1
|
Gao Y, Yang C, Feng G, Zhang BX, Xu ZY, Wang Y, Tleubergenova A, Zhang Y, Meng XZ. Downward migration of per- and polyfluoroalkyl substances (PFAS) in lake sediments: Reconsideration of temporal trend analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138290. [PMID: 40252315 DOI: 10.1016/j.jhazmat.2025.138290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Using sediment cores to reconstruct the contamination history of per- and polyfluoroalkyl substances (PFAS) is essential for chemical management but poses challenge. Herein, sediment cores, as well as surface water and sediments were taken from two Chinese lakes to investigate the vertical distribution and migration of PFAS. Wind wave, properties of sediment and water, and chemical characters of PFAS were examined to clarify the main factors influencing PFAS migration. Total PFAS concentrations in sediment cores ranged from 0.12 to 5.28 ng g-1 dry weight (dw) in Dianchi Lake and from 0.19 to 2.51 ng g-1 dw in Taihu Lake, respectively. Strong hydrodynamic disturbance (wind-wave erosion depth up to 30 cm) in Taihu Lake resulted in consistent PFAS levels and profiles throughout the sediment core, limiting its use for retrospective analysis. In Dianchi Lake, an increasing trend of total organic carbon-normalized PFAS indicated their persistent emission in China over the past decades. Perfluorooctane sulfonic acid increased markedly from early 2000s; temporal trend in composition for perfluorocarboxylates coincided with the global production transition. Finally, we proposed a three-step conceptual framework, including lake selection, key time point assessment, and contamination history reconstruction, to further improve the reliability of PFAS retrospective analysis in lake.
Collapse
Affiliation(s)
- Yunze Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Chao Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ganyu Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zi-Yao Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Akmaral Tleubergenova
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing, Zhejiang 314051, China.
| |
Collapse
|
2
|
Fabregat-Palau J, Zweigle J, Renner D, Zwiener C, Grathwohl P. Assessment of PFAS contamination in agricultural soils: Non-target identification of precursors, fluorine mass balance and microcosm studies. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137798. [PMID: 40043400 DOI: 10.1016/j.jhazmat.2025.137798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Biodegradation of PFAS is examined in eight PFAS precursor-contaminated topsoil samples in order to determine generation rate constants for perfluorocarboxyl acids (PFCA) and to elucidate soil properties affecting these. PFAS were analyzed via both target (HPLC-MS/MS) and non-target (HPLC-QTOF) (semi)quantification. FTMAPs, diPAPs, and diSAmPAP were identified and accounted for > 80 % of the total PFAS burden, which ranged from ∼ 280-9700 ng g-1. These levels were confirmed by chemical oxidation of precursors (TOP assay) which allowed to close the fluorine mass balance against extractable organic fluorine (EOF). Notably, in some organic carbon rich samples, repeated oxidation was needed to achieve a complete fluorine mass balance. Batch microcosm incubations and total precursor quantification allowed to determine production rate constants of short-chain PFCA, which ranged from 0.02 to 0.50 year-1 depending on PFAS and soil physicochemical properties. Principal component analysis (PCA) indicated that both acid phosphomonoesterase and, to some extent, microbial biomass influences the production rates of short-chain PFAS in soils. This allowed to assess contamination time scales, indicating that production and thus release of PFAS from precursor decay will continue for years to decades. This bears the risk of contamination of adjacent environmental compartments such as groundwater and surface water bodies.
Collapse
Affiliation(s)
- Joel Fabregat-Palau
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany.
