1
|
Jayasekara UG, Hadibarata T, Hindarti D, Kurniawan B, Jusoh MNH, Gani P, Tan IS, Yuniarto A, Rubiyatno, Khamidun MHB. Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review. Bioprocess Biosyst Eng 2025; 48:705-723. [PMID: 39760783 DOI: 10.1007/s00449-024-03125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers. Some microorganisms are capable of transferring electrons within the cell, and this feature can be harnessed using Bio Electrochemical Systems (BES) to potentiate the degradation of pharmaceuticals present in wastewater. Moreover, researchers are evaluating the genetic modification of microbial strains to improve their degradation capacity and expand list of target compounds. This includes also discuss how environment changes, such as fluctuations in temperature or pH, may affect bioremediation efficiency. Furthermore, the presence of pharmaceuticals in the environment is emphasised as a major public health issue because it increases the chance for antibiotic-resistant bacteria emerging. This review combines existing information and outlines needed research areas for improving bioremediation technologies in the future.
Collapse
Affiliation(s)
- Upeksha Gayangani Jayasekara
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Tony Hadibarata
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Dwi Hindarti
- Research Center for Oceanography, National Research and Innovation Agency, Jalan Pasir Putih I, Jakarta, 14430, Indonesia
| | - Budi Kurniawan
- Research Center for Environment and Clean Technology, National Research and Innovation Agency, KST BJ Habibie, Puspitek, Serpong, Tangeran Selatan, 15314, Banten, Indonesia
| | - Mohammad Noor Hazwan Jusoh
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Paran Gani
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Inn Shi Tan
- Department of Chemical & Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Adhi Yuniarto
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Rubiyatno
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Mohd Hairul Bin Khamidun
- Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400, Parit Raja, Johor, Malaysia
| |
Collapse
|
2
|
Calgaro L, Giubilato E, Lamon L, Semenzin E, Marcomini A. Investigating the environmental fate of active pharmaceutical compounds in a coastal lagoon using a multimedia level III fugacity model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36217-6. [PMID: 40080272 DOI: 10.1007/s11356-025-36217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
The use of active pharmaceutical ingredients (APIs) has enhanced life quality and longevity but poses significant environmental risks to ecosystems and human health. Evidence-based risk assessments are essential for addressing these issues, requiring detailed data on API presence, behavior, and effects in the environment. In particular, predictive exposure models offer a cost-effective tool to support such investigations. This study focuses on the application of a multimedia level III fugacity model to estimate the predicted environmental concentrations (PECs) and to simulate transport, distribution, and persistence of nine APIs in the Venice Lagoon (Italy), a transitional environment subjected to multiple anthropogenic stressors. Concentrations of the studied APIs in water were estimated within one order of magnitude of measured data, while the model underestimated the concentration of azithromycin and 17-β-estradiol in the sediments due to water half-life overestimation and lack of information about unmonitored emission sources. In detail, the highest levels of APIs in the water were estimated for amoxicillin and clarithromycin, while sediments showed a significant presence of azithromycin and ciprofloxacin. Model results also showed the possibility for sediments to act as sink for azithromycin, ciprofloxacin, erythromycin, estrone, and 17-β-estradiol. For all target APIs, degradation in the water column and adjective outflow were the most important elimination processes, while degradation in the sediments was significant only for erythromycin, ciprofloxacin, and clarithromycin. Monte-Carlo uncertainty and sensitivity analysis showed that degradation in water, affinity to organic matter, and sediment dynamics were the parameters with the strongest influence on model's results. Overall, this work provided valuable information on the environmental fate and behavior of the investigated APIs in a complex transitional waterbody such as the Venice Lagoon and can be useful to support future environmental risk assessments as well as studies to evaluate the effects of emission control measures (e.g., restriction of use, substitution, or implementation of new technologies for wastewater treatment) on APIs environmental exposure.
Collapse
Affiliation(s)
- Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Lara Lamon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| |
Collapse
|
3
|
Becerra-Rueda OF, Rodríguez-Figueroa GM, Marmolejo-Rodríguez AJ, Aguíñiga-García S, Durán-Álvarez JC. Pharmaceutical Residues in Sediments of a Coastal Lagoon in Northwest Mexico-Occurrence and Environmental Risk Assessment. J Xenobiot 2024; 14:1757-1770. [PMID: 39584958 PMCID: PMC11587066 DOI: 10.3390/jox14040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Contamination of marine ecosystems by pharmaceutically active compounds (PhACs) deserves more research since their environmental fate differs from that observed in freshwater systems. However, knowledge remains scarce, especially in semi-arid coastal regions of the Global South. This study investigates the occurrence and distribution of caffeine, carbamazepine, ciprofloxacin, and sulfamethoxazole in sediments from the La Paz lagoon, a coastal system in a semi-arid region of Mexico with inverse estuarine conditions. Samples of superficial sediments (0-5 cm depth) were collected from 18 sampling points distributed through the lagoon, encompassing sites heavily polluted by discharges of municipal sewage and 3 potentially pristine sites far from the urban and peri-urban zones. Also, a 25 cm length sediment core was taken and divided into 1 cm sub-samples to determine the deposition of target PhACs in the sediment bed through time. The extraction of the target PhACs was performed through the accelerated solvent extraction (ASE) technique and quantification was achieved using a validated HPLC-MS/MS analytical method. The concentration of caffeine, carbamazepine, ciprofloxacin, and sulfamethoxazole in superficial sediment oscillated in the range of 1 to 45 ng g-1 (dry weight). The highest mass fraction of target PhACs was detected in sites impacted by wastewater discharges. The caffeine-to-carbamazepine ratio was determined for the first time in marine sediments impacted by wastewater discharges, resulting in values from 4.2 to 9.12. Analysis of the 25 cm length sediment core revealed a high dispersion of caffeine, which was attributed to high water solubility, while antibiotics were predominantly detected in the upper 20 cm of the core. Risk quotients were calculated, observing low risk for caffeine, carbamazepine, and ciprofloxacin, while sulfamethoxazole presented high risk in all the sampling points. PhACs are retained in superficial sediments from a lagoon impacted by wastewater discharges, and the level of impact depends on the properties of the compounds and the TOC content in sediments. Risk assessments should be performed in the future considering the combination of pharmaceuticals and byproducts in marine sediments. This research emphasizes the importance of sewage management in preserving marine ecosystems in semi-arid regions in the Global South.
Collapse
Affiliation(s)
- Oscar Fernando Becerra-Rueda
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz 23096, Mexico; (O.F.B.-R.); (G.M.R.-F.); (A.J.M.-R.); (S.A.-G.)
| | - Griselda Margarita Rodríguez-Figueroa
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz 23096, Mexico; (O.F.B.-R.); (G.M.R.-F.); (A.J.M.-R.); (S.A.-G.)
| | - Ana Judith Marmolejo-Rodríguez
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz 23096, Mexico; (O.F.B.-R.); (G.M.R.-F.); (A.J.M.-R.); (S.A.-G.)
| | - Sergio Aguíñiga-García
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz 23096, Mexico; (O.F.B.-R.); (G.M.R.-F.); (A.J.M.-R.); (S.A.-G.)
| | - Juan Carlos Durán-Álvarez
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México (ICAT-UNAM), Circuito Exterior S/N, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Cardenas Perez AS, Challis JK, Alcaraz AJ, Ji X, Ramirez AVV, Hecker M, Brinkmann M. Developing an Approach for Integrating Chemical Analysis and Transcriptional Changes to Assess Contaminants in Water, Sediment, and Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2252-2273. [PMID: 38801401 DOI: 10.1002/etc.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;43:2252-2273. © 2024 SETAC.
