1
|
Cheng W, You Y, Chen H, Zhou Y, Feng Y, Wang Y. Integrated transcriptomics and metabolomics to explore the varied hepatic toxicity induced by aged- and pristine-microplastics: in vivo and human-originated liver organoids-based in vitro study. ENVIRONMENTAL RESEARCH 2025; 280:121820. [PMID: 40378997 DOI: 10.1016/j.envres.2025.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/18/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Microplastics (MP) have distributed ubiquitously and emerged as a significant health risk to human beings. The adverse effect induced by aged MP at concentrations being equivalent to human internal exposure level, has raised special concern, however, is still unclear. In this study, human embryonic stem cells-derived liver organoids (LOs), a novel three-dimensional in vitro model, were exposed to 75 ng/mL self-made polypropylene (PP) and aged PP (aPP), following UV-photoaging for 0- and 500-h respectively, were subject to transcriptomic and metabolomic analysis individually and jointly, to explore the potential adverse effect of PP and aPP on human liver. The mean size of PP and aPP were 7.60 and 6.91 μm, with rough and irregular surface, and varied carbonyl index (CI) (0.08 and 0.25 respectively), indicating there were distinguished physicochemical properties. Transcriptomic analysis suggested the NADH dehydrogenase at mitochondrial complex and ATP synthesis maybe more sensitive to aPP, rather than PP. Metabolomic analysis enriched KEGG pathways including cysteine (Cys) and methionine metabolism significantly. Collectively, the homocysteine (Hcy) metabolism, were anchored upon integrated analysis. To validate, the changes in NADH dehydrogenase-encoding genes, activities of complexs, mitochondrial membrane potential, Hcy and Cys contents, as well, the cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), were detected both in vitro and in vivo. Finally, increased serum Cys and decreased hepatic Cys were confirmed, without inflammation in the liver. The peripheral Hcy may serve as a potential biomarker for indicating the MP-induced systematic adverse health outcomes, due to the disturbance in the Hcy metabolism in the liver.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifei You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hange Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wang Q, Gao Y, Tang X, Yang Z, Tang L, Luo G, Liu C, Tong H. How aging microplastics influence heavy metal environmental fate and bioavailability: A systematic review. ENVIRONMENTAL RESEARCH 2025; 271:121128. [PMID: 39954926 DOI: 10.1016/j.envres.2025.121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Microplastics (MPs) are now pervasive in the environment, with annual emissions estimated to range from 10 to 40 million metric tons. Aging (weathering) processes induced by environmental changes, gradually degrade MPs into smaller particles with higher surface reactivity. These particles readily adsorb surrounding heavy metals (HMs), forming complex pollutants. Such composite contaminants can bioaccumulate through the food chain, ultimately posing significant threats to ecosystems and human health. At present, this type of combined pollution has emerged as a pressing global challenge requiring urgent attention. Although research on the impact of MPs aging processes on the environmental behavior of HMs has increased in recent years, there remains a lack of systematic reviews. Therefore, there is an urgent need to collate relevant studies to better assess and mitigate the risks of composite pollution by MPs and HMs. This paper provides a comprehensive review of the effects of aging processes on the physicochemical properties of MPs and explores the mechanisms of adsorption, mobility, and bioavailability of HMs by aged MPs, systematically summarizing the key environmental factors influencing the interactions between aged MPs and HMs. Finally, the prospects for research on the co-occurrence of MPs and HMs in the environment were discussed. This review provides a scientific basis for the environmental risk assessment of such combined pollution and holds substantial practical significance for advancing ecological conservation.
Collapse
Affiliation(s)
- Qian Wang
- School of Geography and Resources, Guizhou Education University, Guiyang, 550018, Guizhou, China; Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China; Institute of Guizhou Mountain, Guizhou Education University, Guiyang, 550018, China
| | - Yining Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xiaoyan Tang
- The Faculty of Geography Resource Sciences, Sichuan Normal University, Chengdu, 610066, Sichuan, China
| | - Zhuanling Yang
- School of Geography and Resources, Guizhou Education University, Guiyang, 550018, Guizhou, China; Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China
| | - Liang Tang
- School of Geography and Resources, Guizhou Education University, Guiyang, 550018, Guizhou, China; Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China
| | - Guangjie Luo
- School of Geography and Resources, Guizhou Education University, Guiyang, 550018, Guizhou, China; Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, Guangdong, China.
| |
Collapse
|
3
|
Barhoumi B, Metian M, Alonso-Hernández CM, Oberhaensli F, Mourgkogiannis N, Karapanagioti HK, Bersuder P, Tolosa I. Insight into the effect of natural aging of polystyrene microplastics on the sorption of legacy and emerging per- and polyfluorinated alkyl substances in seawater. Heliyon 2024; 10:e40490. [PMID: 39654741 PMCID: PMC11626057 DOI: 10.1016/j.heliyon.2024.e40490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Microplastics (MPs) are abundant in aquatic environments and due to their small size, surface properties, and strong hydrophobicity, they can easily sorb chemicals, thus potentially acting as pollutant carriers. To date, most studies investigating the sorption of chemicals on MPs have principally focused on virgin MPs. However, MPs in the environment undergo aging effects, which changes their physical-chemical properties and aptitude to interact with chemicals, such as per- and polyfluorinated alkyl substances (PFAS) referred to as "forever chemicals". In this study, we compared the sorption behavior of nine PFAS, exhibiting different physical-chemical properties, on virgin and naturally aged polystyrene microplastic (PS-MPs) to explore to what extent the environmental aging affects the sorption behavior of the PS-MPs for different legacy and emerging PFAS in seawater. Differences in the morphology and surface properties of aged PS-MPs were examined by infrared spectroscopy, surface area analysis, scanning electron microscopy, and X-ray diffraction. Results revealed that compared to virgin PS-MPs, aged PS-MPs exhibited morphological changes (e.g. cavities, pits, and rough surfaces) with biofilm development and signs of oxidation on the MPs surface. PFAS sorption on PS-MPs was enhanced for the aged PS-MPs compared to virgin PS-MPs with Kd values ranging from 327 L kg-1 for PFOA to 3247 L kg-1 for PFOS in aged PS-MPs. The difference in sorption capacity was mainly attributed to the physical-chemical changes and the adhered biofilm observed in aged PS-MPs. Results also showed that virgin PS-MPs adsorb PFAS mainly through steric hindrance, while the aged PS-MPs may involve more complex sorption mechanisms. This research provides additional insights into the ability of aged MPs as potential carriers of legacy and emerging contaminants in the marine environment.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Marc Metian