| | - Jonathan Zweigle
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Dominik Renner
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Christian Zwiener
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Peter Grathwohl
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| |
Collapse
|
3
|
Cartron JLE, Gadek CR, Dunnum JL, Witt CC, Campbell ML, Romero SJ, Johnson AB, Kutz J, Wolf C, Choyke SJ, Cook JA. Ecosystem-wide PFAS characterization and environmental behavior at a heavily contaminated desert oasis in the southwestern U.S. ENVIRONMENTAL RESEARCH 2025:121872. [PMID: 40412499 DOI: 10.1016/j.envres.2025.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Record-high PFAS contamination levels were recently reported in birds and small mammals from Holloman Lake, a high-salinity wastewater oasis located in southern New Mexico, USA. We expanded the PFAS screening to surface water, soils, algae, invertebrates, fish, reptiles, and a larger number of plants, birds, and mammals to examine the fate, transport, and bioaccumulation of PFAS in the ecosystem and generate contamination profiles across both the water-land interface and multiple trophic levels. C5 and C6 perfluorocarboxylic acids, both of them known degradation products of 6:2 FTS, were the dominant PFAS in surface water in the lake. In contrast, perfluorooctanesulfonic acid (PFOS) was the main PFAS found in sediments along the shoreline, with the number of fluorinated carbons in the alkyl chain and clay minerals both appearing to play a key role in soil sorption. High soil PFAS concentrations up to 900 m from the edge of the water could not be explained by air transport of contaminated dust and instead seemed related to past inundation events involving contaminated water. Higher PFAS concentrations along the main body of the lake included an extraordinary 30,000 ng/g ww of PFOS recorded for a composite saltcedar (Tamarix sp.) tissue sample. Bioaccumulation pervaded the ecosystem's food webs and trophic levels, with PFAS detection in all species and all types of animal tissue (blood, liver, muscle, and bone). Contamination involved mainly PFOS, followed by perfluorohexanesulfonic acid (PFHxS), with the observed concentrations of PFAS increasing concomitantly among tissue types but the liver bioaccumulating at a faster rate.
Collapse
Affiliation(s)
- Jean-Luc E Cartron
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Daniel B. Stephens & Associates, Inc., Albuquerque, NM, 87110, USA.
| | - Chauncey R Gadek
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Environmental Stewardship, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariel L Campbell
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Samuel J Romero
- Daniel B. Stephens & Associates, Inc., Albuquerque, NM, 87110, USA
| | - Andrew B Johnson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Julie Kutz
- Daniel B. Stephens & Associates, Inc., Albuquerque, NM, 87110, USA
| | - Christopher Wolf
- Daniel B. Stephens & Associates, Inc., Albuquerque, NM, 87110, USA
| | | | - Joseph A Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
4
|
Fabregat-Palau J, Ershadi A, Finkel M, Rigol A, Vidal M, Grathwohl P. Modeling PFAS Sorption in Soils Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7678-7687. [PMID: 40215413 PMCID: PMC12020356 DOI: 10.1021/acs.est.4c13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/23/2025]
Abstract
In this study, we introduce PFASorptionML, a novel machine learning (ML) tool developed to predict solid-liquid distribution coefficients (Kd) for per- and polyfluoroalkyl substances (PFAS) in soils. Leveraging a data set of 1,274 Kd entries for PFAS in soils and sediments, including compounds such as trifluoroacetate, cationic, and zwitterionic PFAS, and neutral fluorotelomer alcohols, the model incorporates PFAS-specific properties such as molecular weight, hydrophobicity, and pKa, alongside soil characteristics like pH, texture, organic carbon content, and cation exchange capacity. Sensitivity analysis reveals that molecular weight, hydrophobicity, and organic carbon content are the most significant factors influencing sorption behavior, while charge density and mineral soil fraction have comparatively minor effects. The model demonstrates high predictive performance, with RPD values exceeding 3.16 across validation data sets, outperforming existing tools in accuracy and scope. Notably, PFAS chain length and functional group variability significantly influence Kd, with longer chain lengths and higher hydrophobicity positively correlating with Kd. By integrating location-specific soil repository data, the model enables the generation of spatial Kd maps for selected PFAS species. These capabilities are implemented in the online platform PFASorptionML, providing researchers and practitioners with a valuable resource for conducting environmental risk assessments of PFAS contamination in soils.
