1
|
Qiu JY, Mah R, Brand LA, Pang X, Barnett M, Diggle M, Tipples G. Impact of Sample Storage Time and Temperature on the Stability of Respiratory Viruses and Enteric Viruses in Wastewater. Microorganisms 2024; 12:2459. [PMID: 39770662 PMCID: PMC11679355 DOI: 10.3390/microorganisms12122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Wastewater-based surveillance (WBS) has been widely used to track SARS-CoV-2 as well as many other viruses in communities during the COVID pandemic and post-pandemic. However, it is still not clear how temperature and storage time would influence the stability of viruses in wastewater. In this study, we assessed the stability of SARS-CoV-2, pepper mild mottle virus (PMMoV), influenza viruses A (IAV) and B (IBV), respiratory syncytial virus (RSV), and enteric viruses in raw wastewater stored at room temperature, 4 °C, and -20 °C for 3 and 6 days. SARS-CoV-2, PMMoV, IAV, and enteric viruses were found to be stable up to 6 days after storing at room temperature or 4 °C. SARS-CoV-2 and RSV were more susceptible to freeze-thaw cycles compared to PMMoV and enteric viruses, which were relatively stable for up to 6 days stored at -20 °C. Low detection of IBV in wastewater made it difficult to evaluate the impact. Based on our findings, we conclude that short-term storage or transportation of wastewater samples within 6 days at ambient temperature or 4 °C is acceptable for the majority of these viruses. Freezing samples at -20 °C for even short periods is not recommended for WBS of respiratory viruses. The data obtained from this study can provide guidance for quality assurance purposes from the operational aspects of wastewater surveillance.
Collapse
Affiliation(s)
- Judy Y. Qiu
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Richardson Mah
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
| | - Logan A. Brand
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Melodie Barnett
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
| | - Mathew Diggle
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Graham Tipples
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| |
Collapse
|
2
|
Deák G, Prangate R, Croitoru C, Matei M, Boboc M. The first detection of SARS-CoV-2 RNA in the wastewater of Bucharest, Romania. Sci Rep 2024; 14:21730. [PMID: 39289536 PMCID: PMC11408638 DOI: 10.1038/s41598-024-72854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been previously used as a tool for pathogen identification within communities. After the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) outbreak, in 2020, Daughton proposed the implementation of a wastewater surveillance strategy that could determine the incidence of COVID-19 (coronavirus disease 2019) nationally. Individuals in various stages of SARS-CoV-2 infection, including presymptomatic, asymptomatic and symptomatic patients, can be identified as carriers of the virus in their urine, saliva, stool and other bodily secretions. Studies using this method were conducted to monitor the prevalence of the virus in high-density populations, such as cities but also in smaller communities, such as schools and college campuses. The aim of this pilot study was to assess the feasibility and effectiveness of wastewater surveillance in Bucharest, Romania, and wastewater samples were collected weekly from seven locations between July and September 2023. RNA (ribonucleic acid) extraction, followed by dPCR (digital polymerase chain reaction) analysis, was performed to detect viral genetic material. Additionally, NGS (next generation sequencing) technology was used to identify the circulating variants within the wastewater of Bucharest, Romania. Preliminary results indicate the successful detection of SARS-CoV-2 RNA in wastewater, providing valuable insights into the circulation of the virus within the community.
Collapse
Affiliation(s)
- György Deák
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Raluca Prangate
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania.
| | - Cristina Croitoru
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Monica Matei
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Mădălina Boboc
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| |
Collapse
|
3
|
Länsivaara A, Lehto KM, Hyder R, Janhonen ES, Lipponen A, Heikinheimo A, Pitkänen T, Oikarinen S. Comparison of Different Reverse Transcriptase-Polymerase Chain Reaction-Based Methods for Wastewater Surveillance of SARS-CoV-2: Exploratory Study. JMIR Public Health Surveill 2024; 10:e53175. [PMID: 39158943 PMCID: PMC11369532 DOI: 10.2196/53175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Many countries have applied the wastewater surveillance of the COVID-19 pandemic to their national public health monitoring measures. The most used methods for detecting SARS-CoV-2 in wastewater are quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) and reverse transcriptase-droplet digital polymerase chain reaction (RT-ddPCR). Previous comparison studies have produced conflicting results, thus more research on the subject is required. OBJECTIVE This study aims to compare RT-qPCR and RT-ddPCR for detecting SARS-CoV-2 in wastewater. It also aimed to investigate the effect of changes in the analytical pipeline, including the RNA extraction kit, RT-PCR kit, and target gene assay, on the results. Another aim was to find a detection method for low-resource settings. METHODS We compared 2 RT-qPCR kits, TaqMan RT-qPCR and QuantiTect RT-qPCR, and RT-ddPCR based on sensitivity, positivity rates, variability, and correlation of SARS-CoV-2 gene copy numbers in wastewater to the incidence of COVID-19. Furthermore, we compared 2 RNA extraction methods, column- and magnetic-bead-based. In addition, we assessed 2 target gene assays for RT-qPCR, N1 and N2, and 2 target gene assays for ddPCR N1 and E. Reverse transcription strand invasion-based amplification (RT-SIBA) was used to detect SARS-CoV-2 from wastewater qualitatively. RESULTS Our results indicated that the most sensitive method to detect SARS-CoV-2 in wastewater was RT-ddPCR. It had the highest positivity rate (26/30), and its limit of detection was the lowest (0.06 gene copies/µL). However, we obtained the best correlation between COVID-19 incidence and SARS-CoV-2 gene copy number in wastewater using TaqMan RT-qPCR (correlation coefficient [CC]=0.697, P<.001). We found a significant difference in sensitivity between the TaqMan RT-qPCR kit and the QuantiTect RT-qPCR kit, the first having a significantly lower limit of detection and a higher positivity rate than the latter. Furthermore, the N1 target gene assay was the most sensitive for both RT-qPCR kits, while no significant difference was found between the gene targets using RT-ddPCR. In addition, the use of different RNA extraction kits affected the result when the TaqMan RT-qPCR kit was used. RT-SIBA was able to detect SARS-CoV-2 RNA in wastewater. CONCLUSIONS As our study, as well as most of the previous studies, has shown RT-ddPCR to be more sensitive than RT-qPCR, its use in the wastewater surveillance of SARS-CoV-2 should be considered, especially if the amount of SARS-CoV-2 circulating in the population was low. All the analysis steps must be optimized for wastewater surveillance as our study showed that all the analysis steps including the compatibility of the RNA extraction, the RT-PCR kit, and the target gene assay influence the results. In addition, our study showed that RT-SIBA could be used to detect SARS-CoV-2 in wastewater if a qualitative result is sufficient.
