cannot be ignored.
Collapse
Affiliation(s)
- Linning Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China.
| |
Collapse
|
15
|
Pereira R, Rodrigues SM, Silva D, Freitas V, Almeida CMR, Ramos S. Microplastic contamination in large migratory fishes collected in the open Atlantic Ocean. MARINE POLLUTION BULLETIN 2023; 186:114454. [PMID: 36493521 DOI: 10.1016/j.marpolbul.2022.114454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Fishes are one of the most important components of the oceans and are exposed to several anthropogenic pressures, namely microplastic (MP), contaminants that are now ubiquitous worldwide. Taking advantage of the 2020 Circumnavigation Expedition carried by the NRP Sagres tall ship of the Portuguese Navy, fish samples from the southern Atlantic ocean were collected to evaluate possible MP contamination. In a total of 14 weeks of campaign, seven large migratory fishes of commercial interest were collected across the middle Atlantic Ocean and along the South American Atlantic coast. All individuals were contaminated with MPs, with an average of 18 ± 11 MPs/fish. In all fish sampled, both the gastrointestinal tract and gills presented MPs, indicating different contamination pathways including via their preys and from surrounding water, respectively. A total of 124 MPs were observed, where 72 % were fibers and 28 % particles, mostly of blue color (85 %), and with rayon and nylon as the most abundant polymers. This study is an important contribution to increase the scientific knowledge of MP contamination in mesopelagic fishes used for human consumption and collected in the open waters, reinforcing the need for further research regarding MP contamination in top predatory species from high trophic levels.
Collapse
Affiliation(s)
- Rúben Pereira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; ICBAS, Abel Salazar Institute of Biomedical Sciences, University of Porto, Portugal.
| | - Sabrina M Rodrigues
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; ICBAS, Abel Salazar Institute of Biomedical Sciences, University of Porto, Portugal
| | - Diogo Silva
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; ICBAS, Abel Salazar Institute of Biomedical Sciences, University of Porto, Portugal
| | - Vânia Freitas
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences of University of Porto, Portugal
| | - Sandra Ramos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| |
Collapse
|
16
|
Queiroz AFDS, da Conceição AS, Chelazzi D, Rollnic M, Cincinelli A, Giarrizzo T, Martinelli Filho JE. First assessment of microplastic and artificial microfiber contamination in surface waters of the Amazon Continental Shelf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156259. [PMID: 35644394 DOI: 10.1016/j.scitotenv.2022.156259] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The composition and distribution of microplastics (MPs) in the Brazilian Amazon Continental Shelf surface waters are described for the first time. The study was conducted during the 2018 rainy and dry seasons, using 57 water samples collected with aluminum buckets and filtered through a 64-μm mesh. The samples were vacuum-filtered in a still-air box, and the content of each filter was measured, counted, and classified. A total of 12,288 floating MPs were retrieved; particles were present at all 57 sampling points. The mean MP abundance was 3593 ± 2264 items·m-3, with significantly higher values during the rainy season (1500 to 12,967; 4772 ± 2761 items·m-3) than in the dry season (323 to 5733; 2672 ± 1167 items·m-3). Polyamides (PA), polyurethane (PU), and acrylonitrile butadiene styrene (ABS) were the most common polymers identified through Fourier Transform Infrared Spectroscopy (FTIR) analysis. Cellulose-based textile fibers were also abundant (~40%). Our results indicate that the Amazon Continental Shelf is contaminated with moderate to high levels of MPs; the highest abundances were recorded at stations near land-based sources such as river mouths and large coastal cities.