Collapse
Affiliation(s)
- Joel Fabregat-Palau
- Department
of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Amirhossein Ershadi
- Department
of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Michael Finkel
- Department
of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Anna Rigol
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
- Institut
de Recerca de l’Aigua (IdRA), Universitat
de Barcelona, Martí
i Franquès 1-11, Barcelona 08028, Spain
| | - Miquel Vidal
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Peter Grathwohl
- Department
of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| |
Collapse
|
5
|
Yu L, Liu X, Hua Z, Xing X, Xue H. Fate variations of Per- and polyfluoroalkyl substances in diverse aquatic environments: An overlooked influence of hydrodynamics. WATER RESEARCH 2025; 282:123628. [PMID: 40233499 DOI: 10.1016/j.watres.2025.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have become a significant global issue; nevertheless, information regarding the hydrodynamic effect on their catchment-scale fate remains lacking. Thus, this study investigated PFASs in water and paired sediment samples from diverse aquatic habitats within the Qinhuai River Basin (QRB), where high concentrations of PFASs are ubiquitous. Rarity score analysis reveals that PFASs were diffusely distributed across the QRB, yet specific sites were identified as emission hotspots. The sediment-water and suspended particulate matter-water partitioning coefficients of PFASs both exhibited significant correlations with chemical structures, ambient variables, land use, and flow velocity (p < 0.05). Flow velocity can promote the liberation of PFASs from particles into water, reducing their accumulation capacity; hence, the higher partitioning coefficients of PFASs were observed in relatively low-velocity aquatic systems, such as lakes, reservoirs, and ponds. A partial least-squares structural equation model was employed to further elucidate their effect pathways and magnitudes on partitioning coefficients. In addition, the primary sources of PFASs were identified, emphasizing their complexity. The ecological risks of PFASs were assessed, indicating priority PFAS species (long-chain PFCAs and HFPO-TA) for management and suggesting water as the preferable environmental medium for regulation. This is the first field investigation to quantify the significance of hydrodynamic influences on the catchment-scale fate of PFASs, improving our understanding of their distribution and behaviors from the perspective of environmental hydraulics.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Zhang W, Li J, Huang R, Zhang X, Wang Y, Zhou D, Xian Q. Effect of coexisting Cd(Ⅱ) and As(V) on anionic PFASs sorption in soils: Models and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125917. [PMID: 39999916 DOI: 10.1016/j.envpol.2025.125917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
An in-depth understanding of the sorption behaviors of per- and polyfluoroalkyl substances (PFASs) in soil is essential to assess their environmental risks accurately. Due to chemical industry production and waste treatment, co-contamination soil of heavy metals (HMs)-PFASs has become a public concern worldwide. This study investigated soil sorption behaviors of PFASs including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorohexanesulfonic acid (PFHxS). A multiple linear regression (MLR) model was developed to predict the sorption of PFOS in soil. Validation results demonstrated that this model could effectively predict the distribution coefficients (Kd) of PFOS based on soil organic carbon (OC), silt, clay, and free Fe/Al-oxide contents, exhibiting a strong predictive ability (r2 = 0.942, p < 0.001). In six soils, HMs (Cd2+ and As5+) influence three anionic PFASs sorption primarily by altering the electrostatic and hydrophobic interactions between soil components and PFASs. The Kd values of PFOS tend to rise with increasing Cd2+ concentration but decline with increasing As5+ concentration. In contrast, HMs have a relatively minor influence on the sorption of PFOA and PFHxS. Moreover, a nonlinear model was constructed for the first time to quantify the impact of HMs on PFASs sorption. The model achieves exceptional prediction accuracy when applied to both experimental data from this study and literature data. A comprehensive understanding of PFASs sorption behavior in soil under conditions of coexisting HMs is of great significance for formulating targeted degradation and mitigation strategies for co-contaminated sites.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jianwei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ruihua Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xueqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Juhasz AL, Kastury F, Jones R, Seeborun M, Caceres T, Herde C, Cavallaro M, Dilmetz S, Hutchings J, Grebneva Y, Desire C, Hoffmann P. PFOA, PFOS and PFHxS toxicokinetic considerations for the development of an in vivo approach for assessing PFAS relative bioavailability in soil. ENVIRONMENT INTERNATIONAL 2025; 195:109232. [PMID: 39721568 DOI: 10.1016/j.envint.2024.109232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