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | - François Oberhaensli
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | | | - Philippe Bersuder
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Imma Tolosa
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| |
Collapse
|
4
|
Miao L, Deng X, Qin X, Huang Y, Su L, Adyel TM, Wang Z, Lu Z, Luo D, Wu J, Hou J. High-altitude aquatic ecosystems offer faster aging rate of plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175827. [PMID: 39197763 DOI: 10.1016/j.scitotenv.2024.175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
While research on the aging behavior of plastics in aquatic systems is extensive, studies focusing on high-altitude ecosystems, characterized by higher solar radiation and lower temperatures, remain limited. This study investigated the long-term aging behavior of non-biodegradable plastics (non-BPs), namely polyethylene terephthalate (PET) and polypropylene (PP) and biodegradable plastics (BPs), specifically polylactic acid plus polybutylene adipate-co-terephthalate (PLA + PBAT) and starch-based plastic (SBP), in a tributary of the Yarlung Zangbo River on the high-altitude Tibetan Plateau. Over 84 days of field aging, all four types of plastics exhibited initial rapid aging followed by deceleration. This aging process can be divided into two phases: rapid surface oxidation aging and an aging plateau phase. Notably, PP aged at a rate comparable to BPs, contrary to expectations of faster aging for BPs. Compared to low-altitude aquatic ecosystems, plastics in this study showed a faster aging rate. This was primarily due to intense ultraviolet radiation causing severe photoaging. Furthermore, the lower temperatures contributed to the formation of thinner biofilms. These thinner biofilms exhibited a reduced capacity to block light, further exacerbating the photoaging process of plastics. Statistical analysis results indicated that temperature, total nitrogen TN, and total phosphorus TP were likely the main water quality parameters influencing plastic aging. The varying effects of water properties and nutrients underscore the complex interaction of water quality parameters in high-altitude environments. Given the delicate nature of the high-altitude environment, the environmental impact of plastics, especially BPs, warrants careful consideration.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xiangchao Qin
- Eco-environmental Monitoring and Scientific Research Center, Yellow River Basin Ecology and Environment Administration, Zhengzhou 450004, People's Republic of China.
| | - Yi Huang
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Libin Su
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia; Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, Nanjing 210029, People's Republic of China
| | - Zhao Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region 850030, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
5
|
Cheng W, Chen H, Zhou Y, You Y, Lei D, Li Y, Feng Y, Wang Y. Aged fragmented-polypropylene microplastics induced ageing statues-dependent bioenergetic imbalance and reductive stress: In vivo and liver organoids-based in vitro study. ENVIRONMENT INTERNATIONAL 2024; 191:108949. [PMID: 39213921 DOI: 10.1016/j.envint.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Ageing is a nature process of microplastics that occurrs daily, and human beings are inevitably exposed to aged microplastics. However, a systematic understanding of ageing status and its toxic effect is currently still lacking. In this study, plastic cup lids-originated polypropylene (PP) microplastics were UV-photoaged until the carbonyl index (CI), a canonical indicator for plastic ageing, achieved 0.08, 0.17, 0.22 and 0.28. The adverse hepatic effect of these aged PPs (aPPs) was evaluated in Balb/c mice (75 ng/mL water, about 200 particles/day) and human-originated liver organoids (LOs, 50 particles/mL, ranged from 5.94 to 13.15 ng/mL) at low-dose equivalent to human exposure level. Low-dose of aged PP could induce hepatic reductive stress both in vitro and in vivo, by elevating the NADH/NAD+ratio in a CI-dependent manner, together with hepatoxicity (indicated by increased AST secretion and cytotoxicity), and disrupted the genes encoding the nutrients transporters and NADH subunits accompanied by the restricted ATP supply, declined mitochondrial membrane potential and mitochondrial complexI/IV activities, without significant increase in MDA levels in the liver. These changes in the liver disrupted systematic metabolism, representing a circulatory panel of increases in the lactate, triglyceride, Fgf21 levels, and decreases in the pyruvate level, linked the reductive stress to the declined body weight gain but elevated hepatic NADH contents following aPPs exposure. Additionally, assessing by the LOs, it was found that digestion drastically accelerated the ageing of aPPs and worsen the energy supply upon mitochondria, representing a "scattergun effect" induced by the formation of micro- and nano-plastics mixture toward NADH/NAD+imbalance.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hange Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifei You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dong Lei
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Zhang X, Zhang Y, Li D, Wang J, Ding Y, Wang Y, Feng L, Hu Y. Aging properties of polyethylene and polylactic acid microplastics and their adsorption behavior of Cd(II) and Cr(VI) in aquatic environments. CHEMOSPHERE 2024; 363:142833. [PMID: 39002654 DOI: 10.1016/j.chemosphere.2024.142833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
In this study, we examined the aging characteristics of polyethylene (PE) and polylactic acid (PLA) microplastics (MPs), examining the adsorption behaviors and mechanisms concerning Cd(II) and Cr(VI) under both single and binary systems. The results revealed that aging treatment changed the physicochemical properties of MPs. The aging mechanisms of PLA and PE MPs were shown to be similar by the 2D-FTIR-COS study. These mechanisms involve the formation of oxygen-containing functional groups through the combination of carbon chain breakdown and oxygen. Aged MPs had a greater ability to adsorb metal ions than pristine MPs, with PLA MPs outperforming PE MPs. After 30 days of aging, Cd(II) adsorption increased by 40.61 % and 25.49 % for PE and PLA MPs, respectively, while Cr(VI) adsorption increased by 37.50 % and 69.29 %, respectively. The adsorption ability of PE and PLA MPs with Cd(II) or Cr(VI) under binary systems was less than that under single systems, with Cd(II) exhibiting more adsorption competitiveness than Cr(VI). Humic acid (HA), ionic species and strength, solution pH, and adsorption of Cd(II) and Cr(VI) were found to be significantly correlated. Further investigation into the adsorption mechanisms of Cd(II) and Cr(VI) on PE and PLA MPs revealed that pore-filling, electrostatic interactions, complexation, and hydrogen bonding play important roles in the adsorption process. The study's conclusions are crucial for assessing the risk associated with concurrent contamination by metal ions and microplastics.