Collapse
Affiliation(s)
- Annika Länsivaara
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rafiqul Hyder
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority - Ruokavirasto, Seinäjoki, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Rashid SA, Rajendiran S, Nazakat R, Mohammad Sham N, Khairul Hasni NA, Anasir MI, Kamel KA, Muhamad Robat R. A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic. Heliyon 2024; 10:e30600. [PMID: 38765075 PMCID: PMC11098849 DOI: 10.1016/j.heliyon.2024.e30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, wastewater-based epidemiology (WBE) research has experienced a strong impetus during the Coronavirus disease 2019 (COVID-19) pandemic. However, a few technical issues related to surveillance strategies, such as standardized procedures ranging from sampling to testing protocols, need to be resolved in preparation for future infectious disease outbreaks. This review highlights the study characteristics, potential use of WBE and overview of methods, as well as methods utilized to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including its variant in wastewater. A literature search was performed electronically in PubMed and Scopus according to PRISMA guidelines for relevant peer-reviewed articles published between January 2020 and March 2022. The search identified 588 articles, out of which 221 fulfilled the necessary criteria and are discussed in this review. Most global WBE studies were conducted in North America (n = 75, 34 %), followed by Europe (n = 68, 30.8 %), and Asia (n = 43, 19.5 %). The review also showed that most of the application of WBE observed were to correlate SARS-CoV-2 ribonucleic acid (RNA) trends in sewage with epidemiological data (n = 90, 40.7 %). The techniques that were often used globally for sample collection, concentration, preferred matrix recovery control and various sample types were also discussed. Overall, this review provided a framework for researchers specializing in WBE to apply strategic approaches to their research questions in achieving better functional insights. In addition, areas that needed more in-depth analysis, data collection, and ideas for new initiatives were identified.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sakshaleni Rajendiran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Noraishah Mohammad Sham
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Khayri Azizi Kamel
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Occupational & Environmental Health Unit, Public Health Division, Selangor State Health Department, Ministry of Health Malaysia, Malaysia
| |
Collapse
|
5
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Deng Y, Xu X, Zheng X, Leung GM, Chui HK, Li Y, Hu Q, Yang M, Huang X, Tang S, Zhang L, Zhang T. Advances and implications of wastewater surveillance for SARS-CoV-2. CHINESE SCIENCE BULLETIN 2024; 69:362-369. [DOI: 10.1360/tb-2022-1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Bertels X, Hanoteaux S, Janssens R, Maloux H, Verhaegen B, Delputte P, Boogaerts T, van Nuijs ALN, Brogna D, Linard C, Marescaux J, Didy C, Pype R, Roosens NHC, Van Hoorde K, Lesenfants M, Lahousse L. Time series modelling for wastewater-based epidemiology of COVID-19: A nationwide study in 40 wastewater treatment plants of Belgium, February 2021 to June 2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165603. [PMID: 37474075 DOI: 10.1016/j.scitotenv.2023.165603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) has been implemented to monitor surges of COVID-19. Yet, multiple factors impede the usefulness of WBE and quantitative adjustment may be required. AIM We aimed to model the relationship between WBE data and incident COVID-19 cases, while adjusting for confounders and autocorrelation. METHODS This nationwide WBE study includes data from 40 wastewater treatment plants (WWTPs) in Belgium (02/2021-06/2022). We applied ARIMA-based modelling to assess the effect of daily flow rate, pepper mild mottle virus (PMMoV) concentration, a measure of human faeces in wastewater, and variants (alpha, delta, and omicron strains) on SARS-CoV-2 RNA levels in wastewater. Secondly, adjusted WBE metrics at different lag times were used to predict incident COVID-19 cases. Model selection was based on AICc minimization. RESULTS In 33/40 WWTPs, RNA levels were best explained by incident cases, flow rate, and PMMoV. Flow rate and PMMoV were associated with -13.0 % (95 % prediction interval: -26.1 to +0.2 %) and +13.0 % (95 % prediction interval: +5.1 to +21.0 %) change in RNA levels per SD increase, respectively. In 38/40 WWTPs, variants did not explain variability in RNA levels independent of cases. Furthermore, our study shows that RNA levels can lead incident cases by at least one week in 15/40 WWTPs. The median population size of leading WWTPs was 85.1 % larger than that of non‑leading WWTPs. In 17/40 WWTPs, however, RNA levels did not lead or explain incident cases in addition to autocorrelation. CONCLUSION This study provides quantitative insights into key determinants of WBE, including the effects of wastewater flow rate, PMMoV, and variants. Substantial inter-WWTP variability was observed in terms of explaining incident cases. These findings are of practical importance to WBE practitioners and show that the early-warning potential of WBE is WWTP-specific and needs validation.