A Sprague-Dawley rat model was utilized to elucidate perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) toxicokinetics with a goal of developing an in vivo approach for quantifying PFAS relative bioavailability in impacted soil. Following single dose administration (gavage) of ∼ 0.2-2000 µg kg-1 BW of PFOA, PFOS or PFHxS, differences in PFAS blood, organ and excreta concentrations were observed over 120 h although linear dose responses were determined for area under the blood plasma time curves (AUC; PFOA, PFHxS), liver accumulation (LA: PFOS) and urinary excretion (UE; PFOA, PFHxS). Oral and intravenous dose (∼20 µg kg-1 body weight) comparisons highlighted the high absolute bioavailability of PFOA (AUC: 100.3 ± 23.4 %; UE: 94.7 ± 26.6 %), PFOS (LA: 102.9 ± 15.6 %) and PFHxS (AUC: 88.3 ± 15.1 %; UE: 90.9 ± 7.3 %). Two spiked (14C-PFOA: 4360 ± 218 µg kg-1) and two PFAS impacted soils (PFOS: 1880-2250 µg kg-1; PFHxS: 61.2-65.5 µg kg-1) were utilized to measure PFAS relative bioavailability in soil matrices. In all soils, PFAS relative bioavailability was > 86 % (PFOA: 87.0-90.9 %; PFOS: 86.1-90.4 %; PFHxS: 86.5-97.0 %) although the method could quantify bioavailability reductions (25.6-88.9 %) when hydrophobic and electrostatic interactions were enhanced through the addition of carbon-based amendments (5-10 % w/w).
Collapse
Affiliation(s)
- Albert L Juhasz
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, 5095, Australia.
| | - Farzana Kastury
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, 5095, Australia
| | - Ruby Jones
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, 5095, Australia
| | - Mahima Seeborun
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, 5095, Australia
| | - Tanya Caceres
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, 5095, Australia
| | - Carina Herde
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, 101 Blacks Road, Gilles Plains, Adelaide 5086, Australia
| | - Michelle Cavallaro
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, 101 Blacks Road, Gilles Plains, Adelaide 5086, Australia
| | - Sarah Dilmetz
- UniSA Clinical and Health Sciences, University of South Australia, City East Campus, 5000, Australia
| | - Joshua Hutchings
- UniSA Clinical and Health Sciences, University of South Australia, City East Campus, 5000, Australia
| | - Yevgeniya Grebneva
- UniSA Clinical and Health Sciences, University of South Australia, City East Campus, 5000, Australia
| | - Chris Desire
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, 5095, Australia
| | - Peter Hoffmann
- UniSA Clinical and Health Sciences, University of South Australia, City East Campus, 5000, Australia
| |
Collapse
|
8
|
Li Q, Liu C, Wang S, Liu Y, Ma X, Li Y, Li W, Wang X. Decade-long historical shifts in legacy and emerging per- and polyfluoroalkyl substances (PFAS) in surface sediments of China's marginal seas: Ongoing production and ecological risks. ENVIRONMENTAL RESEARCH 2024; 263:119978. [PMID: 39278581 DOI: 10.1016/j.envres.2024.119978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Since the addition of perfluorooctane sulfonate (PFOS) to the Stockholm Convention in 2009, it became imperative to reassess the distribution and ecological risk of per- and polyfluoroalkyl substances (PFAS) in coastal sediments over the past decade as sediment records the history of pollutants from human activities. To achieve this, sediments were collected in 2009 and 2021 from China's coastal regions. Despite the consistent geographical pattern where the highest concentrations of ∑PFAS were found in the Yellow Sea, temporal changes have emerged. During the studied period, ∑PFAS levels experienced an increase in the East China Sea while concurrently witnessing a decrease in the South China Sea. Of significance, emerging PFAS compounds displayed not only rising concentrations but also a broader array, pointing towards their intensified production and utilization within China. Alarmingly, PFOS levels in sediments taken from the East China Sea maintained a consistently high ecological risk status over the last ten years. Significant correlations were found between long-chain PFAS and organic carbon content. Comparisons between datasets from 2009 to 2021 uncovered a shifting ecological risk landscape, with heightened concerns for PFOA in the East China Sea, while PFOS-associated risks appeared to diminish in the South China Sea-potentially reflecting the transition to alternative PFAS chemicals. The research reinforces the importance of continuous monitoring and emphasizes the urgent necessity for deeper exploration into the environmental implications and hazards posed by emerging PFAS.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory of Marine Environmental Science (Xiamen University), China; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Chang Liu
- State Key Laboratory of Marine Environmental Science (Xiamen University), China; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Siquan Wang
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; College of Resources and Environment, Anhui Agricultural University, Changjiang West Road, Shushan District, Hefei, 230031, China
| | - Yawen Liu
- State Key Laboratory of Marine Environmental Science (Xiamen University), China; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinxin Ma
- State Key Laboratory of Marine Environmental Science (Xiamen University), China; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science (Xiamen University), China; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Wenlong Li