Collapse
Affiliation(s)
- Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Liuyuan Feng
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuliang Hu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Zhang L, Qin Z, Bai H, Xue M, Tang J. Photochemically induced aging of polystyrene nanoplastics and its impact on norfloxacin adsorption behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172511. [PMID: 38641106 DOI: 10.1016/j.scitotenv.2024.172511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China.
| | - Zhi Qin
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - He Bai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - Manyu Xue
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| |
Collapse
|
8
|
Junaid M, Hamid N, Liu S, Abbas Z, Imran M, Haider MR, Wang B, Chen G, Khan HK, Yue Q, Xu N, Wang J. Interactive impacts of photoaged micro(nano)plastics and co-occurring chemicals in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172213. [PMID: 38580116 DOI: 10.1016/j.scitotenv.2024.172213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In the environment, sunlight or ultraviolet (UV) radiation is considered to be the primary cause of plastic aging, leading to their fragmentation into particles, including micro(nano)plastics (MNPs). Photoaged MNPs possess diverse interactive properties and ecotoxicological implications substantially different from those of pristine plastic particles. This review aims to highlight the mechanisms and implications of UV-induced photoaging of MNPs, with an emphasis on various UV sources and their interactions with co-occurring organic and inorganic chemicals, as well as the associated ecological and health impacts and factors affecting those interactions. Compared to UV-B, UV-A and UV-C were more widely used in laboratory studies for MNP degradation. Photoaged MNPs act as vectors for the transportation of organic pollutants, organic matter, and inorganic chemicals in the environment. Literature showed that photoaged MNPs exhibit a higher sorption capacity for PPCPs, PAHs, PBDEs, pesticides, humic acid, fulvic acid, heavy metals, and metallic nanoparticles than pristine MNPs, potentially causing significant changes in associated ecological and health impacts. Combined exposure to photoaged MNPs and organic and inorganic pollutants significantly altered mortality rate, decreased growth rate, histological alterations, neurological impairments, reproductive toxicity, induced oxidative stress, thyroid disruption, hepatotoxicity, and genotoxicity in vivo, both in aquatic and terrestrial organisms. Limited studies were reported in vitro and found decreased cellular growth and survival, induced oxidative stress, and compromised the permeability and integrity of the cell membrane. In addition, several environmental factors (temperature, organic matter, ionic strength, time, and pH), MNP properties (polymer types, sizes, surface area, shapes, colour, and concentration), and chemical properties (pollutant type, concentration, and physiochemical properties) can influence the photoaging of MNPs and associated impacts. Lastly, the research gaps and prospects of MNP photoaging and associated implications were also summarized. Future research should focus on the photoaging of MNPs under environmentally relevant conditions, exploiting the polydisperse characteristics of environmental plastics, to make this process more realistic for mitigating plastic pollution.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia
| | - Shulin Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zohaib Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Rizwan Haider
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Bin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Hudda Khaleeq Khan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
9
|
Zhang Z, Zou S, Li P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122926. [PMID: 37963513 DOI: 10.1016/j.envpol.2023.122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The ubiquity of plastics in our environment has brought about pressing concerns, with their aging processes, photo-oxidation, mechanical abrasion, and biodegradation, being at the forefront. Microplastics (MPs), whether originating from plastic degradation or direct anthropogenic sources, further complicate this landscape. This review delves into the intricate aging dynamics of plastics in aquatic environments under various influential factors. We discuss the physicochemical changes that occur in aged plastics and the release of oxidation products during their degradation. Particular attention is given to their evolving environmental interactions and the resulting ecotoxicological implications. A rigorous evaluation is also conducted for methodologies in the analysis and quantification of plastics aging, identifying their merits and limitations and suggesting potential avenues for future research. This comprehensive review is able to illuminate the complexities of plastics aging, charting a path for future research and aiding in the formulation of informed policy decisions.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China.
| |
Collapse
|
10
|
Khan A, Jie Z, Wang J, Nepal J, Ullah N, Zhao ZY, Wang PY, Ahmad W, Khan A, Wang W, Li MY, Zhang W, Elsheikh MS, Xiong YC. Ecological risks of microplastics contamination with green solutions and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165688. [PMID: 37490947 DOI: 10.1016/j.scitotenv.2023.165688] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
The rise of plasticulture as mulching material in farming systems has raised concerns about microplastics (MPs) in the agricultural landscape. MPs are emerging pollutants in croplands and water systems with significant ecological risks, particularly over the long term. In the soil systems, MPs polymer type, thinness, shape, and size induces numerous effects on soil aggregates, dissolved organic carbon (C), rapidly oxidized organic C, microbial biomass C, microbial biomass nitrogen (N), microbial immobilization, degradation of organic matter, N cycling, and production of greenhouse gas emissions (GHGs), thereby posing a significant risk of impairing soil physical and biochemical properties over time. Further, toxic chemicals released from polyethylene mulching (PMs) might indirectly harm plant growth by affecting soil wetting-drying cycles, releasing toxic substances that interact with soil matrix, and suppressing soil microbial activity. In the environment, accumulation of MPs poses a risk to human health by accelerating emissions of GHGs, e.g., methane and carbon dioxide, or directly releasing toxic substances such as phthalic acid esters (PAEs) into the soils. Also, larger sizes MPs can adhere to root surface and block stomata could significantly change the shape of root epidermal cells resulting in arrest plant growth and development by restricting water-nutrient uptake, and gene expression and altering the biodiversity of the soil pollutants. In this review, we systematically analyzed the potential risks of MPs to the soil-plant and human body, their occurrence, abundance, and migration in agroecosystems. Further, the impacts of MPs on soil microbial function, nutrient cycling, soil C, and GHGs are mechanistically reviewed, with emphasis on potential green solutions such as organic materials amendments along with future research directions for more eco-friendly and sustainable plastic management in agroecosystems.