Collapse
Affiliation(s)
- Ana Sharelys Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiaowen Ji
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York, USA
| | - Alexis Valerio Valery Ramirez
- Grupo de investigación Agrícola y Ambiental, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Szapu JS, Cserkész T, Pirger Z, Kiss C, Lanszki J. Exposure to anticoagulant rodenticides in steppe polecat (Mustela eversmanii) and European polecat (Mustela putorius) in central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174282. [PMID: 38960164 DOI: 10.1016/j.scitotenv.2024.174282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Poisoning caused by coumarin-type anticoagulant rodenticides (ARs) stands as the predominant method for controlling rodents globally. ARs, through secondary poisoning, pose a significant threat to predators due to their lethal and sublethal effects. We examined the concentration of accumulated ARs in liver samples of mostly road-killed steppe polecats (Mustela eversmanii) and European polecats (M. putorius) collected throughout Hungary between 2005 and 2021. The steppe polecat samples were found mainly from Eastern Hungary, while European polecats from Western Hungary. We measured the concentration of six residues by HPLC-FLD. Our analysis revealed the presence of one first-generation and four second-generation ARs in 53% of the steppe polecat (36) and 39% of the European polecat (26) samples. In 17 samples we detected the presence of at least two AR compounds. Although we did not find significant variance in AR accumulation between the two species, steppe polecats displayed greater prevalence and maximum concentration of ARs, whereas European polecat samples exhibited a more diverse accumulation of these compounds. Brodifacoum and bromadiolone were the most prevalent ARs; the highest concentrations were 0.57 mg/kg and 0.33 mg/kg, respectively. The accumulation of ARs was positively correlated with human population density and negatively correlated with the extent of the more natural habitats in both species. To the best of our knowledge, this is the first study to demonstrate anticoagulant rodenticide exposure in steppe polecats globally, and for European polecats in Central European region. Although the extent of AR accumulation in European polecat in Hungary appears comparatively lower than in many other European countries, the issue of secondary poisoning remains a serious problem as these ARs intrude into food webs. Reduced and more prudent usage of pesticides would provide several benefits for wildlife, included humans. However, we advocate a prioritization of ecosystem services through the complete prohibition of the toxicants.
Collapse
Affiliation(s)
- Julianna Szulamit Szapu
- Doctoral School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary.
| | - Tamás Cserkész
- Hungarian Natural History Museum, Baross utca 13, 1088 Budapest, Hungary.
| | - Zsolt Pirger
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kunó utca 3, 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, Balaton Limnological Research Institute, Klebelsberg Kunó utca 3, 8237 Tihany, Hungary.
| | - Csaba Kiss
- Department of Zoology, Institute of Biology, Eszterházy Károly Catholic University, Eszterházy tér 1, 3300 Eger, Hungary.
| | - József Lanszki
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kunó utca 3, 8237 Tihany, Hungary; Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Guba Sándor út 40, 7400 Kaposvár, Hungary.
| |
Collapse
|
6
|
Manuguerra S, Carli F, Scoditti E, Santulli A, Gastaldelli A, Messina CM. Effects of Mixtures of Emerging Pollutants and Drugs on Modulation of Biomarkers Related to Toxicity, Oxidative Stress, and Cancer. Metabolites 2024; 14:559. [PMID: 39452940 PMCID: PMC11509268 DOI: 10.3390/metabo14100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Over time, the scientific community has developed a growing interest in the effects of mixtures of different compounds, for which there is currently no established evidence or knowledge, in relation to certain categories of xenobiotics. It is well known that exposure to pollutants causes oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which can affect signaling pathways that regulate the cell cycle, apoptosis, energy balance, and cellular metabolism. The aim of this study was to investigate the effects of sub-lethal concentrations of mixtures of emerging pollutants and pharmaceuticals on the modulation of biomarkers related to toxicity, oxidative stress, and cancer. Methods: In this study, the hepatoma cell line HepG2 was exposed to increasing concentrations of polybrominated diphenyl ether 47 (BDE-47), cadmium chloride (CdCl2), and carbamazepine (CBZ), both individually and in mixtures, for 72 h to assess cytotoxicity using the MTT assay. The subsequent step, following the identification of the sub-lethal concentration, was to investigate the effects of exposure at the gene expression level, through the evaluation of molecular markers related to cell cycle and apoptosis (p53), oxidative stress (NRF2), conjugation and detoxification of xenobiotics (CYP2C9 and GST), DNA damage (RAD51 and γH2AFX), and SUMOylation processes (SUMO1 and UBC9) in order to identify any potential alterations in pathways that are normally activated at the cellular level. Results: The results showed that contaminants tend to affect the enzymatic detoxification and antioxidant system, influencing DNA repair defense mechanisms involved in resistance to oxidative stress. The combined effect of the compounds at sub-lethal doses results in a greater activation of these pathways compared to exposure to each compound alone, thereby exacerbating their cytotoxicity. Conclusions: The biomarkers analyzed could contribute to the definition of early warning markers useful for environmental monitoring, while simultaneously providing insight into the toxicity and hazard levels of these substances in the environment and associated health risks.
Collapse
Affiliation(s)
- Simona Manuguerra
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Andrea Santulli
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Concetta Maria Messina
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| |
Collapse
|
7
|
Pérez-Lucas G, Navarro S. How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment. J Xenobiot 2024; 14:1343-1377. [PMID: 39449417 PMCID: PMC11503385 DOI: 10.3390/jox14040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil-plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment.
Collapse
Affiliation(s)
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
8
|
Liu M, Qiao P, Shan Y, Zhang Z, Pan P, Li Y. Migration and Accumulation Simulation Prediction of PPCPs in Urban Green Space Soil Irrigated with Recycled Water: A Review. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135037. [PMID: 38941831 DOI: 10.1016/j.jhazmat.2024.135037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) in reclaimed water introduces an ongoing challenge as they infiltrate green space soils during irrigation, leading to a gradual buildup that poses considerable ecological risks. The simulation and forecasting of PPCPs accumulation in soil are pivotal for proactive ecological risk management. However, the majority of research efforts have predominantly concentrated on the vertical transport mechanisms of PPCPs in the soil, neglecting a holistic perspective that integrates both vertical and lateral transport phenomena, alongside accumulation dynamics. To address this gap, this study introduces a comprehensive conceptual model that encapsulates the dual processes of vertical and lateral transport, coupled with accumulation of PPCPs in the soil environment. Grounded in the distinctive properties of green space soils, we delve into the determinants governing the vertical and lateral migration of PPCPs. Furthermore, we consolidate existing simulation methodologies for contaminant transport, aiming to establish a comprehensive model that accurately predicts PPCPs accumulation in green space soils. This insight is critical for deducing the emission threshold of reclaimed water necessary for the protection of green space soils, informing the formulation of rational irrigation strategies, and anticipating future environmental risks. It provides a critical theoretical basis for more informed decision-making in the realm of urban water reuse and pollution control.
