1
|
Gordi Z, Teilaghi S. Novel Ni/Fe-MIL-53@ZnO nanocomposite for efficient photodegradation of aflatoxins G1 and G2. Sci Rep 2025; 15:11163. [PMID: 40169676 PMCID: PMC11962079 DOI: 10.1038/s41598-025-94863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
The photodegradation of aflatoxins G1 and G2 (AFG1 and AFG2) is crucial for mitigating the health risks associated with these potent mycotoxins, as it enhances food safety and protects human health by reducing their persistence and bioavailability in contaminated environments. This study investigates the efficient photodegradation of AFG1 and AFG2 using a novel Bimetallic MIL-53 (Al, Ni)/ZnO nanoparticle composite as a photocatalyst. The catalyst was synthesized in two stages: Chemical synthesis of zinc oxide nanoparticles (ZnO NPs) and hydrothermal synthesis to form the composite. Optimization of a ZnO-based photocatalyst, synthesized by varying proportions of NiCl₂·6H₂O and Al(NO₃)₃·9H₂O, revealed that a 0.547 g:0.864 g ratio maximized photocatalytic degradation of AFG1 and AFG2. Through experimental design, the degradation process was optimized, identifying pH 4.1, 109 mg of photocatalyst, 35 mg L-1 of AF concentration, and 3 mM of H2O2 concentration as optimal conditions. The predicted removal efficiencies for AFG1 and AFG2 were 97.43% and 98.69%, respectively. Kinetic studies utilizing the pseudo-first-order rate equation revealed rate constants of 0.058 ± 0.002 and 0.060 ± 0.003 min-1 for AFG1 and AFG2, respectively. Additionally, the half-life times for AFG1 and AFG2 photodegradation were found to be 11.95 and 11.55 min, respectively. Catalyst reuse investigations demonstrated that the composite could be reused at least 5 times without significant loss of efficacy. These findings highlight the effectiveness of the Bimetallic MIL-53 (Al, Ni)/ZnO NPs composite as a stable and efficient photocatalyst for the removal of AFG1 and AFG2 under mild conditions, showcasing its potential for practical applications in environmental remediation processes.
Collapse
Affiliation(s)
- Zinat Gordi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Shiva Teilaghi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
2
|
Gu J, Li X, Ma Y, Yang T, Zhang R, Zhou W, Wang H, Jiang J. Unveiling the synergistic interface effects of Ag-deposited Fe 2O 3/biochar catalysts to enhance wastewater degradation. NANOSCALE 2025; 17:6741-6756. [PMID: 39960429 DOI: 10.1039/d4nr04825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Photo-Fenton reaction is a sustainable and cost-effective wastewater treatment strategy capable of removing persistent organic pollutants. We utilized biochar (referred to as C) as a key component to enhance catalytic efficiency. Using a biomimetic templating method, we synthesized Fe2O3 on the biochar and deposited Ag on its surface, resulting in the Ag@Fe2O3/C composite material (referred to as AFC). In the photo-Fenton system, the AFC material achieved a 99% degradation rate of methylene blue (MB) within 30 minutes, which is 8.5 times and 6.4 times higher than that of photocatalysis and Fenton reaction alone, respectively. Using Escherichia coli as a model, AFC achieved a 100% bactericidal rate within 6 minutes in the photo-Fenton system. This material effectively treated aquaculture wastewater, removing most impurities and colorants. By introducing Ag nanoparticles as electron transfer centers, the electron transfer efficiency was enhanced, accelerating the catalytic reaction and improving the composite's adsorption capacity for H2O2 and organic pollutants. Analysis revealed the migration pathways of photogenerated electrons and holes in AFC, providing a theoretical foundation and practical direction for the design of future photocatalytic materials and the treatment of organic pollutants.
Collapse
Affiliation(s)
- Jialin Gu
- College of Science, Northwest A&F University, Shaanxi 712100, China.
| | - Xinshang Li
- College of Science, Northwest A&F University, Shaanxi 712100, China.
| | - Yanping Ma
- College of Science, Northwest A&F University, Shaanxi 712100, China.
| | - Tianyi Yang
- College of Science, Northwest A&F University, Shaanxi 712100, China.
| | - Rui Zhang
- College of Science, Northwest A&F University, Shaanxi 712100, China.
| | - Wenquan Zhou
- College of Science, Northwest A&F University, Shaanxi 712100, China.
| | - He Wang
- College of Science, Northwest A&F University, Shaanxi 712100, China.
| | - Jiangang Jiang
- College of Science, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
3
|
Fu J, Xiao S, Cao J, Liang Z, Chen J, Jiang Y, Xing M. Mass Transfer-Enhanced Photothermal Membranes with Synergistic Light Utilization for High-Turbidity Wastewater Purification. Angew Chem Int Ed Engl 2025; 64:e202421800. [PMID: 39676064 DOI: 10.1002/anie.202421800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The photo-Fenton process faces significant limitations in treating high-turbidity, colored wastewater due to light attenuation and impurity interference (blocked mass transfer). To address these issues, we developed a suspended photothermal Fenton membrane by loading a photothermal catalyst on a hydrophobically modified cotton filter paper, enabling precise suspension 1 mm below the water surface. This design achieved 89.49 % light utilization and high chemical oxygen demand (COD) removal, even in wastewater with extreme chromaticity (10 multiples) and turbidity (703 NTU). The enhanced photothermal conversion accelerated molybdenum co-catalyzed Fenton reactions and improved peroxymonosulfate (PMS) activation, maintaining over 90 % phenol removal for 15 days. Mechanistic simulations revealed improved mass transfer of reactive oxygen species (ROS) and pollutants at the solid-liquid interface, with PMS diffusion identified as the rate-limiting step. The membrane resisted fouling from suspended solids and maintained stable operation in soil-containing solutions for 10 days. This innovative approach offers an efficient solution for degrading pollutants in dark-colored, high-turbidity wastewater, overcoming traditional process limitations.