Collapse
Affiliation(s)
- Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zheng Jie
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, 455000, China
| | - Jing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jaya Nepal
- Department of Soil, Water & Ecosystem Sciences, Indian River Research Center, University of Florida, Fort Pierce, FL, USA
| | - Najeeb Ullah
- Agriculture Research Station, office of VP For Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ze-Ying Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng-Yang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wiqar Ahmad
- Department of the Soil and Environmental Sciences, AMKC, The University of Agriculture, Peshawar, Pakistan
| | - Adnan Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Meng-Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | | | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Chen K, Zhou S, Long Y, Xu H, Zhou J, Jiang Z, Xi M, Zheng H. Long-term aged fibrous polypropylene microplastics promotes nitrous oxide, carbon dioxide, and methane emissions from a coastal wetland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166332. [PMID: 37597563 DOI: 10.1016/j.scitotenv.2023.166332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Microplastics (MPs) has been suggested that it can greatly affect soil greenhouse gases (GHGs) emissions via altering soil physical, chemical, and biological properties. However, the difference in GHGs emissions, especially for those from coastal wetland soils, between varied aged MPs was rarely explored and the underlying mechanisms of GHGs emissions affected by the aged MPs were poorly understood. Therefore, the implications of fibrous polypropylene MPs (FPP-MPs) exposure on N2O, CO2, and CH4 emissions were examined by a 60-day soil incubation experiment. Compared with the control, the additions of un-aged FPP-MPs with both two rates (0.2 and 2 %) and aged FPP-MPs with a low rate (0.2 %) showed an insignificant effect on N2O emission, while the aged FPP-MPs added with a high rate (2 %) resulted in a remarkably increase in N2O emission, especially for those of the 30-day-aged FPP-MPs. A significant increase in CO2 emission was only observed in the 30-day-aged FPP-MPs treatments, compared with the control, and a higher addition rate produced a higher increase of CO2 emission. Regarding CH4 emission, it was significantly increased by adding aged FPP-MPs, and a longer aging period or/and a higher addition rate generated a higher degree of promotion of CH4 emission. However, compared with the CO2 emission, the quantity of CH4 emission was extremely low. These increased GHGs emissions can be ascribed to the improvements in soil physical structure and other chemical properties (e.g., pH and contents of soil organic matter and dissolved organic carbon) and enhancements in the abundances of denitrification- and carbon mineralization-related microorganisms. Overall, our results highlight the risk of elevated GHGs emissions from the soil polluted with 30-day-aged FPP-MPs, which should not be ignored as long-term aged FPP-MPs continue to increase in coastal wetland soils.
Collapse
Affiliation(s)
- Kun Chen
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Shunxi Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Hongxing Xu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Jing Zhou
- Department of Epidemiology and Health Statistics, Qingdao University, Qingdao 266071, Shandong, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| |
Collapse
|
12
|
Wang H, Xu K, Wang J, Feng C, Chen Y, Shi J, Ding Y, Deng C, Liu X. Microplastic biofilm: An important microniche that may accelerate the spread of antibiotic resistance genes via natural transformation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132085. [PMID: 37494793 DOI: 10.1016/j.jhazmat.2023.132085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Microplastic (MP) biofilms provide a specific microniche for microbial life and are a potential hotspot for the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Nevertheless, the acquisition of ARGs in MP biofilms via natural transformation mediated by extracellular DNA (eDNA) has been rarely explored. This study demonstrated that MP biofilms promoted the natural transformation of extracellular ARGs at the single-cell and multi-species levels, compared to natural substrate (NS) biofilms and bacterioplankton. The transformation frequency on MP biofilms was up to 1000-fold compare to that on NS. The small MPs and aged MPs enhanced the ARG transformation frequencies up to 77.16-fold and 32.05-fold, respectively, compared with the large MPs and pristine MPs. The transformation frequencies on MP biofilms were significantly positively correlated with the bacterial density and extracellular polymeric substance (EPS) content (P < 0.05). Furthermore, MPs significantly increased the expression of the biofilm formation related genes (motA and pgaA) and DNA uptake related genes (pilX and comA) compared to NS and bacterioplankton. The more transformants colonized on MPs contributed to the enhanced transformation frequencies at the community-wide level. Overall, eDNA-mediated transformation in MP biofilms may be an important path of ARG spread, which was promoted by heterogeneous biofilm.
Collapse
Affiliation(s)
- Huixiang Wang
- School of Biology, Food, and Environment, Hefei University, Hefei 230601, China; School of Environment, Nanjing Normal University, Nanjing 210023, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kaiwen Xu
- School of Biology, Food, and Environment, Hefei University, Hefei 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei 230601, China
| | - Jing Wang
- School of Biology, Food, and Environment, Hefei University, Hefei 230601, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chong Feng
- School of Biology, Food, and Environment, Hefei University, Hefei 230601, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianghong Shi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chengxun Deng
- School of Biology, Food, and Environment, Hefei University, Hefei 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei 230601, China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, Hefei 230601, China; International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei 230601, China.
| |
Collapse
|
13
|
Martinho SD, Fernandes VC, Figueiredo SA, Vilarinho R, Moreira JA, Delerue-Matos C. Laboratory Studies about Microplastic Aging and Its Effects on the Adsorption of Chlorpyrifos. Polymers (Basel) 2023; 15:3468. [PMID: 37631527 PMCID: PMC10459960 DOI: 10.3390/polym15163468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The constant change in microplastics (MP) due to exposure to environmental conditions leads to physical and chemical changes that enhance their ability to transport other pollutants, increasing the concern about their widespread presence in the environment. This work aimed to simulate the aging process of six MP (polyamide 6, unplasticized polyvinyl chloride, low-density polyethylene, polystyrene, polyethylene-co-vinyl acetate, polypropylene) in freshwater and seawater ecosystems at laboratory scale and evaluate its effects through optical microscope observation, Fourier transform infrared spectroscopy-Attenuated Total Reflectance (FTIR-ATR), Raman spectroscopy, and thermal gravimetric analysis (TGA). Through a combined experimental study of aged MP, the degradation by UV interaction was evidenced by the appearance of new infrared bands in the FTIR spectra assigned to ketones and hydroxyl groups. While Raman analysis and microscope images reveal the appearance of pores, wrinkles, and roughness in the MP surfaces. Variations in the temperature of the maximum weight loss of the MP were observed in the TGA analysis. The adsorption of chlorpyrifos (CPF), a common pesticide widely used in agriculture, by the pristine and aged MP was also studied. The highest affinity for CPF was observed for pristine LDPE and the lowest for PP. The batch adsorption studies revealed an increase in adsorption capacity as a consequence of the aging process for both MP. These results proved that the weathering effects caused changes in the behavior of MP, namely in the interaction with other pollutants.
Collapse
Affiliation(s)
- Sílvia D. Martinho
- REQUIMTE/LAQV—ISEP, Polytechnic of Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
- Department of Chemistry and Biochemistry, Faculty of Sciences of the Porto University, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Vírgínia Cruz Fernandes
- REQUIMTE/LAQV—ISEP, Polytechnic of Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| | - Sónia A. Figueiredo
- REQUIMTE/LAQV—ISEP, Polytechnic of Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| | - Rui Vilarinho
- Department of Physics and Astronomy, Faculty of Sciences of the Porto University, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.V.); (J.A.M.)