Collapse
Affiliation(s)
- Arnaldo Fabrício Dos Santos Queiroz
- Laboratório de Oceanografia Biológica and Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil; Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil
| | - Amanda Saraiva da Conceição
- Laboratório de Oceanografia Biológica and Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Marcelo Rollnic
- Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Tommaso Giarrizzo
- Grupo de Ecologia Aquática. Espaço Inovação do Parque de Ciência e Tecnologia Guamá (PCT Guamá), Belém, Guamá, Pará, Brazil; Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Avenida da Abolição, 3207, Fortaleza, Brazil
| | - José Eduardo Martinelli Filho
- Laboratório de Oceanografia Biológica and Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil; Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa s/n, Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|
17
|
Di Mauro R, Castillo S, Pérez A, Iachetti CM, Silva L, Tomba JP, Chiesa IL. Anthropogenic microfibers are highly abundant at the Burdwood Bank seamount, a protected sub-Antarctic environment in the Southwestern Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119364. [PMID: 35489539 DOI: 10.1016/j.envpol.2022.119364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics debris in the marine environment have been widely studied across the globe. Within these particles, the most abundant and prevalent type in the oceans are anthropogenic microfibers (MFs), although they have been historically overlooked mostly due to methodological constraints. MFs are currently considered omnipresent in natural environments, however, contrary to the Northern Hemisphere, data on their abundance and distribution in Southern Oceans ecosystems are still scarce, in particular for sub-Antarctic regions. Using Niskin bottles we've explored microfibers abundance and distribution in the water column (3-2450 m depth) at the Burdwood Bank (BB), a seamount located at the southern extreme of the Patagonian shelf, in the Southwestern Atlantic Ocean. The MFs detected from filtered water samples were photographed and measured using ImageJ software, to estimate length, width, and the projected surface area of each particle. Our results indicate that small pieces of fibers are widespread in the water column at the BB (mean of 17.4 ± 12.6 MFs.L-1), from which, 10.6 ± 5.3 MFs.L-1 were at the surface (3-10 m depth), 20 ± 9 MFs.L-1 in intermediate waters (41-97 m), 24.6 ± 17.3 MFs.L-1 in deeper waters (102-164 m), and 9.2 ± 5.3 MFs.L-1 within the slope break of the seamount. Approximately 76.1% of the MFs were composed of Polyethylene terephthalate, and the abundance was dominated by the size fraction from 0.1 to 0.3 mm of length. Given the high relative abundance of small and aged MFs, and the oceanographic complexity of the study area, we postulate that MFs are most likely transported to the BB via the Antarctic Circumpolar Current. Our findings imply that this sub-Antarctic protected ecosystem is highly exposed to microplastic pollution, and this threat could be spreading towards the highly productive waters, north of the study area.
Collapse
Affiliation(s)
- Rosana Di Mauro
- Gabinete de Zooplancton, Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Castillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Analía Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Invertebrados Marinos, CCNA, Universidad Maimónides-CONICET, CABA, Argentina
| | - Clara M Iachetti
- Universidad Nacional de Tierra del Fuego (UNTdF), Ushuaia, Argentina
| | - Leonel Silva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Mar del Plata, Argentina
| | - Juan P Tomba
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Mar del Plata, Argentina
| | - Ignacio L Chiesa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Crustáceos y Ecosistemas Costeros (CADIC-CONICET), Ushuaia, Argentina. Bernardo Houssay 200, Ushuaia, V9410CAB, Argentina.
| |
Collapse
|
18
|
Pakhomova S, Berezina A, Lusher AL, Zhdanov I, Silvestrova K, Zavialov P, van Bavel B, Yakushev E. Microplastic variability in subsurface water from the Arctic to Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118808. [PMID: 35007674 DOI: 10.1016/j.envpol.2022.118808] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Comparative investigations of microplastic (MP) occurrence in the global ocean are often hampered by the application of different methods. In this study, the same sampling and analytical approach was applied during five different cruises to investigate MP covering a route from the East-Siberian Sea in the Arctic, through the Atlantic, and into the Antarctic Peninsula. A total of 121 subsurface water samples were collected using underway pump-through system on two different vessels. This approach allowed subsurface MP (100 μm-5 mm) to be evaluated in five regions of the World Ocean (Antarctic, Central Atlantic, North Atlantic, Barents Sea and Siberian Arctic) and to assess regional differences in MP characteristics. The average abundance of MP for whole studied area was 0.7 ± 0.6 items/m3 (ranging from 0 to 2.6 items/m3), with an equal average abundance for both fragments and fibers (0.34 items/m3). Although no statistical difference was found for MP abundance between the studied regions. Differences were found between the size, morphology, polymer types and weight concentrations. The Central Atlantic and Barents Sea appeared to have more MP in terms of weight concentration (7-7.5 μg/m3) than the North Atlantic and Siberian Arctic (0.6 μg/m3). A comparison of MP characteristics between the two Hemispheres appears to indicate that MP in the Northern Hemisphere mostly originate from terrestrial input, while offshore industries play an important role as a source of MP in the Southern Hemisphere. The waters of the Northern Hemisphere were found to be more polluted by fibers than those of the Southern Hemisphere. The results presented here suggest that fibers can be transported by air and water over long distances from the source, while distribution of fragments is limited mainly to the water mass where the source is located.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Norwegian Institute for Water Research, Oslo, Norway; P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia.