Collapse
Affiliation(s)
- Jiangchen Fu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shaoze Xiao
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiazhen Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhiyan Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jiabin Chen
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yue Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Ren G, Zhang J, Li S, Zhang L, Shao C, Wang X, Bai H. Z-scheme heterojunction composed of Fe-doped g-C 3N 4 and Bi 2MoO 6 for photo-fenton degradation of antibiotics over a wide pH range: Activity and toxicity assessment. ENVIRONMENTAL RESEARCH 2024; 252:118886. [PMID: 38583659 DOI: 10.1016/j.envres.2024.118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
In photo-Fenton technology, the narrower pH range limits its practical application for antibiotic wastewater remediation. Therefore, in this study, a Z-scheme heterojunction photo-Fenton catalyst was constructed by Fe-doped graphite-phase carbon nitride in combination with bismuth molybdate for the degradation of typical antibiotics. Fe doping can shorten the band gap and increase visible-light absorption. Simultaneously, the constructed Z-scheme heterojunction provides a better charge transfer pathway for the photo-Fenton reaction. Within 30 min, Fe3CN/BMO-3 removed 95.54% of tetracycline hydrochloride (TC), and its remarkable performance was the higher Fe3+/Fe2+ conversion efficiency through the decomposition of H2O2. The Fe3CN/BMO-3 catalyst showed remarkable photo-Fenton degradation performance in a wide pH range (3.0-11.0), and it also had good stability in the treatment of TC wastewater. Furthermore, the order of action of the active species was h+ > ·O2- > 1O2 > ·OH, and the toxicity assessment suggested that Fe3CN/BMO-3 was effective in reducing the biotoxicity of TC. The catalyst proved to be an economically feasible and applicable material for antibiotic photo-Fenton degradation, and this study provides another perspective on the application of elemental doping and constructed heterojunction photo-Fenton technology for antibiotic water environmental remediation.
Collapse
Affiliation(s)
- Guangqin Ren
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China.
| | - Shurui Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Chen Shao
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Xinyan Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Haina Bai
- School of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| |
Collapse
|
5
|
Xiao J, Guo S, Wang D, An Q. Fenton-Like Reaction: Recent Advances and New Trends. Chemistry 2024; 30:e202304337. [PMID: 38373023 DOI: 10.1002/chem.202304337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The Fenton reaction refers to the reaction in which ferrous ions (Fe2+) produce hydroxyl radicals and other reactive oxidizing substances by decomposing hydrogen peroxide (H2O2). This paper reviews the mechanism, application system, and materials employed in the Fenton reaction including conventional homogeneous and non-homogeneous Fenton reactions as well as photo-, electrically-, ultrasonically-, and piezoelectrically-triggered Fenton reactions, and summarizes the applications in the degradation of soil oil pollutions, landfill leachate, textile wastewater, and antibiotics from a practical point of view. The mineralization paths of typical pollutant are elucidated with relevant case studies. The paper concludes with a summary and outlook of the further development of Fenton-like reactions.
Collapse
Affiliation(s)
- Jiaying Xiao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| | - Sufang Guo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| | - Dong Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd
| | - Qi An
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| |
Collapse
|
6
|
Du H, Hu X, Huang Y, Bai Y, Fei Y, Gao M, Li Z. A review of copper-based Fenton reactions for the removal of organic pollutants from wastewater over the last decade: different reaction systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27609-27633. [PMID: 38589591 DOI: 10.1007/s11356-024-33220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
In recent years, as global industrialization has intensified, environmental pollution has become an increasingly serious problem. Improving water quality and achieving wastewater purification remain top priorities for environmental health initiatives. The Fenton process is favored by researchers due to its high efficiency and ease of operation. Central to the Fenton process is a catalyst used to activate hydrogen peroxide, rapidly degrading pollutants, improving water quality. Among various catalysts developed, copper-based catalysts have attracted considerable attention due to their affordability, high activity, and stable performance. Based on this, this paper reviews the development of copper-based Fenton systems over the past decade. It mainly involves the research and application of copper-based catalysts in different Fenton systems, including photo-Fenton, electro-Fenton, microwave-Fenton, and ultrasonic-Fenton. This review provides a fundamental reference for the subsequent studies of copper-based Fenton systems, contributing to the goal of transitioning these systems from laboratory research into practical environmental applications.