Collapse
Affiliation(s)
- Xander Bertels
- Department of Bioanalysis, Ghent University, 9000 Ghent, Belgium
| | - Sven Hanoteaux
- Epidemiology and Public Health, Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | - Raphael Janssens
- Epidemiology and Public Health, Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | - Hadrien Maloux
- Epidemiology and Public Health, Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | - Bavo Verhaegen
- Infectious Diseases in Humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tim Boogaerts
- Toxicological Centre, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Delphine Brogna
- Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - Catherine Linard
- Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - Jonathan Marescaux
- Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium; E-BIOM SA, 5000 Namur, Belgium
| | - Christian Didy
- Société Publique de Gestion de l'Eau, 4800 Verviers, Belgium
| | - Rosalie Pype
- Société Publique de Gestion de l'Eau, 4800 Verviers, Belgium
| | - Nancy H C Roosens
- Biological Health Risks, Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | - Koenraad Van Hoorde
- Infectious Diseases in Humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium
| | - Marie Lesenfants
- Epidemiology and Public Health, Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Thapar I, Langan LM, Davis H, Norman RS, Bojes HK, Brooks BW. Influence of storage conditions and multiple freeze-thaw cycles on N1 SARS-CoV-2, PMMoV, and BCoV signal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165098. [PMID: 37392884 PMCID: PMC10307669 DOI: 10.1016/j.scitotenv.2023.165098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Wastewater-based epidemiology/wastewater-based surveillance (WBE/WBS) continues to serve as an effective means of monitoring various diseases, including COVID-19 and the emergence of SARS-CoV-2 variants, at the population level. As the use of WBE expands, storage conditions of wastewater samples will play a critical role in ensuring the accuracy and reproducibility of results. In this study, the impacts of water concentration buffer (WCB), storage temperature, and freeze-thaw cycles on the detection of SARS-CoV-2 and other WBE-related gene targets were examined. Freeze-thawing of concentrated samples did not significantly affect (p > 0.05) crossing/cycle threshold (Ct) value for any of the gene targets studied (SARS-CoV-2 N1, PMMoV, and BCoV). However, use of WCB during concentration resulted in a significant (p < 0.05) decrease in Ct for all targets, and storage at -80 °C (in contrast to -20 °C) appeared preferable for wastewater storage signal stability based on decreased Ct values, although this was only significantly different (p < 0.05) for the BCoV target. Interestingly, when Ct values were converted to gene copies per influent sample, no significant differences (p > 0.05) were observed in any of the targets examined. Stability of RNA targets in concentrated wastewater against freeze-thaw degradation supports archiving of concentrated samples for use in retrospective examination of COVID-19 trends and tracing SARS-CoV-2 variants and potentially other viruses, and provides a starting point for establishing a consistent procedure for specimen collection and storage for the WBE/WBS community.
Collapse
Affiliation(s)
- Isha Thapar
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA.
| | - Haley Davis
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, FL 34946, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public Health, South Carolina, 921 Assembly St., Columbia, SC 29208, USA
| | - Heidi K Bojes
- Environmental Epidemiology and Disease Registries Section, Texas Department of State Health Services, Austin, TX 78756, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798, USA
| |
Collapse
|
9
|
Breadner PR, Dhiyebi HA, Fattahi A, Srikanthan N, Hayat S, Aucoin MG, Boegel SJ, Bragg LM, Craig PM, Xie Y, Giesy JP, Servos MR. A comparative analysis of the partitioning behaviour of SARS-CoV-2 RNA in liquid and solid fractions of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165095. [PMID: 37355124 PMCID: PMC10287177 DOI: 10.1016/j.scitotenv.2023.165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
As fragments of SARS-CoV-2 RNA can be quantified and measured temporally in wastewater, surveillance of concentrations of SARS-CoV-2 in wastewater has become a vital resource for tracking the spread of COVID-19 in and among communities. However, the absence of standardized methods has affected the interpretation of data for public health efforts. In particular, analyzing either the liquid or solid fraction has implications for the interpretation of how viral RNA is quantified. Characterizing how SARS-CoV-2 or its RNA fragments partition in wastewater is a central part of understanding fate and behaviour in wastewater. In this study, partitioning of SARS-CoV-2 was investigated by use of centrifugation with varied durations of spin and centrifugal force, polyethylene glycol (PEG) precipitation followed by centrifugation, and ultrafiltration of wastewater. Partitioning of the endogenous pepper mild mottled virus (PMMoV), used to normalize the SARS-CoV-2 signal for fecal load in trend analysis, was also examined. Additionally, two surrogates for coronavirus, human coronavirus 229E and murine hepatitis virus, were analyzed as process controls. Even though SARS-CoV-2 has an affinity for solids, the total RNA copies of SARS-CoV-2 per wastewater sample, after centrifugation (12,000 g, 1.5 h, no brake), were partitioned evenly between the liquid and solid fractions. Centrifugation at greater speeds for longer durations resulted in a shift in partitioning for all viruses toward the solid fraction except for PMMoV, which remained mostly in the liquid fraction. The surrogates more closely reflected the partitioning of SARS-CoV-2 under high centrifugation speed and duration while PMMoV did not. Interestingly, ultrafiltration devices were inconsistent in estimating RNA copies in wastewater, which can influence the interpretation of partitioning. Developing a better understanding of the fate of SARS-CoV-2 in wastewater and creating a foundation of best practices is the key to supporting the current pandemic response and preparing for future potential infectious diseases.