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science (Xiamen University), China; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Xie J, Liu S, Su L, Zhao X, Wang Y, Tan F. Elucidating per- and polyfluoroalkyl substances (PFASs) soil-water partitioning behavior through explainable machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176575. [PMID: 39343411 DOI: 10.1016/j.scitotenv.2024.176575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
In this study, an optimized random forest (RF) model was employed to better understand the soil-water partitioning behavior of per- and polyfluoroalkyl substances (PFASs). The model demonstrated strong predictive performance, achieving an R2 of 0.93 and an RMSE of 0.86. Moreover, it required only 11 easily obtainable features, with molecular weight and soil pH being the predominant factors. Using three-dimensional interaction analyses identified specific conditions associated with varying soil-water partitioning coefficients (Kd). Results showed that soils with high organic carbon (OC) content, cation exchange capacity (CEC), and lower soil pH, especially when combined with PFASs of higher molecular weight, were linked to higher Kd values, indicating stronger adsorption. Conversely, low Kd values (< 2.8 L/kg) typically observed in soils with higher pH (8.0), but lower CEC (8 cmol+/kg), lesser OC content (1 %), and lighter molecular weight (380 g/mol), suggested weaker adsorption capacities and a heightened potential for environmental migration. Furthermore, the model was used to predict Kd values for 142 novel PFASs in diverse soil conditions. Our research provides essential insights into the factors governing PFASs partitioning in soil and highlights the significant role of machine learning models in enhancing the understanding of environmental distribution and migration of PFASs.
Collapse
Affiliation(s)
- Jiaxing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinting Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Liang D, Li C, Chen H, Sørmo E, Cornelissen G, Gao Y, Reguyal F, Sarmah A, Ippolito J, Kammann C, Li F, Sailaukhanuly Y, Cai H, Hu Y, Wang M, Li X, Cui X, Robinson B, Khan E, Rinklebe J, Ye T, Wu F, Zhang X, Wang H. A critical review of biochar for the remediation of PFAS-contaminated soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174962. [PMID: 39059650 DOI: 10.1016/j.scitotenv.2024.174962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.
Collapse
Affiliation(s)
- Dezhan Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Caibin Li
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jim Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Kammann
- Department of Applied Ecology, Geisenheim University, 65366 Geisenheim, Germany
| | - Fangbai Li
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yerbolat Sailaukhanuly
- Laboratory of Engineering Profile, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Heqing Cai
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Yan Hu
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Maoxian Wang
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xinglan Cui
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Resources and Environmental Technology Corporation Limited, Beijing 101407, China
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Tingjin Ye
- IronMan Environmental Technology Co., Ltd., Foshan 528041, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
11
|
Shi YB, Hua ZL, Li XQ, Zhang SH, Liu JL. Submerge-emerge alternation promotes sediment per- and polyfluoroalkyl substance (PFAS) release and bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177413. [PMID: 39510285 DOI: 10.1016/j.scitotenv.2024.177413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Understanding the sediment release and plant bioaccumulation of per- and polyfluoroalkyl substances (PFASs) under submerge-emerge alternation (SE) is crucial to predicting their transport and fate in the riparian zones. In the present study, a simulational device was firstly constructed to explore the effects of SE on the transport of PFASs in riparian sediment-plant systems and the underlying mechanisms. The submerge (CS) and emerge (CE) situations were compared. The results showed that SE significantly enhanced the transport and bioaccumulation of PFASs in sediments. Compared with the initial concentration, PFASs in sediments decreased by 81.84 %, 50.48 %, and 21.68 % in the SE, CS, and CE groups, respectively. The bioaccumulation of PFASs in plant roots in the SE group was 1.26 and 4.16 times higher than that in the CS and CE groups, respectively, and the bioaccumulation of PFASs in leaves in the SE group was 2.05 and 1.71 times higher than that in the other two groups. Dissolved organic matter (DOM) composition and molecular properties under SE were recognized as the dominant factors regulating the release of PFASs from sediments. Root morphology and low-molecular-weight organic acids (LMWOAs) in root exudates were closely associated with the bioaccumulation of PFASs in plants. Among the substitutes, hexafluoropropylene oxide trimer acid (HFPO-TA) demonstrated greater hydrophobicity, hexafluoropropylene oxide dimer acid (Gen-X) had greater mobility, and 6:2 fluorotelomer sulfonate (6:2 FTS) accumulated more in plants. This study has expanded the understanding of the geochemical cycling of PFASs in riparian sediment-plant systems under submerge-emerge alternation.