Collapse
Affiliation(s)
- Huixian Du
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Yao Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yaxing Bai
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yuhuan Fei
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Meng Gao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Zilong Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
7
|
Ren X, Xie Z, Wang H, Wang L, Gao Z, Ma H, Zhang N, Fan D, Wei Q, Ju H. Ternary electrochemiluminescence quenching effects of CuFe 2O 4@PDA-MB towards self-enhanced Ru(dcbpy) 32+ functionalized 2D metal-organic layer and application in carcinoembryonic antigen immunosensing. Anal Chim Acta 2024; 1287:342091. [PMID: 38182343 DOI: 10.1016/j.aca.2023.342091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Carcinoembryonic antigen (CEA) is a significant glycosylated protein, and the unusual expression of CEA in human serum is used as a tumor marker in the clinical diagnosis of many cancers. Although scientists have reported many ways to detect CEA in recent years, such as electrochemistry, photoelectrochemistry, and fluorescence, their operation is complex and sensitivity is average. Therefore, finding a convenient method to accurately detect CEA is significance for the prevention of malignant tumors. With high sensitivity, quick reaction, and low background, electrochemiluminescence (ECL) has emerged as an essential method for the detection of tumor markers in blood. RESULTS In this work, a "signal on-off" ECL immunosensor for sensitive analysis of CEA ground on the ternary extinction effects of CuFe2O4@PDA-MB towards a self-enhanced Ru(dcbpy)32+ functionalized metal-organic layer [(Hf)MOL-Ru-PEI-Pd] was prepared. The high ECL efficiency of (Hf)MOL-Ru-PEI-Pd originated from the dual intramolecular self-catalysis, including intramolecular co-reaction between polyethylenimine (PEI) and Ru(dcbpy)32+. At the same time, loading Pd NPs onto (Hf)MOL-Ru-PEI could not only improve the electron transfer ability of (Hf)MOL-Ru-PEI, but also provide more active sites for the reaction of Ru(dcbpy)32+ and PEI. In the presence of CEA, CuFe2O4@PDA-MB-Ab2 efficiently quenches the excited states of (Hf)MOL-Ru-PEI-Pd by PDA, Cu2+, and methylene blue (MB) via energy and electron transfer, leading to an ECL signal decrease. Under optimal conditions, the proposed CEA sensing strategy showed satisfactory properties ranging from 0.1 pg mL-1 to 100 ng mL-1 with a detection limit of 20 fg mL-1. SIGNIFICANCE The (Hf)MOL-Ru-PEI-Pd and CuFe2O4@PDA-MB were prepared in this work might open up innovative directions to synthesize luminescence-functionalized MOLs and effective quencher. Besides, the ECL quenching mechanism of Ru(dcbpy)32+ by MB was successfully explained by the inner filter effect (ECL-IFE). At last, the proposed immunosensor exhibits excellent repeatability, stability, and selectivity, and may provide an attractive way for CEA and other disease markers determination.
Collapse
Affiliation(s)
- Xiang Ren
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China; Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Zuoxun Xie
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huan Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lijun Wang
- Shandong Institute of Mechanical Design and Research, School of Mechanical Engineering, QiLu University of Technology (Shandong Academy of Sciences), PR China
| | - Zhongfeng Gao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Nuo Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dawei Fan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Monfort O, Madhusudhan A, Motola M. Controversial mechanism of simultaneous photocatalysis and Fenton-based processes: additional effect or synergy? Chem Commun (Camb) 2024; 60:374-383. [PMID: 38099627 DOI: 10.1039/d3cc03992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Many published articles have reported the advantages of coupling photocatalysis and Fenton-based processes for environmental remediation purposes, especially wastewaters treatment, but without providing detailed discussion on how and why the resulting process is better, thus leading to misconception about their synergy. In this work, the context of the water pollution is presented along with the pros and cons of individual photocatalysis and Fenton-based processes. The simultaneous triggering of these two advanced oxidation processes is critically discussed from both performance and mechanism sides since additional effect and synergy are often misunderstood in the literature. Insights into research approaches to clarify the synergistic mechanism between photocatalysis and Fenton-based processes are also provided. One of the key features is to assess the separated contribution of the individual processes and also to elucidate the charge carriers' dynamics at the surface of the catalyst. The aim of this work is to inform scientists about the complexity of simultaneously triggered photocatalysis and Fenton-based processes but also to highlight the potential development of a new generation of catalysts that might be integrated to current wastewater treatment technology to achieve higher efficiency and their implications in the circular economy of water.
Collapse
Affiliation(s)
- Olivier Monfort
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovicova 6, Mlynska Dolina, 84215 Bratislava, Slovakia.
| | - Arshitha Madhusudhan
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovicova 6, Mlynska Dolina, 84215 Bratislava, Slovakia.
| | - Martin Motola
- Comenius University Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovicova 6, Mlynska Dolina, 84215 Bratislava, Slovakia.
| |
Collapse
|
9
|
Wang Z, Cheng Y, Wang C, Guo R, You J, Zhang H. Optimizing the performance of Fe-based metal-organic frameworks in photo-Fenton processes: Mechanisms, strategies and prospects. CHEMOSPHERE 2023; 339:139673. [PMID: 37536536 DOI: 10.1016/j.chemosphere.2023.139673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Contaminants in water pose a significant challenge as they are harmful and difficult to treat using conventional methods. Therefore, various new methods have been proposed to degrade organic pollutants in water, among which the photo-Fenton process is considered promising. In recent years, Fe-based metal-organic frameworks (Fe-MOFs) have gained attention and found applications in different fields due to their cost-effectiveness, non-toxic nature, and unique porous structure. Many researchers have applied Fe-MOFs to the photo-Fenton process in recent years and achieved good results. This review focuses on describing different strategies for enhancing the performance of Fe-MOFs in the photo-Fenton process. Also, the mechanism of MOF in the photo-Fenton process is described in detail. Finally, prospects for the application of Fe-MOFs in photo-Fenton systems for the treatment of organic pollutants in water are presented. This study provides information and ideas for researchers to use Fe-MOFs to remove organic pollutants from water by photo-Fenton process.