| | - Anfisa Berezina
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia; St. Petersburg State University, Saint Petersburg, Russia
| | - Amy L Lusher
- Norwegian Institute for Water Research, Oslo, Norway; Department of Biological Sciences, University of Bergen, Norway
| | - Igor Zhdanov
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia Silvestrova
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Peter Zavialov
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | | | - Evgeniy Yakushev
- Norwegian Institute for Water Research, Oslo, Norway; P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia; V.I.Il'ichov Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
19
|
Bian P, Liu Y, Zhao K, Hu Y, Zhang J, Kang L, Shen W. Spatial variability of microplastic pollution on surface of rivers in a mountain-plain transitional area: A case study in the Chin Ling-Wei River Plain, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113298. [PMID: 35152111 DOI: 10.1016/j.ecoenv.2022.113298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Inland lakes and rivers are large reservoirs of microplastics. But currently, not too much research was done on microplastics of mountain rivers. The protection of water sources from microplastics is extremely significant for the safety of human drinking water. We quantified the distribution and variation of microplastics in the surface water from tributary (upstream water-source regions) to main stream (human settlements) in the Chin Ling-Wei River Plain Rivers, and assessed the pollution risk. Rivers in the Chin Ling-Wei River Plain contained various levels of microplastics (2.30-21.05 items/L), and the main stream of the river contained higher concentrations most commonly of microplastics than tributaries. The microplastics were fragments and films; they constituted 82.3% of the total abundance of microplastics. Microplastics with a particle size < 500 µm accounted for 64.3% of all the samples. As rivers flow from the mountains to the plains, the land-use types along the rivers become more multifunctional. Thus, the risk of river microplastic pollution increases sharply with distance downstream. Our research explored the microplastics pollution in the Chin Ling mountains based on topography and land-use types and thus provides a reference for further studies exploring the spatial distribution characteristics of microplastics in small-scale rivers and for pollution risk assessments.
Collapse
Affiliation(s)
- Pengyang Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yixuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kaihui Zhao
- Shaanxi Foping National Nature Reserve, Foping, Shaanxi 723400, PR China
| | - Yue Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jie Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Le Kang
- School of Environment, Education and Development the University of Manchester, Manchester M13 9PL, United Kingdom
| | - Weibo Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
20
|
Reynaud S, Aynard A, Grassl B, Gigault J. Nanoplastics: From model materials to colloidal fate. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Carretero O, Gago J, Filgueiras AV, Viñas L. The seasonal cycle of micro and meso-plastics in surface waters in a coastal environment (Ría de Vigo, NW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150021. [PMID: 34487894 DOI: 10.1016/j.scitotenv.2021.150021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Marine litter is an emerging environmental problem. In this study, micro and mesoplastics were determined for the first time in seawater in Ría de Vigo (Spain) identifying their concentration, annual cycle, size, shape and polymer composition. Besides, temporal variations at an annual scale were also established. The Ría de Vigo is well known for the important industry related to marine activities (fishing, mollusc culture, shipyards, and tourism). Three sampling stations were selected along the transverse axis of Ría and were monthly sampled for one year. Seawater samples were collected using a manta trawl and analyzed with ATR-FTIR, and Raman spectroscopy to determine plastic polymer type. The mesozooplankton community (0.2-20 mm) was also studied. The samples were collected with bongo nets in the same sampling stations as plastics. Manta trawl net (330 μm) was used to collect 32 samples (identifying 854 plastic particles; 677 microplastics and 177 mesoplastics). The mean concentration across all sites was 25.4 ± 13.4 items·km-2. The microplastics abundance was greater than that of mesoplastics (79%, and 21%, respectively). Around 30% of plastics analyzed were Polyethylene (PE), 19% were acrylates, 18% were Polypropylene (PP) and 10% were Polystyrene (PS). The main shapes of both micro and mesoplastics were fibers followed by paint sheets being black the main colour in both cases. The results showed high seasonal variability by micro and mesoplastics but similar spatial distribution. This seasonal heterogeneity can have effects on a future monitoring program. Furthermore, it was demonstrated that pollution by mesoplastics cannot be estimated through the microplastics abundances. Regarding the values of microplastics-zooplankton, they present a great negative correlation.