Collapse
Affiliation(s)
- Patrick R Breadner
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Azar Fattahi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Samina Hayat
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Scott J Boegel
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Yuwei Xie
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Science, Baylor University, One Bear Place, Waco, TX 76798, USA
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
10
|
Ciannella S, González-Fernández C, Gomez-Pastora J. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162953. [PMID: 36948304 PMCID: PMC10028212 DOI: 10.1016/j.scitotenv.2023.162953] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19), whose causative agent is the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a pandemic. This virus is predominantly transmitted via respiratory droplets and shed via sputum, saliva, urine, and stool. Wastewater-based epidemiology (WBE) has been able to monitor the circulation of viral pathogens in the population. This tool demands both in-lab and computational work to be meaningful for, among other purposes, the prediction of outbreaks. In this context, we present a systematic review that organizes and discusses laboratory procedures for SARS-CoV-2 RNA quantification from a wastewater matrix, along with modeling techniques applied to the development of WBE for COVID-19 surveillance. The goal of this review is to present the current panorama of WBE operational aspects as well as to identify current challenges related to it. Our review was conducted in a reproducible manner by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews. We identified a lack of standardization in wastewater analytical procedures. Regardless, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approach was the most reported technique employed to detect and quantify viral RNA in wastewater samples. As a more convenient sample matrix, we suggest the solid portion of wastewater to be considered in future investigations due to its higher viral load compared to the liquid fraction. Regarding the epidemiological modeling, the data-driven approach was consistently used for the prediction of variables associated with outbreaks. Future efforts should also be directed toward the development of rapid, more economical, portable, and accurate detection devices.
Collapse
Affiliation(s)
- Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock 79409, TX, USA.
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock 79409, TX, USA; Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain.
| | | |
Collapse
|
11
|
Helm B, Geissler M, Mayer R, Schubert S, Oertel R, Dumke R, Dalpke A, El-Armouche A, Renner B, Krebs P. Regional and temporal differences in the relation between SARS-CoV-2 biomarkers in wastewater and estimated infection prevalence - Insights from long-term surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159358. [PMID: 36240928 PMCID: PMC9554318 DOI: 10.1016/j.scitotenv.2022.159358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology provides a conceptual framework for the evaluation of the prevalence of public health related biomarkers. In the context of the Coronavirus disease-2019, wastewater monitoring emerged as a complementary tool for epidemic management. In this study, we evaluated data from six wastewater treatment plants in the region of Saxony, Germany. The study period lasted from February to December 2021 and covered the third and fourth regional epidemic waves. We collected 1065 daily composite samples and analyzed SARS-CoV-2 RNA concentrations using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Regression models quantify the relation between RNA concentrations and disease prevalence. We demonstrated that the relation is site and time specific. Median loads per diagnosed case differed by a factor of 3-4 among sites during both waves and were on average 45 % higher during the third wave. In most cases, log-log-transformed data achieved better regression performance than non-transformed data and local calibration outperformed global models for all sites. The inclusion of lag/lead time, discharge and detection probability improved model performance in all cases significantly, but the importance of these components was also site and time specific. In all cases, models with lag/lead time and log-log-transformed data obtained satisfactory goodness-of-fit with adjusted coefficients of determination higher than 0.5. Back-estimation of testing efficiency from wastewater data confirmed state-wide prevalence estimation from individual testing statistics, but revealed pronounced differences throughout the epidemic waves and among the different sites.
Collapse
Affiliation(s)
- Björn Helm
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany.
| | - Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Robin Mayer
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Institute of Hydrobiology, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; University Heidelberg, Institute of Medical Microbiology and Hygiene, Heidelberg, Germany
| | - Ali El-Armouche
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bertold Renner
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| |
Collapse
|
12
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
13
|
Gao Z, Li P, Lin H, Lin W, Ren Y. Biomarker selection strategies based on compound stability in wastewater-based epidemiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5516-5529. [PMID: 36418835 PMCID: PMC9684832 DOI: 10.1007/s11356-022-24268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The specific compositions of human excreta in sewage can be used as biomarkers to indicate the disease prevalence, health status, and lifestyle of the population living in the investigated catchment. It is important for guiding and evaluating public health policies as well as promoting human health development. Among several parameters of wastewater-based epidemiology (WBE), the decay of biomarkers during transportation in sewer and storage plays a crucial role in the back-calculation of population consumption. In this paper, we summarized the stability data of common biomarkers in storage at different temperatures and in-sewer transportation. Among them, cardiovascular drugs and antidiabetic drugs are very stable which can be used as biomarkers; most of the illicit drugs are stable except for cocaine, heroin, and tetrahydrocannabinol which could be substituted by their metabolites as biomarkers. There are some losses for part of antibiotics and antidepressants even in frozen storage. Rapid detection of contagious viruses is a new challenge for infectious disease control. With the deeper and broader study of biomarkers, it is expected that the reliable application of the WBE will be a useful addition to epidemiological studies.