Collapse
Affiliation(s)
- Zhaobo Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ying Cheng
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Chen Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Hangzhou Zhang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
10
|
Lei Y, Huo D, Liu H, Cheng S, Ding M, Jiang B, Zhang F, Zhang Y, Gao G. An Investigation of PPy@1T/2H MoS 2 Composites with Durable Photothermal-Promoted Effect in Photo-Fenton Degradation of Methylene Blue and in Water Evaporation. Polymers (Basel) 2023; 15:3900. [PMID: 37835949 PMCID: PMC10575121 DOI: 10.3390/polym15193900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
MoS2 has garnered considerable attention as an exceptional co-catalyst that is capable of significantly enhancing the efficiency of H2O2 decomposition in advanced oxidation processes (AOPs). This improvement allows for a reduction in the required amounts of H2O2 and Fe2+. In this study, we investigated the cyclic durability of photo-Fenton catalysts, focusing on the degradation of pollutants through the introduction of PPy into heterogeneous 1T-2H MoS2 units. The resulting photothermal-Fenton catalysts, comprising non-ferrous Fenton catalysts, demonstrated excellent degradation performance for simulated pollutants. In comparison with 1T-2H MoS2, the PPy@1T-2H MoS2 composite exhibited remarkable stability and photothermal enhancement in the photo-Fenton degradation of methylene blue (MB) under visible light irradiation. The photo-Fenton reaction efficiently degraded contaminants, achieving 99% removal within 5 min and 99.8% removal within 30 min. Moreover, the co-catalyst complex displayed enhanced cyclic stability during the photo-Fenton reaction, with a contaminant removal efficiency of 92%, even after the 13th cyclic test. The combined effects of PPy and 1T-2H MoS2 demonstrated improved efficiency in both photocatalytic and photo-Fenton catalytic reactions. Furthermore, PPy@1T-2H MoS2 exhibited outstanding performance in the photothermal evaporation of water, achieving an efficiency of 86.3% under one solar irradiation.
Collapse
Affiliation(s)
- Yanhua Lei
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; (D.H.); (H.L.); (M.D.); (B.J.); (Y.Z.)
| | - Da Huo
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; (D.H.); (H.L.); (M.D.); (B.J.); (Y.Z.)
| | - Hui Liu
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; (D.H.); (H.L.); (M.D.); (B.J.); (Y.Z.)
| | - Sha Cheng
- Qingdao Product Quality Testing Research Institute, Qingdao 266061, China;
| | - Mengchao Ding
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; (D.H.); (H.L.); (M.D.); (B.J.); (Y.Z.)
| | - Bochen Jiang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; (D.H.); (H.L.); (M.D.); (B.J.); (Y.Z.)
| | - Fei Zhang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; (D.H.); (H.L.); (M.D.); (B.J.); (Y.Z.)
| | - Yuliang Zhang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; (D.H.); (H.L.); (M.D.); (B.J.); (Y.Z.)
| | - Guanhui Gao
- Material Science and Nano engineering Department, Rice University, Houston, TX 77005, USA;
| |
Collapse
|
11
|
Luo J, Luo X, Gan Y, Xu X, Xu B, Liu Z, Ding C, Cui Y, Sun C. Advantages of Bimetallic Organic Frameworks in the Adsorption, Catalysis and Detection for Water Contaminants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2194. [PMID: 37570512 PMCID: PMC10421224 DOI: 10.3390/nano13152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
The binary metal organic framework (MOF) is composed of two heterometallic ions bonded to an organic ligand. Compared with monometallic MOFs, bimetallic MOFs have greatly improved in terms of structure, porosity, active site, adsorption, selectivity, and stability, which has attracted wide attention. At present, many effective strategies have been designed for the synthesis of bimetallic MOF-based nanomaterials with specific morphology, structure, and function. The results show that bimetallic MOF-based nanocomposites could achieve multiple synergistic effects, which will greatly improve their research in the fields of adsorption, catalysis, energy storage, sensing, and so on. In this review, the main preparation methods of bimetallic MOFs-based materials are summarized, with emphasis on their applications in adsorption, catalysis, and detection of target pollutants in water environments, and perspectives on the future development of bimetallic MOFs-based nanomaterials in the field of water are presented.
Collapse
Affiliation(s)
- Jun Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiao Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiaoming Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Cheng Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Song M, Han J, Wang Y, Chen L, Chen Y, Liao X. Effects and Mechanisms of Cu Species in Fe-MOFs on Fenton-Like Catalytic Activity and Stability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37464747 DOI: 10.1021/acsami.3c05928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Fe-based MOFs (Fe-MOFs) are deemed promising Fenton-like catalysts due to their well-developed pores and accessible active sites. However, their inferior catalytic activity, iron leaching, and low H2O2 utilization always hinder their application as Fe-based MOF catalysts. In this work, we manipulated the structure of Fe-oxo nodes in MIL-88B(Fe) via a CuI species substitution method, affording a mixed-valence (Cu-incorporated Fe-MOFs) with highly improved Fenton-like performance. It is found that the CuI serves as a shuttle to promote transfer between FeII/FeIII, inducing the formation of a larger amount of stable FeII sites, which was proven by experimental and DFT calculation results. A linear relationship was observed for the Fenton-like performance and the amount of CuI species for the catalysts. The corresponding value of the •OH formation is 2.17 eV for Cu-incorporated MIL-88B(Fe), which is significantly lower than that of MIL-88B(Fe) (2.69 eV). Meanwhile, the enriched CuI species suppress Fe species leaching during the catalytic reaction. The Fe-ion leakage of 0.4Cu@MIL-88B is very tiny (0.01-0.03 mg/L), significantly less than that of MIL-88B (2.00-3.02 mg/L). At the same time, H2O2 utilization for 0.4Cu@ MIL-88B(Fe) is 88%, which is almost 4.4 times that of pure MIL-88B(Fe). This work provides insights into the rational design of Fe-MOFs as promising Fenton-like catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Mengzhen Song
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jingru Han
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Yingzhi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - YanYan Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, China
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
13
|
Chen W, Liu Z, Dai X, Zhao Z, Du B, Zhang K, Ma D, Fan L, Huang X. Transformation of tetracycline by multipurpose Fe-Mn-Cu nano-composite oxide: Dual-synergies and dual-mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131400. [PMID: 37099908 DOI: 10.1016/j.jhazmat.2023.131400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
The interaction between tetracycline (TTC) and mixed metallic oxides remains unclear, and even complexation usually is ignored. This study firstly distinguished the triple functions of adsorption, transformation and complexation in presence of Fe-Mn-Cu nano-composite metallic oxide (FMC) on TTC. Rapid adsorption and faint complexation initiated the transformation that dominated the entire reactions at 180 min, which completed TTC removal (up to 99.04%) synergistically within 48 h. Environmental factors (dosage, pH and coexisting ions) had small influence on TTC removal, which primarily depended on the stable transformation characteristics of FMC. Kinetic models incorporating pseudo-second-order kinetics and transformation reaction kinetics demonstrated that the surface sites of FMC promoted electron transfer process through chemical adsorption and electrostatic attraction. ProtoFit program coupled with characterization methods concluded that Cu-OH was the main reaction site of FMC where the protonated surface favored to generate·O2-. Meanwhile, three metal ions developed simultaneous mediated transformation reactions on TTC in liquid phase, and·O2- induced the production of·OH. The transformed products were subjected to toxicity assessment, which had lost antimicrobial properties toward Escherichia coli. Insights gained from this study can refine the dual mechanisms of multipurpose FMC in solid and liquid phases underlying TTC transformation.