Collapse
Affiliation(s)
- Ye-Bing Shi
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Song-He Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian-Long Liu
- Management Division of Qinhuai River Hydraulic Engineering of Jiangsu Province, Nanjing 210022, PR China
| |
Collapse
|
12
|
Burgess RM, Kane Driscoll S, Bejarano AC, Davis CW, Hermens JLM, Redman AD, Jonker MTO. A Review of Mechanistic Models for Predicting Adverse Effects in Sediment Toxicity Testing. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1778-1794. [PMID: 37975556 PMCID: PMC11328970 DOI: 10.1002/etc.5789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Since recognizing the importance of bioavailability for understanding the toxicity of chemicals in sediments, mechanistic modeling has advanced over the last 40 years by building better tools for estimating exposure and making predictions of probable adverse effects. Our review provides an up-to-date survey of the status of mechanistic modeling in contaminated sediment toxicity assessments. Relative to exposure, advances have been most substantial for non-ionic organic contaminants (NOCs) and divalent cationic metals, with several equilibrium partitioning-based (Eq-P) models having been developed. This has included the use of Abraham equations to estimate partition coefficients for environmental media. As a result of the complexity of their partitioning behavior, progress has been less substantial for ionic/polar organic contaminants. When the EqP-based estimates of exposure and bioavailability are combined with water-only effects measurements, predictions of sediment toxicity can be successfully made for NOCs and selected metals. Both species sensitivity distributions and toxicokinetic and toxicodynamic models are increasingly being applied to better predict contaminated sediment toxicity. Furthermore, for some classes of contaminants, such as polycyclic aromatic hydrocarbons, adverse effects can be modeled as mixtures, making the models useful in real-world applications, where contaminants seldomly occur individually. Despite the impressive advances in the development and application of mechanistic models to predict sediment toxicity, several critical research needs remain to be addressed. These needs and others represent the next frontier in the continuing development and application of mechanistic models for informing environmental scientists, managers, and decisions makers of the risks associated with contaminated sediments. Environ Toxicol Chem 2024;43:1778-1794. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Robert M Burgess
- Office of Research and Development/Center for Environmental Measurement and Modeling/Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | | | | | | | - Joop L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Arshadi M, Garza-Rubalcava U, Guedes A, Cápiro NL, Pennell KD, Christ J, Abriola LM. Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170566. [PMID: 38331271 DOI: 10.1016/j.scitotenv.2024.170566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Aqueous film forming foams (AFFFs) have been used to extinguish fires since the 1960s, leading to widespread subsurface contamination by per- and polyfluoroalkyl substances (PFAS), an essential component of AFFF. This study presents 1-D simulations of PFAS migration in the vadose zone resulting from AFFF releases. Simulation scenarios used soil profiles from three US Air Force (USAF) installations, encompassing a range of climatic conditions and hydrogeologic environments. A three-component mixture, representative of major constituents of AFFF, facilitated the exploration of competitive and synergistic effects of co-constituents on PFAS migration. To accurately capture unsaturated transport of PFAS in porous media, the model considers (1) surfactant-induced flow, (2) non-linear sorption to the solid phase, (3) competitive accumulation at the air-water interface, and (4) the moisture-dependence of the air-water interfacial area. Defined PFAS releases were consistent with fire training exercises, emergency responses, and accidental spills of record. Simulation results illustrate the importance of hydrogeologic, climatic, geochemical, and AFFF release conditions on PFAS transport and retention. Comparison of field observations and model simulations for Ellsworth AFB indicate that much of the PFOA