Collapse
Affiliation(s)
- Manfang Liu
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Pengwei Qiao
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Yue Shan
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Pan Pan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China
| | - Yang Li
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| |
Collapse
|
9
|
Salehi MM, Mohammadi M, Maleki A, Zare EN. Performance of magnetic nanocomposite based on xanthan gum-grafted-poly(acrylamide) crosslinked by borax for the effective elimination of amoxicillin from aquatic environments. CHEMOSPHERE 2024; 361:142548. [PMID: 38852637 DOI: 10.1016/j.chemosphere.2024.142548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
This study evaluated the effectiveness of using nanocomposite (NCs) of xanthan gum grafted polyacrylamide crosslinked Borax - iron oxide nanoparticle (XG-g-pAAm-CL-Borax-IONP) to remove the amoxicillin antibiotic (AMX) from an aquatic environment. To confirm the structural characteristics of the prepared XG-g-pAAm-CL-Borax-IONP NCs, unique characterization methods (XRD, FT-IR, FE-SEM, EDX, BET, TGA, Zeta, and VSM) were used. Adsorption experimental setups were performed with the influence of solution pH (4-9), the effect of adsorbent dose (0.003-0.02 g), the effect of contact time (5-45 min), and the effect of initial AMX concentration (50-400 mg/L) to achieve the most efficient adsorption conditions. Based on the Freundlich isotherm model, XG-g-pAAm-CL-Borax-IONP NCs provided the maximum AMX adsorption capacity of 1183.639 mg/g. This research on adsorption kinetics also established that the pseudo-second-order model (R2 = 0.991) is outstanding compatibility with the experimental results. AMX adsorption on the NCs may occur through intermolecular hydrogen bonding, diffusion, and trapping into the polymer network. Even after five cycles, these NCs still displayed the best performance. Based on these results, XG-g-pAAm-CL-Borax-IONP NCs may be a viable material for the purification of AMX from contaminated water.
Collapse
Affiliation(s)
- Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Mohammadi
- Department of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | | |
Collapse
|
10
|
Dias CS, Franco MAE, Rodrigues EC, Ferreira JL, Viegas BM, Féris LA, Estumano DC, Macêdo EN. Diclofenac sodium adsorption on activated carbon: experimental, modeling and bayesian statistics. AN ACAD BRAS CIENC 2024; 96:e20231110. [PMID: 39046057 DOI: 10.1590/0001-3765202420231110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/04/2024] [Indexed: 07/25/2024] Open
Abstract
The present study modeled the adsorption process of the drug diclofenac sodium on activated charcoal. For this purpose, a mass balance-based model was used considering a fixed bed column. The mass transfer rate in the solid phase was represented by a driving force model proposed in this study, and a gamma exponent with a range of 0 > γ ≤ 2 was assigned to the model. Different isotherms were adopted to represent the equilibrium at the solid/liquid interface: the Langmuir, Freundlich, Sips and Redlich-Peterson isotherms. The modeling was approached from the perspective of Bayesian statistics, and the Markov chain Monte Carlo method was used for parameter estimation. Model validation was performed with experimental data obtained under different operating conditions of initial concentration ($C_{0.
Collapse
Affiliation(s)
- Camila S Dias
- Universidade Federal do Pará, Rua Augusto Corrêa, 01, 66075-970 Belém, PA, Brazil
| | - Marcela Andrea E Franco
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Engenharia Química, Rua Ramiro Barcelos, 2777, 90040-040 Porto Alegre, RS, Brazil
| | - Emerson C Rodrigues
- Universidade Federal do Pará, Faculdade de Engenharia Química, Rua Augusto Corrêa, 01, 66075-970 Belém, PA, Brazil
| | - Josiel L Ferreira
- Universidade Federal do Pará, Faculdade de Engenharia Química, Rua Augusto Corrêa, 01, 66075-970 Belém, PA, Brazil
| | - Bruno M Viegas
- Universidade Federal do Pará, Faculdade de Biotecnologia, Rua Augusto Corrêa, 01, 66075-970 Belém, PA, Brazil
| | - Liliana A Féris
- Universidade Federal do Rio Grande do Sul, Departamento de Engenharia Química, Rua Ramiro Barcelos, 2777, 90040-040 Porto Alegre, RS, Brazil
| | - Diego C Estumano
- Universidade Federal do Pará, Faculdade de Biotecnologia, Rua Augusto Corrêa, 01, 66075-970 Belém, PA, Brazil
| | - Emanuel N Macêdo
- Universidade Federal do Pará, Rua Augusto Corrêa, 01, 66075-970 Belém, PA, Brazil
- Universidade Federal do Pará, Faculdade de Engenharia Química, Rua Augusto Corrêa, 01, 66075-970 Belém, PA, Brazil
| |
Collapse
|
11
|
Aladekoyi O, Siddiqui S, Hania P, Hamza R, Gilbride K. Accumulation of antibiotics in the environment: Have appropriate measures been taken to protect Canadian human and ecological health? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116513. [PMID: 38820820 DOI: 10.1016/j.ecoenv.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
In Canada, every day, contaminants of emerging concern (CEC) are discharged from waste treatment facilities into freshwaters. CECs such as pharmaceutical active compounds (PhACs), personal care products (PCPs), per- and polyfluoroalkyl substances (PFAS), and microplastics are legally discharged from sewage treatment plants (STPs), water reclamation plants (WRPs), hospital wastewater treatment plants (HWWTPs), or other forms of wastewater treatment facilities (WWTFs). In 2006, the Government of Canada established the Chemicals Management Plan (CMP) to classify chemicals based on a risk-priority assessment, which ranked many CECs such as PhACs as being of low urgency, therefore permitting these substances to continue being released into the environment at unmonitored rates. The problem with ranking PhACs as a low priority is that CMP's risk management assessment overlooks the long-term environmental and synergistic effects of PhAC accumulation, such as the long-term risk of antibiotic CEC accumulation in the spread of antibiotic resistance genes. The goal of this review is to specifically investigate antibiotic CEC accumulation and associated environmental risks to human and environmental health, as well as to determine whether appropriate legislative strategies are in place within Canada's governance framework. In this research, secondary data on antibiotic CEC levels in Canadian and international wastewaters, their potential to promote antibiotic-resistant residues, associated environmental short- and long-term risks, and synergistic effects were all considered. Unlike similar past reviews, this review employed an interdisciplinary approach to propose new strategies from the perspectives of science, engineering, and law.