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Faculty of Sciences of the Porto University, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - J. Agostinho Moreira
- Department of Physics and Astronomy, Faculty of Sciences of the Porto University, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.V.); (J.A.M.)
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Faculty of Sciences of the Porto University, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV—ISEP, Polytechnic of Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| |
Collapse
|
14
|
Xiao C, Zhang M, Ding L, Qiu X, Guo X. New sight of microplastics aging: Reducing agents promote rapid aging of microplastics under anoxic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131123. [PMID: 36871465 DOI: 10.1016/j.jhazmat.2023.131123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The aging of microplastics (MPs) occurs extensively in the environment, and understanding the aging mechanisms of MPs is essential to study the properties, fate and environmental impact of MPs. We proposed a creative hypothesis that polyethylene terephthalate (PET) can be aged by reducing reactions with reducing agents. Simulation experiments based on the principle of reduction of carbonyl by NaBH4 were conducted to test the correctness of this hypothesis. The results showed that after 7 days of experiments, physical damage and chemical transformation occurred in the PET-MPs. The particle size of MPs was reduced by 34.95-55.93 %, and the C/O ratio was increased by 2.97-24.14 %. The changing order of surface functional groups (CO > C-O > C-H > C-C) was obtained. The occurrence of reductive aging and electron transfer of MPs was further supported by electrochemical characterization experiments. These results together reveal the reductive aging mechanism of PET-MPs: CO is firstly reduced to C-O by BH4- attack, and then further reduced to ·R. The resulting ·R recombines to form new C-H and C-C. This study is beneficial to deepen the understanding of the chemical aging of MPs, and can provide a theoretical basis for further research on the reactivity of oxygenated MPs with reducing agents.
Collapse
Affiliation(s)
- Chuanqi Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mengwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
15
|
Shi M, Xie Q, Li ZL, Pan YF, Yuan Z, Lin L, Xu XR, Li HX. Adsorption of heavy metals on biodegradable and conventional microplastics in the Pearl River Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121158. [PMID: 36716949 DOI: 10.1016/j.envpol.2023.121158] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In recent years, microplastics (MPs) as emerging carriers for environmental pollutants have attracted increasing worldwide attention. However, the adsorption of heavy metals on MPs, especially for biodegradable MPs, has been still poorly understood in estuarine environments. In this study, we investigated the aging of biodegradable and conventional MPs in the Pearl River Estuary after long-term exposure and their impacts on the adsorption of heavy metals from seawater. The results showed that the changes in surface characteristics were more prominent on biodegradable MPs than on conventional MPs after aging. Both biodegradable and conventional MPs could adsorb heavy metals, and their adsorption capacities fluctuated greatly on different MPs and different exposure times. The adsorption capacities of Cu, Pb, and As on biodegradable MPs were higher than those on conventional MPs, whereas Mn, Cr, and Co had lower adsorption on biodegradable MPs after 9-12 months by inductively coupled plasma-mass spectrometry (ICP-MS). The aging characteristics (CI, O/C, and Xc) of MPs accounted for a contribution of 51.0% on heavy metal adsorption, while the environmental factors (temperature, salinity, pH, and heavy metal concentration) only contributed to 13.2%. Therefore, the present study can provide important evidence on the environmental behaviors and ecological risks of biodegradable and conventional MPs in estuarine systems.
Collapse
Affiliation(s)
- Min Shi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Xie
- Analytical and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhen-Liang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
16
|
Hu J, Lim FY, Hu J. Characteristics and behaviors of microplastics undergoing photoaging and Advanced Oxidation Processes (AOPs) initiated aging. WATER RESEARCH 2023; 232:119628. [PMID: 36774752 DOI: 10.1016/j.watres.2023.119628] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/13/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The fact that 94% of microplastics (MPs) ubiquitous in the environment are subject to natural weathering makes the aging study currently a research hotspot. This review summarized the physicochemical characteristics of MPs undergoing natural and artificial aging and evaluated current analytical methods used in aging studies. Besides, the differences in photoaging and aging induced by advanced oxidation processes (AOPs) were discussed, leading to a conclusion that AOPs composed of oxidant and ultraviolet (UV) irradiation can better facilitate the alteration of MPs compared to UV irradiation alone. In addition, the environmental behavior of aged MPs was outlined and their adsorption properties for organics and metals were highlighted as a result of combined effects of hydrophobic, π-π, diffusion, and hydrogen bond interaction. Furthermore, the mechanisms of photoaging and AOPs-initiated aging were analyzed, mainly the role of reactive oxygen species (ROS) and environmentally persistent free radicals (EPFRs). Finally, the applications of two-dimensional correlation spectroscopy (2D-COS) and three-dimensional fluorescence spectra using excitation emission matrix-parallel factor analysis (EEM-PARAFAC) were discussed for the aging process analysis. This overview plays an important role in explaining the aging characteristics of MPs and provides a theoretical foundation for further investigations into their toxicity and removal.
Collapse
Affiliation(s)
- Jinyuan Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Fang Yee Lim
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
17
|
Hu J, Lim FY, Hu J. Ozonation facilitates the aging and mineralization of polyethylene microplastics from water: Behavior, mechanisms, and pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161290. [PMID: 36592902 DOI: 10.1016/j.scitotenv.2022.161290] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment, of which 94 % undergo the aging process. Accelerated aging induced by advanced oxidation processes (AOPs) is significant in explaining the formation pathway of secondary MPs and enables possible mineralization. In this study, ozonation coupled with hydrogen peroxide (O3/H2O2), a type of AOPs, was applied for the aging of MPs (polyethylene, PE). Physiochemical properties of aged PE MPs were analyzed through scanning electron microscope, Fourier-transform infrared spectroscopy-attenuated total reflection, and X-ray photoelectron spectroscopy. The mechanism regarding the contribution of reactive oxygen species (•OH) was determined using chemical probe (p-chlorobenzoic acid) and quencher (tert-butanol). Possible transformation pathways were modeled via two-dimensional correlation spectroscopy. Mineralization of MPs, associated with aging was also studied, with the percentage of PE degradation determined by mass loss. Our results confirmed that ozonation promoted fragmentation of PE, with 20 mM H2O2 facilitating the production of •OH. The growth of oxygen-containing functional groups on the surface of PE was consistent with the alteration of the oxygen-to‑carbon atom ratio, revealing the formation of CO, CO, and C-O-C. The enhanced adsorption property of aged PE for triclosan was due to the increased specific surface area and negative charges on the surface. Moreover, the percentage of PE degradation was higher at lower concentrations, and the mass loss reached 32.56 % at a PE concentration of 0.05 g/L after 8-h ozonation. These results contribute to revealing the long-term aging behavior of MPs and providing significant guidance for employing AOPs to achieve efficient removal.