and PFOS mass is associated with the air-water interface and the solid phase, which limits their migration potential in the vadose zone. Results also show that rates of migration in the aqueous phase are largely controlled by hydrogeologic properties, including recharge rates and hydraulic conductivity. AFFF spill scenarios varying in volume, concentration, and frequency reveal the importance of release characteristics in determining rates of PFAS migration and concentration peaks. Variability is attributed to non-linear sorption processes, where, contrary to simple linear partitioning formulations, transport is strongly affected by the concentration of PFAS species. Simulations also demonstrate the importance of modeling the AFFF as a mixture since competitive interfacial accumulation effects are shown to enhance the mobility of less surface-active PFAS compounds.
Collapse
Affiliation(s)
- Masoud Arshadi
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
| | | | - Ana Guedes
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - John Christ
- S&B Christ Consulting, Las Vegas, NV 89134, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
14
|
Sookhak Lari K, Davis GB, Kumar A, Rayner JL, Kong XZ, Saar MO. The Dynamics of Per- and Polyfluoroalkyl Substances (PFAS) at Interfaces in Porous Media: A Computational Roadmap from Nanoscale Molecular Dynamics Simulation to Macroscale Modeling. ACS OMEGA 2024; 9:5193-5202. [PMID: 38343928 PMCID: PMC10851370 DOI: 10.1021/acsomega.3c09201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 02/04/2025]
Abstract
Managing and remediating perfluoroalkyl and polyfluoroalkyl substance (PFAS) contaminated sites remains challenging. The major reasons are the complexity of geological media, partly unknown dynamics of the PFAS in different phases and at fluid-fluid and fluid-solid interfaces, and the presence of cocontaminants such as nonaqueous phase liquids (NAPLs). Critical knowledge gaps exist in understanding the behavior and fate of PFAS in vadose and saturated zones and in other porous media such as concrete and asphalt. The complexity of PFAS-surface interactions warrants the use of advanced characterization and computational tools to understand and quantify nanoscale behavior of the molecules. This can then be upscaled to the microscale to develop a constitutive relationship, in particular to distinguish between surface and bulk diffusion. The dominance of surface diffusion compared to bulk diffusion results in the solutocapillary Marangoni effect, which has not been considered while investigating the fate of PFAS. Without a deep understanding of these phenomena, derivation of constitutive relationships is challenging. The current Darcy scale mass-transfer models use constitutive relationships derived from either experiments or field measurements, which makes their applicability potentially limited. Here we review current efforts and propose a roadmap for developing Darcy scale transport equations for PFAS. We find that this needs to be based on systematic upscaling of both experimental and computational studies from nano- to microscales. We highlight recent efforts to undertake molecular dynamics simulations on problems with similar levels of complexity and explore the feasibility of conducting nanoscale simulations on PFAS dynamics at the interface of fluid pairs.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
- Department of Earth Sciences, Geothermal Energy and Geofluids Group, ETH Zurich CH-8092, Switzerland
| | - Greg B Davis
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Anand Kumar
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - John L Rayner
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Xiang-Zhao Kong
- Department of Earth Sciences, Geothermal Energy and Geofluids Group, ETH Zurich CH-8092, Switzerland
| | - Martin O Saar
- Department of Earth Sciences, Geothermal Energy and Geofluids Group, ETH Zurich CH-8092, Switzerland
| |
Collapse
|
15
|