Collapse
Affiliation(s)
- Oluwatosin Aladekoyi
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Salsabil Siddiqui
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Patricia Hania
- Department of Business and Law, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Rania Hamza
- Department of Civil Engineering, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada
| | - Kimberley Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly Ryerson University), Canada; TMU Urban Water, Toronto Metropolitan University (formerly Ryerson University), Canada.
| |
Collapse
|
12
|
Wang Y, Yang Q, Zhang H, Wang Z, Wu A, Luo Y, Zhou Q. For the occurrence of PPCPs from source to tap: A novel approach modified in terms of sample preservation and SPE cartridge to monitor PPCPs in our water supply. Anal Chim Acta 2024; 1308:342662. [PMID: 38740449 DOI: 10.1016/j.aca.2024.342662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The ongoing infusion of pharmaceutical and personal care products (PPCPs) into ecosystems sustains a perpetual life cycle and leads to multi-generational exposures. Limited understanding of their environmental impact and their intrinsic ability to induce physiological effect in humans, even at low doses, pose great risks to human health. Few scholarly works have conducted systematic research into the occurrence of PPCPs within potable water systems. Concurrently, the associated monitoring techniques have not been comprehensively examined with regards to the specific nature of drinking water, namely whether the significant presence of disinfectants may influence the detection of PPCPs. RESULTS A modified approach in terms of detailed investigation of sample preservation and optimization of an in-lab fabricated solid phase extraction (SPE) cartridge filled with DVB-VP and PS-DVB sorbent was proposed. Favorable methodological parameters were achieved, with correlation coefficients spanning from 0.9866 to 0.9998. The LODs of the PPCPs fluctuated from 0.001 to 2 μg L-1, while the LOQs varied from 0.002 to 5 μg L-1. The analysis of spiked samples disclosed a methodological precision of 2.31-9.86 % and a recovery of 52.4-119 %. We utilized the established method for analyzing 14 water samples of three categories (source water, finished water and tap water) from five centralized water supply plants. A total of 24 categories encompassing 72 PPCPs were detected, with the concentrations of PPCPs manifested a marked decrease from source water to finished water and finally to tap water. SIGNIFICANCE Our research meticulously examined the enhancement and purification effects of widely used commercial SPE cartridges and suggested the use of in-lab fabricated SPE cartridges packed with DVB-VP and PS-DVB adsorbents. We also conducted a systematic evaluation of the need to incorporate ascorbic acid and sodium thiosulfate as preservatives for PPCP measurement, in consideration of the unique characteristics of drinking water matrices, specifically, the significant concentration levels of disinfectants. Furthermore, the proposed method was effectively employed to study the presence of PPCPs in source water, finished water, and tap water collected from centralized water supply plants.
Collapse
Affiliation(s)
- Yu Wang
- Chongqing Center for Disease Control and Prevention, Chongqing, China.
| | - Qianzhan Yang
- Shimadzu (China) Corporation, Chongqing Branch, China
| | - Huadong Zhang
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Zhenghong Wang
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Ailin Wu
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yun Luo
- Raykol Group Corp. Ltd., Xiamen, Fujian, China
| | - Qianru Zhou
- Chongqing Center for Disease Control and Prevention, Chongqing, China; College of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Yaashikaa PR, Karishma S, Kamalesh R, A S, Vickram AS, Anbarasu K. A systematic review on enhancement strategies in biochar-based remediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 355:141796. [PMID: 38537711 DOI: 10.1016/j.chemosphere.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/25/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
14
|
Dixit A, Pandey H, Rana R, Kumar A, Herojeet R, Lata R, Mukhopadhyay R, Mukherjee S, Sarkar B. Ecological and human health risk assessment of pharmaceutical compounds in the Sirsa River of Indian Himalayas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123668. [PMID: 38442820 DOI: 10.1016/j.envpol.2024.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 μgL-1 with some exception for CIP (50-100 μgL-1) and CTZ (100-150 μgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.
Collapse
Affiliation(s)
- Arohi Dixit
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Himanshu Pandey
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rajiv Rana
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Anil Kumar
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; School of Health Sciences, Amity University Punjab, Mohali, 140306, India
| | - Rajkumar Herojeet
- Department of Environmental Studies, Post Graduate Government College, Sector 11, Chandigarh, India
| | - Renu Lata
- G.B. Pant National Institute of Himalayan Environment, Mohal-Kullu, 175126, Himachal Pradesh, India
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, 15213, United States; Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
15
|
Suleiman M, Le Lay N, Demaria F, Kolvenbach BA, Cretoiu MS, Petchey OL, Jousset A, Corvini PFX. Pollutant profile complexity governs wastewater removal of recalcitrant pharmaceuticals. THE ISME JOURNAL 2024; 18:wrae033. [PMID: 38423526 PMCID: PMC10989296 DOI: 10.1093/ismejo/wrae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Organic pollutants are an increasing threat for wildlife and humans. Managing their removal is however complicated by the difficulties in predicting degradation rates. In this work, we demonstrate that the complexity of the pollutant profile, the set of co-existing contaminants, is a major driver of biodegradation in wastewater. We built representative assemblages out of one to five common pharmaceuticals (caffeine, atenolol, paracetamol, ibuprofen, and enalapril) selected along a gradient of biodegradability. We followed their individual removal by wastewater microbial communities. The presence of multichemical background pollution was essential for the removal of recalcitrant molecules such as ibuprofen. High-order interactions between multiple pollutants drove removal efficiency. We explain these interactions by shifts in the microbiome, with degradable molecules such as paracetamol enriching species and pathways involved in the removal of several organic pollutants. We conclude that pollutants should be treated as part of a complex system, with emerging pollutants potentially showing cascading effects and offering leverage to promote bioremediation.