Collapse
Affiliation(s)
- Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu 611830, China
| | - Zhujun Liu
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China.
| | - Xinning Dai
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China
| | - Zhihan Zhao
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China
| | - Bin Du
- Students Innovation and Entrepreneurship Center, Enrollment and Employment Department, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu 611830, China
| | - Dandan Ma
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu 611830, China
| | - Liangqian Fan
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu 611830, China
| | - Xianbin Huang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu 611830, China.
| |
Collapse
|
14
|
Wang FX, Zhang ZW, Wang F, Li Y, Zhang ZC, Wang CC, Yu B, Du X, Wang P, Fu H, Zhao C. Fe-Cu bimetal metal-organic framework for efficient decontamination via Fenton-like process: Synthesis, performance and mechanism. J Colloid Interface Sci 2023; 649:384-393. [PMID: 37354795 DOI: 10.1016/j.jcis.2023.06.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Constructing Fe-Cu bimetal catalysts is an efficient strategy to promote Fe(III)/Fe(II) cycle, whereas there is still a long way to go before fully understanding the role of the Cu in the catalysts. Herein, a new Fe-MOF namely BUC-96(Fe) was fabricated from FeSO4·7H2O, 4,4'-bipyridine (bpy) and 2,5-dihydroxyterephthalic acid (H4dhtp) by both hydrothermal reaction and microwave-assisted method. Also, bimetal BUC-96(FeCu-x) were obtained when the CuSO4 was added into the system identical to the synthesis process of BUC-96(Fe). Series BUC-96 MOFs showed good organics elimination performance via Fenton-like process, where 88.1% (k = 0.0672 min-1) of chloroquine phosphate (CQ, 20 mg/L) was decomposed over pristine BUC-96(Fe) within 30 min. Interestingly, nearly 100% CQ was degraded over BUC-96(FeCu-5) as catalyst under the identical conditions within 5 min, whose reaction rate (1.3527 min-1) was 20.1-fold higher than that of BUC-96. Additionally, BUC-96(FeCu-5) exhibited excellent Fenton-like oxidation degradation performance for 10 selected emerging organic pollutants. The reaction mechanism was studied in detail by experiments, and density functional theory (DFT) calculation. The results revealed that the introduced Cu not only accelerated Fe(III)/Fe(II) cycles, hydroxyl radical (·OH) generation, electron transfer, but also lowered H2O2 dissociated energy barrier. This work advanced the bimetal MOFs construction and application in wastewater treatment via Fenton-like process.
Collapse
Affiliation(s)
- Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zi-Wei Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ya Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zi-Chen Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Baoyi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Xuedong Du
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Zhao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
15
|
Fan M, Yan J, Cui Q, Shang R, Zuo Q, Gong L, Zhang W. Synthesis and Peroxide Activation Mechanism of Bimetallic MOF for Water Contaminant Degradation: A Review. Molecules 2023; 28:molecules28083622. [PMID: 37110856 PMCID: PMC10143358 DOI: 10.3390/molecules28083622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic framework (MOF) materials possess a large specific surface area, high porosity, and atomically dispersed metal active sites, which confer excellent catalytic performance as peroxide (peroxodisulfate (PDS), peroxomonosulfate (PMS), and hydrogen peroxide (H2O2)) activation catalysts. However, the limited electron transfer characteristics and chemical stability of traditional monometallic MOFs restrict their catalytic performance and large-scale application in advanced oxidation reactions. Furthermore, the single-metal active site and uniform charge density distribution of monometallic MOFs result in a fixed activation reaction path of peroxide in the Fenton-like reaction process. To address these limitations, bimetallic MOFs have been developed to improve catalytic activity, stability, and reaction controllability in peroxide activation reactions. Compared with monometallic MOFs, bimetallic MOFs enhance the active site of the material, promote internal electron transfer, and even alter the activation path through the synergistic effect of bimetals. In this review, we systematically summarize the preparation methods of bimetallic MOFs and the mechanism of activating different peroxide systems. Moreover, we discuss the reaction factors that affect the process of peroxide activation. This report aims to expand the understanding of bimetallic MOF synthesis and their catalytic mechanisms in advanced oxidation processes.