Collapse
Affiliation(s)
- Jinyuan Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Fang Yee Lim
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
18
|
Guo C, Wang L, Lang D, Qian Q, Wang W, Wu R, Wang J. UV and chemical aging alter the adsorption behavior of microplastics for tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120859. [PMID: 36521717 DOI: 10.1016/j.envpol.2022.120859] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
This study evaluates the "vector" effects of different microplastics (MPs) on coexisting pollutants. The adsorption of tetracycline was studied on biodegradable plastics poly(butylene adipate-co-terephthalate) (PBAT) and non-biodegradable plastics polystyrene (PS), polypropylene (PP), and polyethylene (PE) after UV aging and chemical aging. The physicochemical properties of PBAT changed more obviously after UV radiation and chemical aging comparing to PS, PP and PE. Pores and cracks appear on the surface of aged PBAT. The crystallinity increased from 29.2% to 52.62%. In adsorption experiments, pristine and aged PBAT had strong vector effects on the adsorption of tetracycline than PS, PP and PE. The adsorption capacity of tetracycline on PBAT was increased from 0.7980 mg g-1 to 1.2669 mg g-1 after chemical aging. The adsorption mechanism indicated that electrostatic interactions and hydrogen bonds contribute to the adsorption process. In addition, for the adsorption of tetracycline on PS, π-π interaction was the main cause, and the adsorption mechanism was not considerably changed by aging. In conclusion, this study demonstrates that biodegradable plastics have substantial vector effect on coexisting pollutants at the end of their life cycle, this contributes to assessment of the risk from microplastic pollution.
Collapse
Affiliation(s)
- Chengxin Guo
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Lingling Wang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Daning Lang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Qianqian Qian
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Wei Wang
- Institute of Chemistry & Center for Pharmacy, University of Bergen, Bergen, 5020, Norway
| | - Ronglan Wu
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Jide Wang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
19
|
Ni Z, Tan L, Wang J, Chen Y, Zhang N, Meng F, Wang J. Toxic effects of pristine and aged polystyrene and their leachate on marine microalgae Skeletonema costatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159614. [PMID: 36283517 DOI: 10.1016/j.scitotenv.2022.159614] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The acute toxic effects of pristine and aged polystyrene (P-PS and A-PS) and their leaching solutions (L-PS) on microalgae Skeletonema costatum were investigated by measuring algal density and growth inhibition rate (IR), chlorophyll concentration and photosynthetic efficiency (Fv/Fm) over 96 h. Total protein (TP), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) were measured to analyze the oxidative damage to microalgae by microplastics and their leachates. Hydrodynamic diameter of microplastics in seawater, FITR and SEM images were used to study the changes of polystyrene during aging. The interaction of algae cell with microplastics and the cellular ultrastructure changes of cells were analyzed combined with electron microscopy for a comprehensive and systematic understanding on the mechanisms of microplastic toxicity to microalgae. Both high concentration and small size of PS had significant inhibitory effect on the growth of microalgae, and the inhibitory effect was greater with increasing exposure time. The inhibition effect of aged microplastics was more obvious, which was speculated to be caused by the synergistic effect of aged PS itself and leaching solution. The negative effect of leaching solution on microalgae was due to the release of some additives during the aging process. The content of MDA reached the highest value of 54.41 nmol/mgprot in 1.0 μm 50 mg/L A-PS treatment group, and A-PS were found to be more prone to heterogeneous aggregation with algae cells by SEM.
Collapse
Affiliation(s)
- Ziqi Ni
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiayin Wang
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanshan Chen
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Na Zhang
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Fanmeng Meng
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
20
|
Wang Z, Ding J, Song X, Zheng L, Huang J, Zou H, Wang Z. Aging of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends under different conditions: Environmental concerns on biodegradable plastic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158921. [PMID: 36411603 DOI: 10.1016/j.scitotenv.2022.158921] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable plastics (BPs) have been used to replace conventional plastics owing to their environmental harmless and ease of degradation. However, the aging processes of BPs in different environments remain unclear. In this study, we used poly (lactic acid)/poly (butylene adipate-co-terephthalate) (PLA/PBAT) films as model BPs and investigated the 30-d aging behavior of PLA/PBAT films under four conditions (i.e., air without ultraviolet (UV) irradiation, water without UV irradiation, air with UV irradiation, and water with UV irradiation). Our results showed that the aging of PLA/PBAT films was insignificant in all groups except the water with UV irradiation group. In the physical characterization, the PLA/PBAT films exhibited layered structures in water with UV irradiation condition, and the submicron- and nano-sized particles adhered to the bigger-sized fragments. In the chemical characterization, the carbonyl index (CI) of PLA/PBAT films in water with UV irradiation condition decreased from 3.84 to 1.36, and the oxygen-to-carbon (O/C) ratio reached a maximum of 1.78 at 20 d and declined to 0.49 at 30 d, indicating that the oxygen-containing functional groups underwent bond breaking and showed a rapid aging process. This is mainly attributed to the combined effect of hydrolysis and photolysis increases the contact area of PLA/PBAT films and accelerates the aging process. Furthermore, based on two-dimensional correlation spectroscopy (2D-COS) analysis, we suggest that free radicals generated in water with UV irradiation conditions also accelerate the aging process of PLA/PBAT films. This study explored the aging processes of PLA/PBAT films under different conditions, which could aid in clarifying the environmental behavior and provide further information to assess the potential risks of BPs.