Collapse
Affiliation(s)
- Marcel Suleiman
- Institute for Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Natalie Le Lay
- Institute for Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Francesca Demaria
- Institute for Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mariana S Cretoiu
- Blossom Microbial Technologies B.V., Utrecht Science Park, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental studies, University of Zurich, 8057 Zurich, Switzerland
| | - Alexandre Jousset
- Blossom Microbial Technologies B.V., Utrecht Science Park, Padualaan 8, 3584 Utrecht, The Netherlands
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, 210095 Nanjing, China
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| |
Collapse
|
16
|
Dai H, Wang C, Yu W, Han J. Tracing COVID-19 drugs in the environment: Are we focusing on the right environmental compartment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122732. [PMID: 37838316 DOI: 10.1016/j.envpol.2023.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic led to over 770 million confirmed cases, straining public healthcare systems and necessitating extensive and prolonged use of synthetic chemical drugs around the globe for medical treatment and symptom relief. Concerns have arisen regarding the massive release of active pharmaceutical ingredients (APIs) and their metabolites into the environment, particularly through domestic sewage. While discussions surrounding this issue have primarily centered on their discharge into aquatic environments, particularly through treated effluent from municipal wastewater treatment plants (WWTPs), one often overlooked aspect is the terrestrial environment as a significant receptor of pharmaceutical-laden waste. This occurs through the disposal of sewage sludge, for instance, by applying biosolids to land or non-compliant disposal of sewage sludge, in addition to the routine disposal of expired and unused medications in municipal solid wastes. In this article, we surveyed sixteen approved pharmaceuticals for treating COVID-19 and bacterial co-infections, along with their primary metabolites. For this, we delved into their physiochemical properties, ecological toxicities, environmental persistence, and fate within municipal WWTPs. Emphasis was given on lipophilic substances with log Kow >3.0, which are more likely to be found in sewage sludge at significant factions (25.2%-75.0%) of their inputs in raw sewage and subsequently enter the terrestrial environment through land application of biosolids, e.g., 43% in the United States and as high as 96% in Ireland or non-compliant practices of sewage sludge disposal in developing communities, such as open dumping and land application without prior anaerobic digestion. The available evidence underscores the importance of adequately treating and disposing of sewage sludge before its final disposal or land application in an epidemic or pandemic scenario, as mismanaged sewage sludge could be a significant vector for releasing pharmaceutical compounds and their metabolites into the terrestrial environment.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wangyang Yu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
17
|
Ccanccapa-Cartagena A, Zheng W, Circenis S, Katuwal S, Scott JW. Influence of biosolids and sewage effluent application on sitagliptin soil sorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165080. [PMID: 37356773 DOI: 10.1016/j.scitotenv.2023.165080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Biosolids and sewage effluent application to agricultural fields is becoming a win-win practice as both an economical waste management strategy and a source of nutrients and organic matter for plant growth. However, these organic wastes contain a variety of trace chemicals of environmental concern such as pharmaceuticals and personal care products (PPCPs), which may pose a risk to agricultural fields and ecosystems. This work aims to investigate the sorption of sitagliptin on four agricultural soils, evaluate the effects of biosolids and sewage effluent application, and elucidate the main sorption mechanism of the pharmaceutical on soils. The sorption study revealed that the sorption capacities of sitagliptin on different soils were positively related to the contents of soil organic matter and negatively associated with soil pH values. The application of biosolids and sewage effluent decreased the sorption capacity of sitagliptin, which may be attributed to the loading of dissolved organic matter derived from organic wastes. The Freundlich isotherm model demonstrated that the addition of biosolids from 0 to 100 % (W/W) consistently decreased the sorption affinity (Kf) of sitagliptin from 1.69 × 102 to 3.82 × 101 mg(1-n) Ln kg-1. Sewage application at 0, 10, 50, and 100 % (V/V) also reduced the Kf values from 1.69 × 102 to 9.17 × 101 mg(1-n) Ln kg-1. Attenuated Total Reflection (ATR)-Infrared (IR) spectroscopy analyses suggested that electrostatic interactions between carbonyl and amino groups of sitagliptin and the negatively charged soil surface are the main sorption mechanisms. In a co-solute system, the sorption affinity of sitagliptin on the soil decreased with increasing metformin concentrations, suggesting that competitive sorption may reduce the sorption capacity of individual contaminants in soil systems containing multiple PPCPs.
Collapse
Affiliation(s)
- Alexander Ccanccapa-Cartagena
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, 1 Hazelwood Drive, Champaign, IL 61820, United States.
| | - Wei Zheng
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, 1 Hazelwood Drive, Champaign, IL 61820, United States
| | - Sophie Circenis
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, 1 Hazelwood Drive, Champaign, IL 61820, United States
| | - Sarmila Katuwal
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, 1 Hazelwood Drive, Champaign, IL 61820, United States
| | - John W Scott
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, 1 Hazelwood Drive, Champaign, IL 61820, United States
| |
Collapse
|
18
|
Drzymała J, Kalka J. Effects of diclofenac, sulfamethoxazole, and wastewater from constructed wetlands on Eisenia fetida: impacts on mortality, fertility, and oxidative stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:858-873. [PMID: 37633869 PMCID: PMC10533613 DOI: 10.1007/s10646-023-02690-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Soil contamination with micropollutants is an important global problem and the impact of these pollutants on living organisms cannot be underestimated. The effects of diclofenac (DCF) and sulfamethoxazole (SMX), their mixture (MIX), and wastewater containing these drugs on the mortality and reproduction of Eisenia fetida were investigated. The impact on the activities of antioxidant enzymes in earthworm cells was also assessed. Furthermore, the influence of the following parameters of the vertical flow constructed wetlands on wastewater toxicity was investigated: the dosing system, the presence of pharmaceuticals and the plants Miscanthus giganteus. The compounds and their mixture significantly affected the reproduction and mortality of earthworms. The calculated values of LC50,28 days values were 3.4 ± 0.3 mg kg-1 for DCF, 1.6 ± 0.3 mg kg-1 for SMX, and 0.9 ± 0.1 mg kg-1 for MIX. The EC50 (reproduction assay) for DCF was 1.2 ± 0.2 mg kg-1, whereas for SMX, it was 0.4 ± 0.1 mg kg-1, and for MIX, it was 0.3 ± 0.1 mg kg-1, respectively. The mixture toxicity index (MTI) was calculated to determine drug interactions. For both E. fetida mortality (MTI = 3.29) and reproduction (MTI = 3.41), the index was greater than 1, suggesting a synergistic effect of the mixture. We also observed a negative effect of wastewater (raw and treated) on mortality (32% for raw and 8% for treated wastewater) and fertility (66% and 39%, respectively) of E. fetida. It is extremely important to analyze the harmfulness of microcontaminants to organisms inhabiting natural environments, especially in the case of wastewater for irrigation of agricultural fields.
Collapse
Affiliation(s)
- Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - Joanna Kalka
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
19
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
20
|
Arenas M, Santos JL, Martín J, Aparicio I, Alonso E. Enantioselective LC-MS/MS determination of antidepressants, β-blockers and metabolites in agricultural soil, compost and digested sewage sludge. Anal Chim Acta 2023; 1261:341224. [PMID: 37147052 DOI: 10.1016/j.aca.2023.341224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
In this work, an analytical method was optimised and validated for the simultaneous extraction and enantioselective determination of chiral β-blockers, antidepressants and two of their metabolites in agricultural soils, compost and digested sludge. Sample treatment was based on ultrasound-assisted extraction and extract clean-up by dispersive solid-phase extraction. Analytical determination was carried out by liquid chromatography-tandem mass spectrometry using a chiral column. Enantiomeric resolutions were in the range from 0.71 to 1.36. Accuracy was in the range from 85 to 127% and precision, expressed as relative standard deviation, was lower than 17% for all the compounds. Method quantification limits were below 1.21-52.9 ng g-1 dry weight (dw) in soil, 0.76-35.8 ng g-1 dw in compost and 13.6-90.3 ng g-1 dw in digested sludge. Application to real samples revealed enantiomeric enrichment in the range especially in compost and digested sludge (enantiomeric fractions up to 1).
Collapse
Affiliation(s)
- Marina Arenas
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain.
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Seville, Spain
| |
Collapse
|
21
|
Xu J, Wang Y, Zhang Q, Sun H, Zhang W. Uptake and Enantiomeric Selectivity of β-Blockers in Lettuce ( Lactuca sativa L.) and Tomato ( Lycopersicon esculentum M.) in Soil-Pot Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8816-8824. [PMID: 37276344 DOI: 10.1021/acs.jafc.3c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The uptake and translocation of β-blockers in lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum M.) were investigated by carrying out a 70-day soil-pot cultivation. The root uptake parameters of β-blockers in lettuce decreased in the order of atenolol (ATE) > sotalol (SOT) > propranolol (PRO) with root bioconcentration factors (BCFsroot/soil) of 0.158, 0.136, and 0.096, respectively, which were positively correlated with their water solubility. The BCFroot/soil of β-blockers in tomato was higher than those in lettuce. ATE and PRO were prone to migrate to the aerial parts of tomato with translocation factors of 3.31 and 4.11, respectively. In tomato fruits, the enantiomeric profile of PRO and ATE shifted to that dominated by the more toxic enantiomer, i.e., (S)-PRO and (R)-ATE. The enantiomeric selectivity of β-blockers in the edible parts of lettuce and tomato indicated the potential ecotoxicity of these pharmaceuticals for plants and the human exposure risk via vegetable intake.