Collapse
Affiliation(s)
- Olga Carretero
- Centro Oceanografico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain; Campus Do Mar, Facultad de Ciencias del Mar, Universidad de Vigo, 36310, Spain
| | - Jesús Gago
- Centro Oceanografico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | | | - Lucía Viñas
- Centro Oceanografico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
22
|
Ferreira GVB, Justino AKS, Eduardo LN, Lenoble V, Fauvelle V, Schmidt N, Junior TV, Frédou T, Lucena-Frédou F. Plastic in the inferno: Microplastic contamination in deep-sea cephalopods (Vampyroteuthis infernalis and Abralia veranyi) from the southwestern Atlantic. MARINE POLLUTION BULLETIN 2022; 174:113309. [PMID: 35090293 DOI: 10.1016/j.marpolbul.2021.113309] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Microplastics are a relevant environmental concern in marine ecosystems due to their ubiquity. However, knowledge on their dispersion patterns within the ocean basin and the interaction with biota are scarce and mostly limited to surface waters. This study investigated microplastic contamination in two species of deep-sea cephalopods from the southwestern Atlantic with different ecological behaviour: the vampire squid (Vampyroteuthis infernalis) and the midwater squid (Abralia veranyi). Microplastic contaminated most of the evaluated specimens. V. infernalis showed higher levels of contamination (9.58 ± 8.25 particles individual-1; p < 0.05) than A. veranyi (2.37 ± 2.13 part. ind.-1), likely due to the feeding strategy of V. infernalis as a faecal pellets feeder. The size of extracted microplastics was inversely proportional to the depth of foraging. The microplastics were highly heterogeneous in composition (shape, colour and polymer type). Our results provide information regarding microplastic interaction with deep-sea organisms and evidence of the biological influence in the microplastic sinking mechanism.
Collapse
Affiliation(s)
- Guilherme V B Ferreira
- Departamento de Pesca e Aquicultura (DEPAQ), da Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil..
| | - Anne K S Justino
- Departamento de Pesca e Aquicultura (DEPAQ), da Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil.; Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Leandro Nolé Eduardo
- Departamento de Pesca e Aquicultura (DEPAQ), da Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil.; Institut de Recherche pour le Développement (IRD), MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Vincent Fauvelle
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Marseille, France
| | - Natascha Schmidt
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Marseille, France
| | - Teodoro Vaske Junior
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Campus do Litoral Paulista, UNESP CLP, Instituto de Biociências, 11380-972 São Vicente, SP, Brazil
| | - Thierry Frédou
- Departamento de Pesca e Aquicultura (DEPAQ), da Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil
| | - Flávia Lucena-Frédou
- Departamento de Pesca e Aquicultura (DEPAQ), da Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil
| |
Collapse
|
23
|
Horie Y, Takahashi C. Development of an in vivo acute bioassay using the marine medaka Oryzias melastigma. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:725. [PMID: 34651255 DOI: 10.1007/s10661-021-09527-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
To determine whether the marine medaka Oryzias melastigma is a suitable model organism for in vivo acute toxicity bioassay in seawater, we first determined whether there were differences in the concentrations of chemicals that were toxic to marine medaka (O. melastigma) and freshwater medaka (O. latipes). We performed in vivo acute toxicity bioassay with 3-chloroaniline, triclosan, 3,4-dichloroaniline, fenitrothion, and pyriproxyfen on larvae of both species. Although the concentrations of 3-chloroaniline and fenitrothion that were lethal to the larvae were identical for both species, the toxic concentrations of triclosan, 3,4-dichloroaniline, and pyriproxyfen were lower for O. melastigma than for O. latipes. We then used an in vivo acute toxicity bioassay to monitor the quality of coastal seawater in Akita, Japan. No lethal effects were observed in the harbor and canal in 2019. O. melastigma could be used to monitor the quality of seawater with salinities in the range 2-25. Our findings suggest that O. melastigma can be used as the test fish for in vivo acute toxicity bioassay intended for water quality monitoring.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita, 010-0195, Japan.
- Research Center for Inland Sea (KURCIS), Kobe University, Fukae Minami Kobe, Hyogo, 658-0022, Higashinada, Japan.
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita, 010-0195, Japan
| |
Collapse
|