Collapse
Affiliation(s)
- Zhenguo Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lixing Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jichao Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| |
Collapse
|
21
|
Shang C, Wang B, Guo W, Huang J, Zhang Q, Xie H, Gao H, Feng Y. The weathering process of polyethylene microplastics in the paddy soil system: Does the coexistence of pyrochar or hydrochar matter? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120421. [PMID: 36252884 DOI: 10.1016/j.envpol.2022.120421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study is based on a particular test site to simulate the weathering process of microplastics (MPs) in paddy soil. A substantial amount of plastic waste, especially MPs, inevitably accumulates in agricultural soil due to the high consumption and short average use of plastics. Recently, MP pollution has become a global environmental concern. However, insight into the soil weathering process of MPs in paddy soil, particularly in the presence of biochar, is lacking. In this study, the physicochemical properties of polyethylene (PE) MPs were determined through a 24-week weathering system conducted in paddy soil, paddy soil with pyrochar, or hydrochar. Moreover, the sorption of original and weathered PE MPs toward three typical pollutants (cadmium/Cd, bisphenol A/BPA, and dimethyl phthalate/DMP) was investigated. The surface of PE MPs was fractured, 1.1-fold rougher, yellow-colored (11.7 units), and 1.8-fold more oxidized after paddy soil weathering. In addition, the crystallinity, negative charge, and stronger hydrophilicity of weathered PE MPs increased compared to original PE MPs. Weathering in a pyrochar or hydrochar system caused fissures, extensive destruction of amorphous areas, and accelerated chemical or bio-oxidation processes for PE MPs, resulting in a more noticeable change in roughness (1.4-2.2-fold), yellow color (12.7-13.7), crystallinity (1.2-1.5-fold), and oxygen content (2.5-3.6-fold). Weathered PE MPs facilitated the sorption with Cd and BPA, attributed to larger specific surface area, abundant polar functional groups, and increased negatively charged sites. However, sorption of DMP to PE MPs was highly influenced by their hydrophobicity, resulting in decreased hydrophobic partition sorption on weathered PE MPs. Overall, paddy soil weathering affected the properties of PE MPs and enhanced sorption of Cd and BPA but reduced sorption of DMP. The coexistence of biochar exacerbated the paddy soil weathering effect. The insight gained from this study assists in better understanding the weathering process of PE MPs in agricultural soils.
Collapse
Affiliation(s)
- Cenyao Shang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wenzhen Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiuyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hailong Gao
- Jiangsu Provincial Ecological Assessment Center, Nanjing, 210036, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
22
|
Liu H, Yue L, Zhao Y, Li J, Fu Y, Deng H, Feng D, Li Q, Yu H, Zhang Y, Ge C. Changes in bacterial community structures in soil caused by migration and aging of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157790. [PMID: 35932870 DOI: 10.1016/j.scitotenv.2022.157790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are classified as emerging pollutants and greatly threatens soil ecosystems. To determine the impact of microplastic migration on soil bacterial diversity, we conducted a 90-day indoor soil column simulation test. Soil and microplastic (granular polystyrene, polypropylene MPs) samples were collected from different soil layers on days 30, 60, and 90. The downward migration trend of MPs was obvious, and its surface functional groups, hydrophobic properties, and crystallinity changed. Bacterial diversity was significantly higher in the surrounding soil than on microplastic surfaces. Also, the topsoil has more bacterial diversity than the middle soil. A higher number of OTUs were detected on microplastic surfaces for the middle soil than in the topsoil. Proteobacteria abundance on microplastic surfaces in the topsoil gradually increased over the course of the experiment, while an opposite trend was observed for the middle soil. Nevertheless, Proteobacteria abundances in both layers were higher than in the surrounding soils. MPs alters the bacterial community composition of soils and provides unique substrates for colonization. The impacts of MPs on soil bacterial communities were better understood in this study. Our findings highlighted the relevance of MPs in soil ecosystems as well as the potential threats they pose.
Collapse
Affiliation(s)
- Huanyu Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Lin Yue
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Eco-Environmental Monitoring Center of Hainan Province, Haikou 570228, China
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Yan Fu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Dan Feng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Qipei Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Ying Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| |
Collapse
|
23
|
Wu X, Liu P, Zhao X, Wang J, Teng M, Gao S. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: A systematic review. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129287. [PMID: 35714544 DOI: 10.1016/j.jhazmat.2022.129287] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) pollution in global sediment has been intensely studied and recognized as the ultimate sink for residual MPs in terrestrial and aquatic ecosystems. During MP long-term retention in sediments, plastic-degrading bacteria (i.e., Flavobacteriaceae, Bacillus, Rhodobacteraceae, and Desulfobacteraceae) can utilize those MPs as their carbon and energy sources through enzyme (hydrolase and oxidoreductase) reactions, which further alter or transform high molecular weight MP polymers into lower molecular weight biodegradation byproducts (i.e., monomers and oligomers) and release toxic additives. In other words, MPs can act as durable substrates for plastic-degrading bacteria in sediments. However, to date, the biodegradation rates of MPs in sediment environments are still poorly understood due to their limited degradation efficiency. Herein, we review the enzyme-induced biodegradation processes of MPs in sediment environments, which is important for accessing the alteration of MP properties and their potential ecological risks after undergoing long-term weathering processes. In addition, the factors associated with the MP properties (polymer type, molecular weight, crystallinity, and hydrophobicity) and sediment conditions (sediment type, temperature, pH, salinity, and oxygen content) that influence plastic degradation processes are also reviewed. The mechanisms may relate to the MP properties and sediment conditions that can influence microbial abundance, enzyme concentrations, and enzyme activities, thus altering MP biodegradation ratios. We anticipate that the observations reviewed in this study will pose a new issue to better understand the formation process, fate, and potential ecological risks associated with aged MPs in sediment environments.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
24
|
Li Y, Wang X, Wang Y, Sun Y, Xia S, Zhao J. Effect of biofilm colonization on Pb(II) adsorption onto poly(butylene succinate) microplastic during its biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155251. [PMID: 35429565 DOI: 10.1016/j.scitotenv.2022.155251] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Few studies have mentioned the enrichment of heavy metal pollutants on microplastics derived from degradable plastics. This study investigated the adsorption behavior of Pb(II) onto biodegradable poly(butylene succinate) (PBS) microplastics during its biodegradation. The results indicated that Pb(II) adsorbed by biofilm-colonized biodegraded-PBS microplastics (B-PBS) was about 10-folds higher than that of virgin PBS (647.09 μg·g-1 versus 64.13 μg·g-1) due to the biofilm colonization and the degradation of PBS. After removing the biofilm, the biodegraded PBS still had high Pb(II) adsorption capacity, which was attributed to the complexation of Pb(II) and the stably adhered extracellular polymeric substances (EPS). Pb(II) adsorption onto both virgin PBS and B-PBS was highly pH-dependent, its adsorption on virgin PBS was dominated by electrostatic interaction, while as for B-PBS, the adsorption mechanisms mainly involved the coordination/complexation of Pb(II) and the EPS components on the colonized biofilm, surface complexation, and electrostatic interaction. This study suggested that the enrichment of heavy metal pollutants onto the biodegradable microplastics may pose risks to the aquatic ecosystem.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
25
|
Microplastics in Freshwater Environment in Asia: A Systematic Scientific Review. WATER 2022. [DOI: 10.3390/w14111737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microplastics (MPs) are an emerging pollutant in the aquatic environment, and this has gradually been recognized in the Asian region. This systematic review study, using the Scopus database, provides an insightful understanding of the spatial distribution of scientific studies on MPs in freshwater conducted across the Asian region, utilized sampling methods, and a detailed assessment of the effects of MPs on different biotic components in freshwater ecosystems, with special focus on its potential risks on human health. The results of this review indicate that research on microplastics in Asia has gained attention since 2014, with a significant increase in the number of studies in 2018, and the number of scientific studies quadrupled in 2021 compared to 2018. Results indicated that despite a significant amount of research has been conducted in many Asian countries, they were not distributed evenly, as multiple studies selected specific rivers and lakes. Additionally, around two-thirds of all the papers focused their studies in China, followed by India and South Korea. It was also found that most of the studies focused primarily on reporting the occurrence levels of MPs in freshwater systems, such as water and sediments, and aquatic organisms, with a lack of studies investigating the human intake of MPs and their potential risks to human health. Notably, comparing the results is a challenge because diverse sampling, separation, and identification methods were applied to estimate MPs. This review study suggests that further research on the dynamics and transport of microplastics in biota and humans is needed, as Asia is a major consumer of seafood products and contributes significantly to the generation of plastic litter in the marine environment. Moreover, this review study revealed that only a few studies extended their discussions to policies and governance aspects of MPs. This implies the need for further research on policy and governance frameworks to address this emerging water pollutant more holistically.