Collapse
Affiliation(s)
- Zhihan Gao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- Datansha Branch of Guangzhou Sewage Treatment Co., Ltd, Guangzhou, 510163, China
| | - Han Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Dimitrakopoulos L, Kontou A, Strati A, Galani A, Kostakis M, Kapes V, Lianidou E, Thomaidis N, Markou A. Evaluation of viral concentration and extraction methods for SARS-CoV-2 recovery from wastewater using droplet digital and quantitative RT-PCR. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100224. [PMID: 37520924 PMCID: PMC9222221 DOI: 10.1016/j.cscee.2022.100224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
The ongoing pandemic caused by the emergence of SARS-CoV-2 has resulted in millions of deaths worldwide despite the various measures announced by the authorities. Wastewater-based epidemiology has the ability to provide a day-to-day estimation of the number of infected people in a fast and cost-effective manner. However, owing to the complex nature of wastewater, wastewater monitoring for viral genome copies is affected by the extensive viral fragmentation that takes place all the way to the sewage and the analytical lab. The aim of this study was to evaluate different methodologies for the concentration and extraction of viruses in wastewaters and to select and improve an option that maximizes the recovery of SARS-CoV-2. We compare 5 different concentration methods and 4 commercially available kits for the RNA extraction. To evaluate the performance and the recovery of these, SARS-CoV-2 isolated from patients was used as a spike control. Additionally, the presence of SARS-CoV-2 in all wastewater samples was determined using reverse transcription quantitative PCR (RT-qPCR) and reverse transcription droplet digital PCR (RT-ddPCR), targeting three genetic markers (N1, N2 and N3). Using spiked samples, recoveries were estimated 2.1-37.6% using different extraction kits and 0.1-2.1% using different concentration kits. It was found that a direct capture-based method, evaluated against a variety of concentration methods, is the best in terms of recovery, time and cost. Interestingly, we noticed a good agreement between the results provided by RT-qPCR and RT-ddPCR in terms of recovery. This evaluation can serve as a guide for laboratories establishing a protocol to perform wastewater monitoring of SARS-CoV-2. Overall, data presented here reinforces the validity of WBE for SARS-CoV-2 surveillance, uncovers potential caveats in the selection of concentration and extraction protocols and points towards optimal solutions to maximize its potential.
Collapse
Affiliation(s)
- Lampros Dimitrakopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Aikaterini Kontou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Areti Strati
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Vasileios Kapes
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Evrikleia Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| |
Collapse
|
15
|
Huge BJ, North D, Mousseau CB, Bibby K, Dovichi NJ, Champion MM. Comparison of RT-dPCR and RT-qPCR and the effects of freeze-thaw cycle and glycine release buffer for wastewater SARS-CoV-2 analysis. Sci Rep 2022; 12:20641. [PMID: 36450877 PMCID: PMC9709738 DOI: 10.1038/s41598-022-25187-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Public health efforts to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic rely on accurate information on the spread of the disease in the community. Acute and surveillance testing has been primarily used to characterize the extent of the disease. However, obtaining a representative sample of the human population is challenging because of limited testing capacity and incomplete testing compliance. Wastewater-based epidemiology is an agnostic alternative to surveillance testing that provides an average sample from the population served by the treatment facility. We compare the performance of reverse transcription quantitative PCR (RT-qPCR) and reverse transcription digital droplet PCR (RT-dPCR) for analysis of SARS-CoV-2 RNA in a regional wastewater treatment facility in northern Indiana, USA from the earliest stages of the pandemic. 1-L grab samples of wastewater were clarified and concentrated. Nucleic acids were extracted from aliquots and analyzed in parallel using the two methods. Synthetic viral nucleic acids were used for method development and generation of add-in standard-curves. Both methods were highly sensitive in detecting SARS-CoV-2 in wastewater, with detection limits as low as 1 copy per 500 mL wastewater. RT-qPCR and RT-dPCR provided essentially identical coefficients of variation (s/[Formula: see text] = 0.15) for triplicate measurements made on wastewater samples taken on 16 days. We also observed a sevenfold decrease in viral load from a grab sample that was frozen at - 80 °C for 92 days compared to results obtained without freezing. Freezing samples before analysis should be discouraged. Finally, we found that treatment with a glycine release buffer resulted in a fourfold inhibition in RT-qPCR signal; treatment with a glycine release buffer also should be discouraged. Despite their prevalence and convenience in wastewater analysis, glycine release and freezing samples severely and additively (~ tenfold) degraded recovery and detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Devin North
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - C Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
16
|
Castro GB, Bernegossi AC, Sousa BJDO, De Lima E Silva MR, Silva FRD, Freitas BLS, Ogura AP, Corbi JJ. Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2160-2199. [PMID: 34310248 DOI: 10.1080/09603123.2021.1949437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This paper includes a systematic review of the SARS-CoV-2 occurrence in environmental aquatic matrices and a critical sanitation analysis. We discussed the interconnection of sanitation services (wastewater, water supply, solid waste, and stormwater drainage) functioning as an important network for controlling the spread of SARS-CoV-2 in waters. We collected 98 studies containing data of the SARS-CoV-2 occurrence in aquatic matrices around the world, of which 40% were from developing countries. Alongside a significant number of people infected by the virus, developing countries face socioeconomic deficiencies and insufficient public investment in infrastructure. Therefore, our study focused on highlighting solutions to provide sanitation in developing countries, considering the virus control in waters by disinfection techniques and sanitary measures, including alternatives for the vulnerable communities. The need for multilateral efforts to improve the universal coverage of sanitation services demands urgent attention in a pandemic scenario.
Collapse
Affiliation(s)
- Gleyson B Castro
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline C Bernegossi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno José de O Sousa
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | - Fernando R Da Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Luíza S Freitas
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Allan P Ogura
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- PPG-SEA and CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Juliano J Corbi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
17
|
SARS-CoV-2 Surveillance in Belgian Wastewaters. Viruses 2022; 14:v14091950. [PMID: 36146757 PMCID: PMC9506219 DOI: 10.3390/v14091950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Wastewater-based surveillance was conducted by the national public health authority to monitor SARS-CoV-2 circulation in the Belgian population. Over 5 million inhabitants representing 45% of the Belgian population were monitored throughout 42 wastewater treatment plants for 15 months comprising three major virus waves. During the entire period, a high correlation was observed between the daily new COVID-19 cases and the SARS-CoV-2 concentration in wastewater corrected for rain impact and covered population size. Three alerting indicators were included in the weekly epidemiological assessment: High Circulation, Fast Increase, and Increasing Trend. These indicators were computed on normalized concentrations per individual treatment plant to allow for a comparison with a reference period as well as between analyses performed by distinct laboratories. When the indicators were not corrected for rain impact, rainy events caused an underestimation of the indicators. Despite this negative impact, the indicators permitted us to effectively monitor the evolution of the fourth virus wave and were considered complementary and valuable information to conventional epidemiological indicators in the weekly wastewater reports communicated to the National Risk Assessment Group.