Collapse
Affiliation(s)
- Mengke Fan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jingwei Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Quantao Cui
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Run Shang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Qiting Zuo
- School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Gong
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Faculty of Environmental and Municipal Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, China
| |
Collapse
|
16
|
Wu Q, Siddique MS, Wang H, Cui L, Wang H, Pan M, Yan J. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: A review of recent advances. CHEMOSPHERE 2023; 313:137509. [PMID: 36495983 DOI: 10.1016/j.chemosphere.2022.137509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Visible-light-driven heterogeneous photo-Fenton process has emerged as the most promising Fenton-derived technology for wastewater decontamination, owing to its prominent superiorities including the potential utilization of clean energy (solar light), and acceleration of ≡Fe(II)/≡Fe(III) dynamic cycle. As the core constituent, catalysts play a pivotal role in the photocatalytic activation of H2O2 to yield reactive oxidative species (ROS). To date, all types of iron-based heterogeneous photo-Fenton catalysts (Fe-HPFCs) have been extensively reported by the scientific community, and exhibited satisfactory catalytic performance towards pollutants decomposition, sometimes even exceeding the homogeneous counterparts (Fe(II)/H2O2). However, the relevant reviews on Fe-HPFCs, especially from the viewpoint of catalyst-self design are extremely limited. Therefore, this state-of-the-art review focuses on the available Fe-HPFCs in literatures, and gives their classification based on their self-characteristics and modification strategies for the first time. Two classes of representative Fe-HPFCs, conventional inorganic semiconductors of Fe-containing minerals and newly emerging Fe-based metal-organic frameworks (Fe-MOFs) are comprehensively summarized. Moreover, three universal strategies including (i) transition metal (TMs) doping, (ii) construction of heterojunctions with other semiconductors or plasmonic materials, and (iii) combination with supporters were proposed to tackle their inherent defects, viz., inferior light-harvesting capacity, fast recombination of photogenerated carriers, slow mass transfer and low exposure and uneven dispersion of active sites. Lastly, a critical emphasis was also made on the challenges and prospects of Fe-HPFCs in wastewater treatment, providing valuable guidance to researchers for the reasonable construction of high-performance Fe-HPFCs.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mei Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
17
|
Song J, Yuan X, Sun M, Wang Z, Cao G, Gao K, Yang C, Zhang F, Dang F, Wang W. Oxidation of tetracycline hydrochloride with a photoenhanced MIL-101(Fe)/g-C 3N 4/PMS system: Synergetic effects and radical/nonradical pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114524. [PMID: 36634481 DOI: 10.1016/j.ecoenv.2023.114524] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
MIL-101(Fe)-based catalysts have been widely used for degradation of organic pollutants based on peroxymonosulfate (PMS) activation. Hence, a facile calcination and hydrothermal method was used in this study to prepare a MIL-101(Fe)/g-C3N4 composite catalyst with high activity and high stability for PMS activation to degrade tetracycline hydrochloride (TC) under visible-light irradiation. We clearly elucidated the mechanism involved in the MIL-101(Fe)/g-C3N4 photo Fenton-catalyzed PMS activation process by separating the PMS activation and pollutant oxidation processes. The synergetic effects of MIL-101(Fe) and g-C3N4 involved MIL-101(Fe) acting as an electron shuttle mediating electron transfer from the organic substrate to PMS, accompanied by redox cycling of the surface Fe(II)/Fe(III). Multiple experimental results indicated that PMS was bound to the surface of MIL-101(Fe)/g-C3N4 during visible irradiation and generation of sulfate radicals (SO4•-), hydroxyl radicals (•OH) and superoxide anion free radicals (•O2-) for the radical pathway and singlet oxygen (1O2) and holes (h+) for the nonradical pathway. The major degradation pathways for TC can be described as demethylation, deamination, deamidation and carbonylation. This work provides valuable information and advances the fundamental understanding needed for design and syntheses of metal-free conjugated polymers modified by metal-organic frameworks for heterogeneous photo-Fenton reactions.