Collapse
Affiliation(s)
- Jiayao Xu
- MOE Key Laboratory of Regional Environment and Eco-Restoration, College of Environment, Shenyang University, Shenyang 110044, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weiwei Zhang
- MOE Key Laboratory of Regional Environment and Eco-Restoration, College of Environment, Shenyang University, Shenyang 110044, China
| |
Collapse
|
22
|
Bonnefille B, Karlsson O, Rian MB, Raqib R, Parvez F, Papazian S, Islam MS, Martin JW. Nontarget Analysis of Polluted Surface Waters in Bangladesh Using Open Science Workflows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6808-6824. [PMID: 37083417 PMCID: PMC10157886 DOI: 10.1021/acs.est.2c08200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nontarget mass spectrometry has great potential to reveal patterns of water contamination globally through community science, but few studies are conducted in low-income countries, nor with open-source workflows, and few datasets are FAIR (Findable, Accessible, Interoperable, Reusable). Water was collected from urban and rural rivers around Dhaka, Bangladesh, and analyzed by liquid chromatography high-resolution mass spectrometry in four ionization modes (electrospray ionization ±, atmospheric pressure chemical ionization ±) with data-independent MS2 acquisition. The acquisition strategy was complementary: 19,427 and 7365 features were unique to ESI and APCI, respectively. The complexity of water pollution was revealed by >26,000 unique molecular features resolved by MS-DIAL, among which >20,000 correlated with urban sources in Dhaka. A major wastewater treatment plant was not a dominant pollution source, consistent with major contributions from uncontrolled urban drainage, a result that encourages development of further wastewater infrastructures. Matching of deconvoluted MS2 spectra to public libraries resulted in 62 confident annotations (i.e., Level 1-2a) and allowed semiquantification of 42 analytes including pharmaceuticals, pesticides, and personal care products. In silico structure prediction for the top 100 unknown molecular features associated with an urban source allowed 15 additional chemicals of anthropogenic origin to be annotated (i.e., Level 3). The authentic MS2 spectra were uploaded to MassBank Europe, mass spectral data were openly shared on the MassIVE repository, a tool (i.e., MASST) that could be used for community science environmental surveillance was demonstrated, and current limitations were discussed.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Oskar Karlsson
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - May Britt Rian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Stefano Papazian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - M Sirajul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jonathan W Martin
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
23
|
Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation. Microorganisms 2023; 11:microorganisms11010196. [PMID: 36677487 PMCID: PMC9865377 DOI: 10.3390/microorganisms11010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Paracetamol is one of the most used pharmaceuticals worldwide, but due to its widespread use it is detected in various environmental matrices, such as surface and ground waters, sediments, soils or even plants, where it is introduced mainly from the discharge of wastewater and the use of sewage sludge as fertilizer in agriculture. Its accumulation in certain organisms can induce reproductive, neurotoxic or endocrine disorders, being therefore considered an emerging pollutant. This study reports on the isolation, from sewage sludge produced in wastewater treatment plants (WWTPs), of bacterial strains capable of degrading paracetamol. Up to 17 bacterial strains were isolated, but only two of them, identified as Pseudomonas stutzeri CSW02 and Pseudomonas extremaustralis CSW01, were able to degrade very high concentrations of paracetamol in solution as a sole carbon and energy source, and none of them had been previously described as paracetamol degraders. These bacteria showed the ability to degrade up to 500 mg L-1 of paracetamol in only 6 and 4 h, respectively, much quicker than any other paracetamol-degrader strain described in the literature. The two main paracetamol metabolites, 4-aminophenol and hydroquinone, which present high toxicity, were detected during the degradation process, although they disappeared very quickly for paracetamol concentrations up to 500 mg L-1. The IC50 of paracetamol for the growth of these two isolates was also calculated, indicating that P. extremaustralis CSW01 was more tolerant than S. stutzeri CSW02 to high concentrations of paracetamol and/or its metabolites in solution, and this is the reason for the much lower paracetamol degradation by S. stutzeri CSW02 at 2000-3000 mg L-1. These findings indicate that both bacteria are very promising candidates for their use in paracetamol bioremediation in water and sewage sludge.
Collapse
|
24
|
Mejías C, Santos JL, Martín J, Aparicio I, Alonso E. Thermodynamic and Kinetic Investigation of the Adsorption and Desorption of Trimethoprim and Its Main Metabolites in Mediterranean Crop Soils. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010437. [PMID: 36615629 PMCID: PMC9823395 DOI: 10.3390/molecules28010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The adsorption-desorption processes of organic pollutants into the soil are one of the main factors influencing their potential environmental risks and distribution in the environment. In the present work, the adsorption-desorption behavior of an antibiotic, trimethoprim (TMP), and two of its main metabolites, 3-desmethyltrimethoprim (DM-TMP) and 4-hydroxytrimethoprim (OH-TMP), were assessed in three Mediterranean agricultural soils with different physicochemical characteristics. Results showed that the adsorption kinetic is performed in two steps: external sorption and intraparticle diffusion. The adsorptions of the studied compounds in soils were similar and fitted to the three models but were better fitted to a linear model. In the case of DM-TMP and OH-TMP, their adsorptions were positively correlated with the soil organic matter. In addition, desorption was higher in less organic matter soil (from 1.3 to 30.9%). Furthermore, the desorptions measured for the TMP metabolites were lower than those measured in the case of TMP (from 2.0 and 4.0% for OH-TMP and DM-TMP, respectively, to 9.0% for TMP).
Collapse
|
25
|
Gkotsis G, Nika MC, Athanasopoulou AI, Vasilatos K, Alygizakis N, Boschert M, Osterauer R, Höpker KA, Thomaidis NS. Advanced throughput analytical strategies for the comprehensive HRMS screening of organic micropollutants in eggs of different bird species. CHEMOSPHERE 2023; 312:137092. [PMID: 36332731 DOI: 10.1016/j.chemosphere.2022.137092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Raptors are ideal indicators for biomonitoring studies using wildlife in order to assess the environmental pollution in the terrestrial ecosystem, since they are placed in the highest trophic position in the food webs and their life expectancy is relatively long. In this study, 26 eggs of 4 bird species (Peregrine falcon, Eurasian curlew, Little owl and Eagle owl) collected in Germany, were investigated for the presence of persistent organic pollutants (POPs) and thousands of contaminants of emerging concern (CECs). Generic sample preparation protocols were followed for the extraction of the analytes and the purification of the extracts, and the samples were analyzed both by liquid (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS), for capturing a wide range of organic micropollutants with different physicochemical properties. State-of-the-art screening methodologies were applied in the acquired HRMS data, including wide-scope target analysis of 2448 known pollutants and suspect screening of over 65,000 environmentally relevant compounds. Overall, 58 pollutants from different chemical classes, such as plant protection products, per- and polyfluoroalkyl substances and medicinal products, as well as their transformation products, were determined through target analysis. Most of the detected compounds were lipophilic (logP>2), although the presence of (semi)polar contaminants should not be overlooked, underlying the need for holistic analytical approaches in environmental monitoring studies. p,p'-DDE, PCB 153 and PCB138, PFOS and methylparaben were the most frequently detected compounds. 50 additional substances were identified and semi-quantified through suspect screening workflows, including mainly compounds of industrial use with high production volume.