Collapse
|
18
|
Colombo VC, Sluydts V, Mariën J, Vanden Broecke B, Van Houtte N, Leirs W, Jacobs L, Iserbyt A, Hubert M, Heyndrickx L, Goris H, Delputte P, De Roeck N, Elst J, Ariën KK, Leirs H, Gryseels S. SARS-CoV-2 surveillance in Norway rats (Rattus norvegicus) from Antwerp sewer system, Belgium. Transbound Emerg Dis 2022; 69:3016-3021. [PMID: 34224205 PMCID: PMC8447303 DOI: 10.1111/tbed.14219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 human-to-animal transmission can lead to the establishment of novel reservoirs and the evolution of new variants with the potential to start new outbreaks in humans. We tested Norway rats inhabiting the sewer system of Antwerp, Belgium, for the presence of SARS-CoV-2 following a local COVID-19 epidemic peak. In addition, we discuss the use and interpretation of SARS-CoV-2 serological tests on non-human samples. Between November and December 2020, Norway rat oral swabs, faeces and tissues from the sewer system of Antwerp were collected to be tested by RT-qPCR for the presence of SARS-CoV-2. Serum samples were screened for the presence of anti-SARS-CoV-2 IgG antibodies using a Luminex microsphere immunoassay (MIA). Samples considered positive were then checked for neutralizing antibodies using a conventional viral neutralization test (cVNT). The serum of 35 rats was tested by MIA showing three potentially positive sera that were later negative by cVNT. All tissue samples of 39 rats analysed tested negative for SARS-CoV-2 RNA. This is the first study that evaluates SARS-CoV-2 infection in urban rats. We can conclude that the sample of rats analysed had never been infected with SARS-CoV-2. However, monitoring activities should continue due to the emergence of new variants prone to infect Muridae rodents.
Collapse
Affiliation(s)
- Valeria Carolina Colombo
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Vincent Sluydts
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Joachim Mariën
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Bram Vanden Broecke
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Natalie Van Houtte
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Wannes Leirs
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Lotte Jacobs
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Arne Iserbyt
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Marine Hubert
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Leo Heyndrickx
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Hanne Goris
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Peter Delputte
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Naomi De Roeck
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Joris Elst
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Kevin K. Ariën
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Herwig Leirs
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Sophie Gryseels
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- OD Taxonomy and PhylogenyRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| |
Collapse
|
19
|
Bertels X, Demeyer P, Van den Bogaert S, Boogaerts T, van Nuijs ALN, Delputte P, Lahousse L. Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153290. [PMID: 35066048 PMCID: PMC8772136 DOI: 10.1016/j.scitotenv.2022.153290] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 04/15/2023]
Abstract
Wastewater-based surveillance (WBS) for SARS-CoV-2 RNA is a promising complementary approach to monitor community viral circulation. A myriad of factors, however, can influence RNA concentrations in wastewater, impeding its epidemiological value. This article aims to provide an overview and discussion of factors up to the sampling stage that impact SARS-CoV-2 RNA concentration estimates in wastewater. To this end, a systematic review was performed in three databases (MEDLINE, Web of Science and Embase) and two preprint servers (MedRxiv and BioRxiv). Two authors independently screened and selected articles published between January 1, 2019 and May 4, 2021. A total of 22 eligible articles were included in this systematic review. The following factors up to sampling were identified to have an influence on SARS-CoV-2 RNA concentrations in wastewater and its interpretation: (i) shedding-related factors, including faecal shedding parameters (i.e. shedding pattern, recovery, rate, and load distribution), (ii) population size, (iii) in-sewer factors, including solid particles, organic load, travel time, flow rate, wastewater pH and temperature, and (iv) sampling strategy. In conclusion, factors influencing SARS-CoV-2 RNA concentration estimates in wastewater were identified and research gaps were discussed. The identification of these factors supports the need for further research on WBS for COVID-19.
Collapse
Affiliation(s)
- Xander Bertels
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Phaedra Demeyer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Siel Van den Bogaert
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Tim Boogaerts
- Toxicological Centre, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Alexander L N van Nuijs
- Toxicological Centre, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Lies Lahousse
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
Boogaerts T, Van den Bogaert S, Van Poelvoorde LAE, El Masri D, De Roeck N, Roosens NHC, Lesenfants M, Lahousse L, Van Hoorde K, van Nuijs ALN, Delputte P. Optimization and Application of a Multiplex Digital PCR Assay for the Detection of SARS-CoV-2 Variants of Concern in Belgian Influent Wastewater. Viruses 2022; 14:610. [PMID: 35337017 PMCID: PMC8953730 DOI: 10.3390/v14030610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Since the beginning of the COVID-19 pandemic, the wastewater-based epidemiology (WBE) of SARS-CoV-2 has been used as a complementary indicator to follow up on the trends in the COVID-19 spread in Belgium and in many other countries. To further develop the use of WBE, a multiplex digital polymerase chain reaction (dPCR) assay was optimized, validated and applied for the measurement of emerging SARS-CoV-2 variants of concern (VOC) in influent wastewater (IWW) samples. Key mutations were targeted in the different VOC strains, including SΔ69/70 deletion, N501Y, SΔ241 and SΔ157. The presented bioanalytical method was able to distinguish between SARS-CoV-2 RNA originating from the wild-type and B.1.1.7, B.1.351 and B.1.617.2 variants. The dPCR assay proved to be sensitive enough to detect low concentrations of SARS-CoV-2 RNA in IWW since the limit of detection of the different targets ranged between 0.3 and 2.9 copies/µL. This developed WBE approach was applied to IWW samples originating from different Belgian locations and was able to monitor spatio-temporal changes in the presence of targeted VOC strains in the investigated communities. The present dPCR assay developments were realized to bring added-value to the current national WBE of COVID-19 by also having the spatio-temporal proportions of the VoC in presence in the wastewaters.