Collapse
Affiliation(s)
- Jianjun Song
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoying Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Meikun Sun
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zuchen Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Gege Cao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Kangqi Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chuanxi Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Feng Dang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Shandong University, Jinan 250061, China
| | - Weiliang Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
18
|
Zhao X, Yang Z, Niu R, Tang Y, Wang H, Gao R, Zhao Y, Jing X, Wang D, Lin P, Guan H, Meng L. MIL-101(CuFe) Nanozymes with Excellent Peroxidase-like Activity for Simple, Accurate, and Visual Naked-Eye Detection of SARS-CoV-2. Anal Chem 2023; 95:1731-1738. [PMID: 36576944 PMCID: PMC9843630 DOI: 10.1021/acs.analchem.2c05043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
The COVID-19 pandemic has spread to every corner of the world and seriously affected our health and daily activities in the past three years; thereby, it is still urgent to develop various simple, quick, and accurate methods for early detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Nanozymes, a kind of nanomaterial with intrinsic enzyme-mimicking activity, have emerged as a suitable alternative for both therapy and diagnosis of SARS-CoV-2. Here, ultrasensitive and ultrafast MIL-101(CuFe)-CD147 biosensors are established for the detection of SARS-CoV-2 by a simple colorimetric method. A MIL-101(CuFe) metal-organic framework has excellent peroxidase-like activity due to the synergistic effect of Fe and Cu atoms. In addition, the MIL-101(CuFe)-CD147 biosensor shows great potential to detect the various variants of SARS-CoV-2 due to the universal receptor of CD147. The enzyme-based biosensor for the detection of SARS-CoV-2 achieves a very low limit of detection (about 3 PFU/mL) within 30 min. Therefore, the present method provides a new generation of an alternative approach for highly sensitive and visual diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xiaoping Zhao
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Zhiwei Yang
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an710049, P.R. China
| | - Ruoxin Niu
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Ye Tang
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Heng Wang
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Rui Gao
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Yizhen Zhao
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an710049, P.R. China
| | - Xunan Jing
- The
First Affiliated Hospital, Xi’an
Jiaotong University, Xi’an710061, P.R. China
| | - Daquan Wang
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
| | - Peng Lin
- National
Translational Science Center for Molecular Medicine & Department
of Cell Biology& Department of Burns and Cutaneous Surgery, Fourth Military Medical University, Xi’an710032, P.R. China
| | - Hao Guan
- National
Translational Science Center for Molecular Medicine & Department
of Cell Biology& Department of Burns and Cutaneous Surgery, Fourth Military Medical University, Xi’an710032, P.R. China
| | - Lingjie Meng
- School
of Chemistry, Xi’an Key Laboratory of Sustainable Energy Material
Chemistry, Xi’an Jiaotong University, Xi’an710049, P.R. China
- The
First Affiliated Hospital, Xi’an
Jiaotong University, Xi’an710061, P.R. China
- Instrumental
Analysis Center of Xi’an Jiaotong University, Xi’an710049, P.R. China
| |
Collapse
|
19
|
Recent Advances in the Development of Novel Iron–Copper Bimetallic Photo Fenton Catalysts. Catalysts 2023. [DOI: 10.3390/catal13010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Advanced oxidation processes (AOPs) have been postulated as viable, innovative, and efficient technologies for the removal of pollutants from water bodies. Among AOPs, photo-Fenton processes have been shown to be effective for the degradation of various types of organic compounds in industrial wastewater. Monometallic iron catalysts are limited in practical applications due to their low catalytic activity, poor stability, and recyclability. On the other hand, the development of catalysts based on copper oxides has become a current research topic due to their advantages such as strong light absorption, high mobility of charge carriers, low environmental toxicity, long-term stability, and low production cost. For these reasons, great efforts have been made to improve the practical applications of heterogeneous catalysts, and the bimetallic iron–copper materials have become a focus of research. In this context, this review focuses on the compilation of the most relevant studies on the recent progress in the application of bimetallic iron–copper materials in heterogeneous photo–Fenton-like reactions for the degradation of pollutants in wastewater. Special attention is paid to the removal efficiencies obtained and the reaction mechanisms involved in the photo–Fenton treatments with the different catalysts.
Collapse
|
20
|
Magnetic MgFe2O4/MIL-88A catalyst for photo-Fenton sulfamethoxazole decomposition under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Recent Advancements in Photocatalysis Coupling by External Physical Fields. Catalysts 2022. [DOI: 10.3390/catal12091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance, such as artificial photosynthesis, water splitting, pollutants degradation, etc. Despite decades of research, the performance of photocatalysis still falls far short of the requirement of 5% solar energy conversion efficiency. Combining photocatalysis with the other physical fields has been proven to be an efficient way around this barrier which can improve the performance of photocatalysis remarkably. This review will focus on the recent advances in photocatalysis coupling by external physical fields, including Thermal-coupled photocatalysis (TCP), Mechanical-coupled photocatalysis (MCP), and Electromagnetism-coupled photocatalysis (ECP). In this paper, coupling mechanisms, materials, and applications of external physical fields are reviewed. Specifically, the promotive effect on photocatalytic activity by the external fields is highlighted. This review will provide a detailed and specific reference for photocatalysis coupling by external physical fields in a deep-going way.
Collapse
|
22
|
Khan IS, Garzon Tovar L, Mateo D, Gascon J. Metal‐Organic‐Frameworks and their derived materials in Photo‐Thermal Catalysis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Il Son Khan
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Luis Garzon Tovar
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Diego Mateo
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Jorge Gascon
- King Abdullah University of Science and Technology Kaust Catalysis Center Bldg.3, Level 4, Room 4235 23955-6900 Thuwal SAUDI ARABIA
| |
Collapse
|
23
|
Fu A, Liu Z, Sun Z. Cu/Fe oxide integrated on graphite felt for degradation of sulfamethoxazole in the heterogeneous electro-Fenton process under near-neutral conditions. CHEMOSPHERE 2022; 297:134257. [PMID: 35271897 DOI: 10.1016/j.chemosphere.2022.134257] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
In the heterogeneous electro-Fenton (EF) system, high-efficiency and durable materials have attracted widespread attention as cathodes for degradation of refractory organic pollutants. In this study, a stable Cu/Fe oxide modified graphite felt electrode (Cu0.33Fe0.67NBDC-300/GF) was fabricated via a one-step hydrothermal method and subsequent thermal treatment, which used a bimetallic metal-organic framework (MOF) with 2-aminoterephthalic acid (NH2BDC) ligand as the precursor. The Cu0.33Fe0.67NBDC-300/GF electrode was used as the cathode for sulfamethoxazole (SMX) degradation in the heterogeneous EF process. The coexistence of the FeII/FeIII and CuI/CuII redox couples significantly accelerates the regeneration of FeII and promotes the generation of active free radicals (•OH and •O2-). FeIV was detected during the process, which indicates that the high-valent iron-oxo species was produced in near-neutral pH conditions. The removal efficiency of SMX (10 mg L-1) can reach 100.0% within 75 min over a wide pH range (4.0-9.0). After five cycles, the electrode retained a high stability and an outstanding catalytic capacity. Furthermore, the mechanisms and pathways for SMX degradation were proposed, the products and intermediates of SMX were analyzed, and the toxicity was evaluated. It was found that the toxicity decreased after degradation. This study displays a novel strategy for building an efficient and stable self-supporting electrode for treating antibiotic wastewater.