Collapse
Affiliation(s)
- Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| | - Antonia I Athanasopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Konstantinos Vasilatos
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece; Environmental Institute s.r.o., Okruzna 784/42, 97241, Kos, Slovak Republic
| | | | - Raphaela Osterauer
- State Institute for Environment Baden-Wuerttemberg (LUBW), Griesbachstr. 1, 76185 Karlsruhe, Germany
| | - Kai-Achim Höpker
- State Institute for Environment Baden-Wuerttemberg (LUBW), Griesbachstr. 1, 76185 Karlsruhe, Germany
| | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| |
Collapse
|
26
|
An Overview of Analytical Methods to Determine Pharmaceutical Active Compounds in Aquatic Organisms. Molecules 2022; 27:molecules27217569. [DOI: 10.3390/molecules27217569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
There is increasing scientific evidence that some pharmaceuticals are present in the marine ecosystems at concentrations that may cause adverse effects on the organisms that inhabit them. At present, there is still very little scientific literature on the (bio)accumulation of these compounds in different species, let alone on the relationship between the presence of these compounds and the adverse effects they produce. However, attempts have been made to optimize and validate analytical methods for the determination of residues of pharmaceuticals in marine biota by studying the stages of sample treatment, sample clean-up and subsequent analysis. The proposed bibliographic review includes a summary of the most commonly techniques, and its analytical features, proposed to determine pharmaceutical compounds in aquatic organisms at different levels of the trophic chain in the last 10 years.
Collapse
|
27
|
Distefano GG, Zangrando R, Basso M, Panzarin L, Gambaro A, Volpi Ghirardini A, Picone M. Assessing the exposure to human and veterinary pharmaceuticals in waterbirds: The use of feathers for monitoring antidepressants and nonsteroidal anti-inflammatory drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153473. [PMID: 35093362 DOI: 10.1016/j.scitotenv.2022.153473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Exposure to active pharmaceutical ingredients (APIs) from both human and veterinary sources is an increasing threat to wildlife welfare and conservation. Notwithstanding, tracking the exposure to pharmaceuticals in non-target and sensitive vertebrates, including birds, is seldom performed and relies almost exclusively on analysing internal organs retrieved from carcasses or from experimentally exposed and sacrificed birds. Clearly, this excludes the possibility of performing large-scale monitoring. Analysing feathers collected from healthy birds may permit this, by detecting APIs in wild birds, including protected and declining species of waterbirds, without affecting their welfare. To this end, we set up a non-destructive method for analysing the presence of non-steroidal anti-inflammatory drugs (NSAIDs), selective serotonin reuptake inhibitors (SSRIs) and noradrenaline reuptake inhibitors (SNRIs) in the feathers of fledglings of both the Mediterranean gull (Ichtyaetus melanocephalus) and the Sandwich tern (Thalasseus sandvicensis). The presence of several NSAIDs and SSRIs above the method quantification limits have confirmed that feathers might be a suitable means of evaluating the exposure of birds to APIs. Moreover, the concentrations indicated that waterbirds are exposed to NSAIDs, such as diclofenac, ibuprofen and naproxen, and SSRIs, such as citalopram, desmethylcitalopram, fluvoxamine and sertraline, possibly due to their widespread use and incomplete removal in wastewater treatment plants (WWTPs). The active ingredient diclofenac raises a the primary concern for the ecosystem and the welfare of the waterbirds, due to its high prevalence (100% and 83.3% in Mediterranean gull and Sandwich tern, respectively), its concentrations detected in feathers (11.9 ng g-1 and 6.7 ng g-1 in Mediterranean gull and Sandwich tern, respectively), and its documented toxicity toward certain birds.
Collapse
Affiliation(s)
- Gabriele Giuseppe Distefano
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Roberta Zangrando
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy; Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche, Via Torino 155, I-30170 Mestre, Venezia, Italy
| | | | - Lucio Panzarin
- Associazione Naturalistica Sandonatese, c/o Centro Didattico Naturalistico il Pendolino, via Romanziol 130, 30020 Noventa di Piave, Venezia, Italy
| | - Andrea Gambaro
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Annamaria Volpi Ghirardini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy.
| |
Collapse
|
28
|
Rakonjac N, van der Zee SEATM, Wipfler L, Roex E, Kros H. Emission estimation and prioritization of veterinary pharmaceuticals in manure slurries applied to soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152938. [PMID: 35016945 DOI: 10.1016/j.scitotenv.2022.152938] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Veterinary pharmaceuticals (VPs) are emitted into the environment and transfer to groundwater and surface water is diffuse and complex, whereas actual information on the fate is frequently limited. For 17 VPs of potential concern in the Netherlands, we assessed sources and emission due to animal slurry applications to soil. Hence, we examined the use of VPs in four livestock sectors in the Netherlands for 2015-2018, and quantified animal excretion rates and dissipation during slurry storage. For almost all VPs, administrated quantities to the animals during the period 2015-2018 decreased. VP concentrations during a storage period of six months could decrease between 10 and 98% depending on the compound. Predicted concentrations of VPs in slurries after storage compared well with measured concentrations in the literature. Based on the storage model outcomes, we developed a residue indicator, that quantifies the potential for residues in applied slurry. This indicator agrees well with the most frequently detected VPs in the Dutch slurries, and is therefore useful to prioritize measures aiming at reducing VP emissions into the environment.
Collapse
Affiliation(s)
- Nikola Rakonjac
- Soil Physics and Land Management Group, Wageningen University, Wageningen, the Netherlands.
| | | | - Louise Wipfler
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Erwin Roex
- Ministry of Defence, Doorn, the Netherlands
| | - Hans Kros
- Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|
29
|
Lyu S, Wu L, Wen X, Wang J, Chen W. Effects of reclaimed wastewater irrigation on soil-crop systems in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152531. [PMID: 34953828 DOI: 10.1016/j.scitotenv.2021.152531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Reclaimed wastewater (RW) use represents a substantial opportunity to alleviate the growing scarcity of water for irrigation of agricultural crops in China. However, insufficient understanding of the effects and fates of possible contaminants in RW promotes concerns over crop safety and prevents the extensive incorporation of RW in agriculture. We reviewed the characteristics of contaminants in RW, the fate of contaminants in soil-crop systems, and the effects of RW irrigation on soil quality and crop growth in China. We found that concentrations of heavy metals in RW were higher than the permissible limits in some areas. The total concentrations and main categories of emerging contaminants and pathogens in RW varied markedly among municipal wastewater treatment plants, and the greatest risks of contamination were posed by ofloxacin, sulfamethoxazole, and erythromycin, the most frequently observed compounds with risk quotients >1. The negative effects of salts and nutrients in RW on soil quality and crop growth were minor and manageable. The accumulation of heavy metals and emerging contaminants in soils irrigated with RW did not pose an immediate risk to soils and crops. Changes in soil microbial populations, diversity, and activity caused by RW irrigation increased crop yields and protected crops against contaminants. However, attention is necessary to the risks of bioaccumulation in soils and crops of heavy metals, emerging contaminants, intermediate metabolites, and pathogens, and their effects on human health with long-term RW irrigation. We recommend irrigation practices, crop screening, soil treatments, prioritizing the risks of contaminants, and comprehensive management to increase safety in RW used for agricultural irrigation.