Collapse
Affiliation(s)
- Tim Boogaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Siel Van den Bogaert
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (D.E.M.); (N.D.R.); (P.D.)
| | - Laura A. E. Van Poelvoorde
- Scientific Directorate of Biological Health Risks, Service Transerversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium; (L.A.E.V.P.); (N.H.C.R.)
| | - Diala El Masri
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (D.E.M.); (N.D.R.); (P.D.)
| | - Naomi De Roeck
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (D.E.M.); (N.D.R.); (P.D.)
| | - Nancy H. C. Roosens
- Scientific Directorate of Biological Health Risks, Service Transerversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium; (L.A.E.V.P.); (N.H.C.R.)
| | - Marie Lesenfants
- Scientific Directorate of Epidemiology and Public Health, Service Epidemiology of Infectious Diseases, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium;
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Koenraad Van Hoorde
- Scientific Directorate of Infectious Diseases in Humans, Service Foodborne Pathogens, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium;
| | | | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (D.E.M.); (N.D.R.); (P.D.)
| |
Collapse
|
21
|
Daleiden B, Niederstätter H, Steinlechner M, Wildt S, Kaiser M, Lass-Flörl C, Posch W, Fuchs S, Pfeifer B, Huber A, Oberacher H. Wastewater surveillance of SARS-CoV-2 in Austria: development, implementation, and operation of the Tyrolean wastewater monitoring program. JOURNAL OF WATER AND HEALTH 2022; 20:314-328. [PMID: 36366989 DOI: 10.2166/wh.2022.218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Wastewater-based epidemiology (WBE) is an effective approach for tracking information on spatial distribution and temporal trends of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the community level. Herein, the development, implementation, and operation of the wastewater monitoring program serving Tyrol - a federal province of Austria - are described. The development of this program was initiated by Tyrolean health authorities at the end of the first phase of the Coronavirus disease 2019 (COVID-19) pandemic (May 2020). In close co-operation with the water sector and academic institutions, efficient and effective workflows and processes for wastewater surveillance were established. The monitoring program went into operation in November 2020. By the end of July 2021, a total of 5,270 wastewater influent samples collected at 43 sites were analyzed. The monitoring program provided valuable insights into the development of the pandemic situation in Tyrol and fulfilled several tasks that are of importance in different phases of the pandemic. It represented an early-warning system, provided independent confirmation of temporal trends in COVID-19 prevalence, enabled the assessment of the effectiveness of measures, alerted about bursts of disease activity, and provided evidence for the absence of COVID-19. These findings underline the importance of establishing national wastewater monitoring programs as a complementary source of information for efficient and effective pandemic management.
Collapse
Affiliation(s)
- Beatrice Daleiden
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria E-mail: ; The first two authors contributed equally to this work
| | - Harald Niederstätter
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria E-mail: ; The first two authors contributed equally to this work
| | - Martin Steinlechner
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria E-mail:
| | - Stefan Wildt
- Amt der Tiroler Landesregierung, Innsbruck, Austria
| | | | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Fuchs
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Andreas Huber
- State Institute for Integrated Care Tyrol, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria E-mail:
| |
Collapse
|
22
|
Barbosa MRF, Garcia SC, Bruni ADC, Machado FS, de Oliveira RX, Dropa M, da Costa AC, Leal E, Brandão CJ, da Silva RLO, Iko BY, Kondo VKM, de Araújo RS, da Silveira VB, de Andrade TM, Nunes DR, Janini LMR, Braconi CT, Maricato JT, Sato MIZ. One-year surveillance of SARS-CoV-2 in wastewater from vulnerable urban communities in metropolitan São Paulo, Brazil. JOURNAL OF WATER AND HEALTH 2022; 20:471-490. [PMID: 36366999 DOI: 10.2166/wh.2022.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The current COVID-19 pandemic has emphasized the vulnerability of communities living in the urban outskirts and informal settlements. The lack of reliable COVID-19 case data highlights the importance and application of wastewater-based epidemiology. This study aimed to monitor the COVID-19 trends in four vulnerable urban communities (slums and low-income neighborhoods) in metropolitan São Paulo by assessing the SARS-CoV-2 RNA viral load in wastewater. We analyzed 160 samples from May 2020 to June 2021 with weekly or fortnightly samplings. The samples were ultracentrifuged with glycine elution and quantified by N1/N2 SARS-CoV-2 RT-qPCR. The results of positivity were 100% (Paraisópolis, Heliópolis and Cidade Tiradentes) and 76.9% (Vila Brasilândia). The new case numbers of COVID-19, counted from the onset of symptoms, positively correlated with SARS-CoV-2 N1 viral loads from the two largest communities (p<0.001). SARS-CoV-2 infectivity was tested in Vero E6 cells after concentration with the two techniques, ultrafiltration (Centricon® Plus-70 10 kDa) and sucrose cushion ultracentrifugation, but none of the evaluated samples presented positive results. Next-generation sequencing (NGS) analysis from samples collected in March and August 2021 revealed the presence of the clade 20 J (lineage P.1) belonging to the most prevalent circulating variant in the country. Our results showed that wastewater surveillance data can be used as complementary indicators to monitor the dynamics and temporal trends of COVID-19. The infectivity test results strengthened the evidence of low risk of infection associated with SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Mikaela Renata Funada Barbosa
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | - Suzi Cristina Garcia
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | - Antonio de Castro Bruni
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | | | - Roberto Xavier de Oliveira
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | - Milena Dropa
- School of Public Health, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Elcio Leal
- Institute of Biological Sciences, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Carlos Jesus Brandão