Collapse
Affiliation(s)
- Ao Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhibin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
24
|
Li X, Shen C, Ma J, Wen Y. The strong promoting effects of thin layer Al 2O 3 on FeCu Fenton-like components: Enhanced electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153151. [PMID: 35065120 DOI: 10.1016/j.scitotenv.2022.153151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The Fe(III)/Fe(II) redox cycle is the main factor limiting the effectiveness of Fe-mediated advanced oxidation processes (AOPs) for the degradation of organic pollutants. In this study, the promoting effects of thin-layer Al2O3 (t-Al2O3) between the frequently used FeCu components and the mesoporous silica support were studied to reduce Fe(III) to promote the activity of the Fenton-like catalyst. After modification by t-Al2O3, the mesoporous silicon-loaded FeCu catalyst removed 97% of Rhodamine B at pH 7, which was superior to the unmodified sample with a removal rate of 62.4% under the same conditions. Morphological characterization and X-ray diffraction patterns indicated that the Fe-Cu/t-Al2O3 active components were highly dispersed. Pyridine infrared spectra suggested that all of the acid sites were Lewis acids, and the t-Al2O3-loaded samples provided moderate/strong Lewis acids. The loading of t-Al2O3 between the FeCu complex and mesoporous silica support facilitated electron transfer during the Fe(III)/Fe(II) redox cycle by enhancing the dispersion of Fe-Cu/t-Al2O3 and the Lewis acidity. The results of this study provide insight into how t-Al2O3 promoted the interactions between the active components and silica support and how it can be used to aid in the selection of suitable wastewater treatment technologies.
Collapse
Affiliation(s)
- Xingfa Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Street, Taiyuan 030024, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianqing Ma
- School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - Yuezhong Wen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
25
|
Qin X, Wang Z, Guo C, Guo R, Lv Y, Li M. Fulvic acid degradation in Fenton-like system with bimetallic magnetic carbon aerogel Cu-Fe@CS as catalyst: Response surface optimization, kinetic and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114500. [PMID: 35051814 DOI: 10.1016/j.jenvman.2022.114500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, Cu-Fe bimetallic magnetic chitosan carbon aerogel catalyst (Cu-Fe@CS) was prepared by the sol-gel method to degrade Fulvic acid (FA) in Fenton-like system. Degradation experiment results showed bimetallic catalyst Cu-Fe@CS can degrade more FA than monometallic catalysts (Cu@CS and Fe@CS) due to the synergistic effect between the copper and iron. Plackett Buiman (PB) design showed that pH and temperature exhibited significant influence on FA degradation. The significant factors were optimized by Central Composite Design (CCD), the results revealed that the maximum FA removal reached 96.59% under the conditions of pH 4.07 and temperature 93.77 °C, the corresponding TOC removal reached 77.7%. The kinetic analysis implied that the reaction followed pseudo-first order kinetic with correlation coefficient (R2) = 0.9939. The Arrhenius fitting analysis revealed that Cu-Fe@CS had a lower activation energy (Ea) than Cu@CS and Fe@CS, meaning that reaction was easier to occur in Fenten-like system with Cu-Fe@CS. Catalyst still remained the higher FA and TOC removals of 96.28% and 77.33% after six runs, respectively. The FA removal was reduced by 65.53% with 12 mmol tertiary butanol (TBA) as scavenger, indicating that •OH played an important role in FA degradation. Finally, the catalytic degradation mechanism was proposed.
Collapse
Affiliation(s)
- Xia Qin
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Ziyuan Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Chengrui Guo
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Rui Guo
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yue Lv
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Mingran Li
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
26
|
Ren Y, Zhang J, Ji C, Wang S, Lv L, Zhang W. Iron-based metal-organic framework derived pyrolytic materials for effective Fenton-like catalysis: Performance, mechanisms and practicability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152201. [PMID: 34890672 DOI: 10.1016/j.scitotenv.2021.152201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, a new catalyst was fabricated by pyrolysis under nitrogen atmosphere with MIL-53(Fe) as the precursor, and was applied to catalyze Fenton-like process. Effects of calcination temperature and pH on decontamination performance, and stability of materials were investigated. Under optimal conditions (calcination temperature of 500 °C and pH of 5.0), the new Fenton-like system remained low iron leaching, and achieved high pseudo-first-order rate constant of 0.0251 min-1 for bisphenol S (BPS) removal, which is much higher than those in MIL-53(Fe), and nano-Fe3O4 catalyzed Fenton-like systems. The superiority of the new catalyst for Fenton-like catalysis was attributed to high specific surface area, as well as formed Fe(II), coordinatively unsaturated iron center and the Fe-O/Fe-C compounds based on the analyses of characterizations. Furthermore, main active species for BPS degradation was identified as hydroxyl radicals, and total hydroxyl radical generation was determined by trapping experiments. The degradation pathways of BPS were also proposed by intermediates monitoring. Moreover, this catalyst showed good potential for practical application, according to the evaluation of reuse, different pollutants degradation, and BPS removal in real wastewater. We believe this study developed a new catalyst with high catalytic activity, high stability and wide application scope, and also sheds light on further development of metal-organic frameworks for Fenton-like catalysis.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chenghan Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|