Collapse
Affiliation(s)
- Sidan Lyu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Laosheng Wu
- Department of Environmental Sciences, University of California, Riverside, California 92521, USA
| | - Xuefa Wen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Ahmad A, Kurniawan SB, Abdullah SRS, Othman AR, Hasan HA. Contaminants of emerging concern (CECs) in aquaculture effluent: Insight into breeding and rearing activities, alarming impacts, regulations, performance of wastewater treatment unit and future approaches. CHEMOSPHERE 2022; 290:133319. [PMID: 34922971 DOI: 10.1016/j.chemosphere.2021.133319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The contamination of aquaculture products and effluents by contaminants of emerging concern (CECs) from the direct chemical use in aquaculture activities or surrounding industries is currently an issue of increasing concern as these CECs exert acute and chronic effects on living organisms. CECs have been detected in aquaculture water, sediment, and culture species, and antibiotics, antifoulants, and disinfectants are the commonly detected groups. Through accumulation, CECs can reside in the tissue of aquaculture products and eventually consumed by humans. Currently, effluents containing CECs are discharged to the surrounding environment while producing sediments that eventually contaminate rivers as receiving bodies. The rearing (grow-out) stages of aquaculture activities are issues regarding CECs-contamination in aquaculture covering water, sediment, and aquaculture products. Proper regulations should be imposed on all aquaculturists to control chemical usage and ensure compliance to guidelines for appropriate effluent treatment. Several techniques for treating aquaculture effluents contaminated by CECs have been explored, including adsorption, wetland construction, photocatalysis, filtration, sludge activation, and sedimentation. The challenges imposed by CECs on aquaculture activities are discussed for the purpose of obtaining insights into current issues and providing future approaches for resolving associated problems. Stakeholders, such as researchers focusing on environment and aquaculture, are expected to benefit from the presented results in this article. In addition, the results may be useful in establishing aquaculture-related CECs regulations, assessing toxicity to living biota, and preventing pollution.
Collapse
Affiliation(s)
- Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100, Putrajaya, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
31
|
Pulicharla R, Proulx F, Behmel S, Sérodes JB, Rodriguez MJ. Spatial and temporal variability of contaminants of emerging concern in a drinking water source. RSC Adv 2022; 12:20876-20885. [PMID: 35919150 PMCID: PMC9301962 DOI: 10.1039/d2ra02962f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
The spatial–temporal behaviour of contaminants of emerging concern (CECs) are not well-documented in drinking water sources, including in Quebec, Canada.
Collapse
Affiliation(s)
- Rama Pulicharla
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Francois Proulx
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
| | | | - Jean-B. Sérodes
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
- Département de Génie civil et génie des eaux, Pavillon Pouliot, Université Laval, Québec, QC G1V 0A6, Canada
| | - Manuel J. Rodriguez
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
| |
Collapse
|
32
|
Alahmdi MI, Mohareb RM, Abdelaziz Mahmoud MA, Alkhamis K, Abo‐Dya NE, Zidan NS, Khasim S, Alsharif MA. Anti‐proliferative Activities of Thiophenes, Pyrans and PyridinesDerived from 1,3‐Dicarbonyl Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammed I. Alahmdi
- Department of Chemistry Faculty of Science University of Tabuk Tabuk 71491 Saudi Arabia
| | | | | | - Kholood Alkhamis
- Department of Chemistry Faculty of Science University of Tabuk Tabuk 71491 Saudi Arabia
| | - Nader Elmaghwry Abo‐Dya
- Department of Pharmaceutical Organic Chemistry Faculty of Pharmacy Zagazig University Zagazig 44519 Egypt
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Tabuk Tabuk 71491 Saudi Arabia
| | - Nahla S. Zidan
- Department of Nutrition and Food Science Faculty of Home Economics Tabuk University Saudi Arabia
- Department of Home Economics Faculty of Specific Education Kafr El-Shaikh University Egypt
| | - Syed Khasim
- Department of Physics Faculty of Science University of Tabuk Kingdom of Saudi Arabia
| | - Meshari A. Alsharif
- Chemistry Department Faculty of Applied Science Umm Al-Qura University Makkah Saudi Arabia
| |
Collapse
|
33
|
Antibiotic-Resistant Genes and Bacteria as Evolving Contaminants of Emerging Concerns (e-CEC): Is It Time to Include Evolution in Risk Assessment? Antibiotics (Basel) 2021; 10:antibiotics10091066. [PMID: 34572648 PMCID: PMC8469798 DOI: 10.3390/antibiotics10091066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The pressing issue of the abundance of antibiotic resistance genes and resistant bacteria in the environment (ARGs and ARB, respectively) requires procedures for assessing the risk to health. The chemo-centric environmental risk assessment models identify hazard(s) in a dose–response manner, obtaining exposure, toxicity, risk, impact and policy. However, this risk assessment approach based on ARGs/ARB evaluation from a quantitative viewpoint shows high unpredictability because ARGs/ARB cannot be considered as standard hazardous molecules: ARB duplicate and ARGs evolve within a biological host. ARGs/ARB are currently listed as Contaminants of Emerging Concern (CEC). In light of such characteristics, we propose to define ARGs/ARB within a new category of evolving CEC (or e-CEC). ARGs/ARB, like any other evolving determinants (e.g., viruses, bacteria, genes), escape environmental controls. When they do so, just one molecule left remaining at a control point can form the origin of a new dangerous and selection-responsive population. As a consequence, perhaps it is time to acknowledge this trait and to include evolutionary concepts within modern risk assessment of e-CEC. In this perspective we analyze the evolutionary responses most likely to influence risk assessment, and we speculate on the means by which current methods could measure evolution. Further work is required to implement and exploit such experimental procedures in future risk assessment protocols.
Collapse
|
34
|
Abstract
Modern medicine makes it possible for many people to live with multiple chronic diseases for decades, but this has enormous social, financial, and environmental consequences. Preclinical, epidemiological, and clinical trial data have shown that many of the most common chronic diseases are largely preventable with nutritional and lifestyle interventions that are targeting well-characterized signaling pathways and the symbiotic relationship with our microbiome. Most of the research priorities and spending for health are focused on finding new molecular targets for the development of biotech and pharmaceutical products. Very little is invested in mechanism-based preventive science, medicine, and education. We believe that overly enthusiastic expectations regarding the benefits of pharmacological research for disease treatment have the potential to impact and distort not only medical research and practice but also environmental health and sustainable economic growth. Transitioning from a primarily disease-centered medical system to a balanced preventive and personalized treatment healthcare system is key to reduce social disparities in health and achieve financially sustainable, universal health coverage for all. In this Perspective article, we discuss a range of science-based strategies, policies, and structural reforms to design an entire new disease prevention-centered science, educational, and healthcare system that maximizes both human and environmental health.
Collapse
|