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | - Renan Lourenço Oliveira da Silva
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | - Beatriz Yukie Iko
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | - Victor Kenji Matsuoka Kondo
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | - Ronalda Silva de Araújo
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| | - Vanessa Barbosa da Silveira
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, (UNIFESP), São Paulo, Brazil
| | - Tatiane Montes de Andrade
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, (UNIFESP), São Paulo, Brazil
| | - Danilo Rosa Nunes
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, (UNIFESP), São Paulo, Brazil
| | - Luiz Mário Ramos Janini
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, (UNIFESP), São Paulo, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, (UNIFESP), São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, (UNIFESP), São Paulo, Brazil
| | - Maria Inês Zanoli Sato
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, CEP 05459-900, Brazil E-mail:
| |
Collapse
|
23
|
Bhattarai B, Sahulka SQ, Podder A, Hong S, Li H, Gilcrease E, Beams A, Steed R, Goel R. Prevalence of SARS-CoV-2 genes in water reclamation facilities: From influent to anaerobic digester. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148905. [PMID: 34271386 PMCID: PMC8259039 DOI: 10.1016/j.scitotenv.2021.148905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 05/02/2023]
Abstract
Several treatment plants were sampled for influent, primary clarifier sludge, return activated sludge (RAS), and anaerobically digested sludge throughout nine weeks during the summer of the COVID-19 pandemic. Primary clarifier sludge had a significantly higher number of SARS-CoV-2 gene copy number per liter (GC/L) than other sludge samples, within a range from 1.0 × 105 to 1.0 × 106 GC/L. Gene copy numbers in raw influent significantly correlated with gene copy numbers in RAS in Silver Creek (p-value = 0.007, R2 = 0.681) and East Canyon (p-value = 0.009, R2 = 0.775) WRFs; both of which lack primary clarifiers or industrial pretreatment processes. This data indicates that SARS-CoV-2 gene copies tend to partition into primary clarifier sludges, at which point a significant portion of them are removed through sedimentation. Furthermore, it was found that East Canyon WRF gene copy numbers in influent were a significant predictor of daily cases (p-value = 0.0322, R2 = 0.561), and gene copy numbers in RAS were a significant predictor of weekly cases (p-value = 0.0597, R2 = 0.449). However, gene copy numbers found in primary sludge samples from other plants significantly predicted the number of COVID-19 cases for the following week (t = 2.279) and the week after that (t = 2.122) respectively. These data indicate that SARS-CoV-2 extracted from WRF biosolids may better suit epidemiological monitoring that exhibits a time lag. It also supports the observation that primary sludge removes a significant portion of SARS-CoV-2 marker genes. In its absence, RAS can also be used to predict the number of COVID-19 cases due to direct flow through from influent. This research represents the first of its kind to thoroughly examine SARS-CoV-2 gene copy numbers in biosolids throughout the wastewater treatment process and the relationship between primary, return activated, and anaerobically digested sludge and reported positive COVID-19 cases.
Collapse
Affiliation(s)
- Bishav Bhattarai
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | | | - Aditi Podder
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Soklida Hong
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Hanyan Li
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Eddie Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Alex Beams
- Department of Mathematics, University of Utah, UT, USA
| | - Rebecca Steed
- Department of Geography, University of Utah, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, UT, USA.
| |
Collapse
|
24
|
Krivoňáková N, Šoltýsová A, Tamáš M, Takáč Z, Krahulec J, Ficek A, Gál M, Gall M, Fehér M, Krivjanská A, Horáková I, Belišová N, Bímová P, Škulcová AB, Mackuľak T. Mathematical modeling based on RT-qPCR analysis of SARS-CoV-2 in wastewater as a tool for epidemiology. Sci Rep 2021; 11:19456. [PMID: 34593871 PMCID: PMC8484274 DOI: 10.1038/s41598-021-98653-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerges to scientific research and monitoring of wastewaters to predict the spread of the virus in the community. Our study investigated the COVID-19 disease in Bratislava, based on wastewater monitoring from September 2020 until March 2021. Samples were analyzed from two wastewater treatment plants of the city with reaching 0.6 million monitored inhabitants. Obtained results from the wastewater analysis suggest significant statistical dependence. High correlations between the number of viral particles in wastewater and the number of reported positive nasopharyngeal RT-qPCR tests of infected individuals with a time lag of 2 weeks/12 days (R2 = 83.78%/R2 = 52.65%) as well as with a reported number of death cases with a time lag of 4 weeks/27 days (R2 = 83.21%/R2 = 61.89%) was observed. The obtained results and subsequent mathematical modeling will serve in the future as an early warning system for the occurrence of a local site of infection and, at the same time, predict the load on the health system up to two weeks in advance.
Collapse
Affiliation(s)
- Naďa Krivoňáková
- Institute of Information Engineering, Automation, and Mathematics, Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Šoltýsová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravska Cesta 9, 84505, Bratislava, Slovakia
| | - Michal Tamáš
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic.
| | - Zdenko Takáč
- Institute of Information Engineering, Automation, and Mathematics, Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Ján Krahulec
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Marián Gall
- Institute of Information Engineering, Automation, and Mathematics, Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Miroslav Fehér
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Anna Krivjanská
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Ivana Horáková
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Noemi Belišová
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Paula Bímová
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Andrea Butor Škulcová
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Faculty of Chemistry and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| |
Collapse
|