Collapse
|
26
|
Yellowing, Weathering and Degradation of Marine Pellets and Their Influence on the Adsorption of Chemical Pollutants. Polymers (Basel) 2022; 14:polym14071305. [PMID: 35406179 PMCID: PMC9003515 DOI: 10.3390/polym14071305] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Marine microplastics (MPs) are exposed to environmental factors, which produce aging, weathering, surface cracking, yellowing, fragmentation and degradation, thereby changing the structure and behavior of the plastic. This degradation also has an influence on the adsorption of persistent organic pollutants over the microplastic surface, leading to increased concentration with aging. The degradation state affects the microplastic color over time; this is called yellowing, which can be quantified using the Yellowness Index (YI). Weathering and surface cracking is also related with the microplastic yellowing, which can be identified by Fourier transform infrared spectroscopy (FTIR). In this study, the degradation state of marine microplastic polyethylene pellets with different aging stages is evaluated and quantified with YI determination and the analysis of FTIR spectrums. A color palette, which relates to the microplastic color and YI, was developed to obtain a visual percentage of this index. The relation with the adsorption rate of persistent organic pollutant over the microplastic surface was also determined.
Collapse
|
27
|
Zvekic M, Richards LC, Tong CC, Krogh ET. Characterizing photochemical ageing processes of microplastic materials using multivariate analysis of infrared spectra. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:52-61. [PMID: 34904601 DOI: 10.1039/d1em00392e] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microplastics in the environment are an emerging concern due to impacts on human and environmental health. In addition to direct effects on biota, microplastics influence the fate and distribution of trace organic contaminants through sorption and transport. Environmental weathering may influence the rate and extent of chemical sorption. Changes in the surface characteristics of four common plastics including low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS) were followed under the influence of both artificial light (UV-B) and natural sunlight for up to six months. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were collected at regular intervals. Principal component analysis (PCA) of the full dataset of UV-B weathered samples (n >500 spectra) simultaneously discriminated plastic type and extent of photochemical weathering. The magnitude of PCA scores correlated with exposure time and the loadings were consistent with surface chemistry changes including photooxidation. Projecting sunlight and UV-C exposed samples onto this PCA model demonstrated that similar chemical changes occurred, albeit at different rates. The results were compared to the carbonyl index (CI) with similar weathering trends indicating PP weathered at a faster initial rate than LDPE and HDPE. We propose that a multivariate approach is more widely applicable than CI as illustrated by PS, which lacked a stable reference peak. Kinetic analysis of the time series indicated that outdoor weathering occurred 5-12 times slower than the artificial exposure used here, depending on the plastic and the light source employed. The results provide unique insights into weathering processes and the photochemical age of naturally weathered plastics.
Collapse
Affiliation(s)
- Misha Zvekic
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada.
- Department of Chemistry, University of Victoria, PO Box 1700, Stn CSC, Victoria, British Columbia, Canada
| | - Larissa C Richards
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada.
- Department of Chemistry, University of Victoria, PO Box 1700, Stn CSC, Victoria, British Columbia, Canada
| | - Christine C Tong
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada.
| | - Erik T Krogh
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada.
- Department of Chemistry, University of Victoria, PO Box 1700, Stn CSC, Victoria, British Columbia, Canada
| |
Collapse
|
28
|
Ge J, Li H, Liu P, Zhang Z, Ouyang Z, Guo X. Review of the toxic effect of microplastics on terrestrial and aquatic plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148333. [PMID: 34412379 DOI: 10.1016/j.scitotenv.2021.148333] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
As a new pollutant, microplastics (MPs) exhibited more and more significant influence on the organisms in the environment. Especially, the effects on the growth and development of plants by MPs attracted wide attentions in recent period. In the review article, we summarized the important influences of MPs on terrestrial and aquatic plants. The properties, including type, size and oxygen-containing group of MPs on their physical injures toward plants were critically reviewed, which were significantly correlated to the toxicity to plants. The secondary risks of MPs including the additives and MP-derived organic products and the adsorbed environmental pollutants to plants were clearly revealed. The hydrophobic organic pollutants released from MPs showed significant chemical effects on the plants. We also outlined the effects of MPs to the various regions (e.g. the seed and rhizome) of plants and compared the toxic difference of MPs on terrestrial and aquatic plants. Generally, the seed and rhizome of plants were susceptible to MPs, and the effects of MPs on terrestrial and aquatic plants were different. The review paper improves the understanding of potential toxicity of MP themselves and the released and adsorbed chemicals to plants in the environment.
Collapse
Affiliation(s)
- Jianhua Ge
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China
| | - Huang Li
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Zhiping Zhang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhuozhi Ouyang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|