Bierbaum T, Hansen SK, Poudel B, Haslauer C. Investigating rate-limited sorption, sorption to air-water interfaces, and colloid-facilitated transport during PFAS leaching. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121529-121547. [PMID: 37957494 PMCID: PMC10724089 DOI: 10.1007/s11356-023-30811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Various sorption processes affect leaching of per- and polyfluoroalkyl substances (PFAS) such as PFOA and PFOS. The objectives of this study are to (1) compare rate-limited leaching in column and lysimeter experiments, (2) investigate the relevance of sorption to air-water interfaces (AWI), and (3) examine colloid-facilitated transport as a process explaining early experimental breakthrough. A continuum model (CM) with two-domain sorption is used to simulate equilibrium and rate-limited sorption. A random walk particle tracking (PT) model was developed and applied to analyze complex leaching characteristics. Results show that sorption parameters derived from column experiments underestimate long-term PFOA leaching in lysimeter experiments due to early depletion, suggesting that transformation of precursors contributes to the observed long-term leaching in the lysimeters (approximately 0.003 µg/kg/d PFOA). Both models demonstrate that sorption to AWI is the dominant retention mechanism for PFOS in lysimeter experiments, with retardation due to AWI being 3 (CM) to 3.7 (PT) times higher than retardation due to solid phase sorption. Notably, despite a simplified conception of AWI sorption, the PT results are closer to the observations. The PT simulations demonstrate possible colloid-facilitated transport at early time; however, results using substance-specific varying transport parameters align better with the observations, which should be equal if colloid-facilitated transport without additional kinetics is the sole mechanism affecting early breakthrough. Possibly, rate-limited sorption to AWI is relevant during the early stages of the lysimeter experiment. Our findings demonstrate that rate-limited sorption is less relevant for long-term leaching under field conditions compared to transformation of precursors and that sorption to AWI can be the dominant retention mechanism on contaminated sites. Moreover, they highlight the potential of random walk particle tracking as a practical alternative to continuum models for estimating the relative contributions of various retention mechanisms.
Collapse
Affiliation(s)
- Thomas Bierbaum
- Research Facility for Subsurface Remediation (VEGAS), University of Stuttgart, Institute for Modelling Environmental Systems (IWS), Pfaffenwaldring 61, 70569, Stuttgart, Germany.
| | - Scott K Hansen
- Ben-Gurion University of the Negev, Zuckerberg Institute for Water Research, 8499000, Midreshet Ben-Gurion, Israel
| | - Bikash Poudel
- Research Facility for Subsurface Remediation (VEGAS), University of Stuttgart, Institute for Modelling Environmental Systems (IWS), Pfaffenwaldring 61, 70569, Stuttgart, Germany
| | - Claus Haslauer
- Research Facility for Subsurface Remediation (VEGAS), University of Stuttgart, Institute for Modelling Environmental Systems (IWS), Pfaffenwaldring 61, 70569, Stuttgart, Germany
| |
Collapse
|
16
|
Brusseau ML, Guo B. Revising the EPA Dilution-Attenuation Soil Screening Model for PFAS. JOURNAL OF HAZARDOUS MATERIALS LETTERS 2023; 4:100077. [PMID: 37990738 PMCID: PMC10662647 DOI: 10.1016/j.hazl.2023.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Per and polyfluoroalkyl substances (PFAS) have been shown to be ubiquitous in the environment, and one issue of critical concern is the leaching of PFAS from soil to groundwater. The risk posed by contaminants present in soil is often assessed in terms of the anticipated impact to groundwater through the determination of soil screening levels (SSLs). The U.S. Environmental Protection Agency (EPA) established a soil screening model for determining SSLs. However, the model does not consider the unique retention properties of PFAS and, consequently, the SSLs established with the model may not represent the actual levels that are protective of groundwater quality. The objective of this work is to revise the standard EPA SSL model to reflect the unique properties and associated retention behavior of PFAS. Specifically, the distribution parameter used to convert soil porewater concentrations to soil concentrations is revised to account for adsorption at the air-water interface. Example calculations conducted for PFOS and PFOA illustrate the contrasting SSLs obtained with the revised and standard models. A comparison of distribution parameters calculated for a series of PFAS of different chain length shows that the significance of air-water interfacial adsorption can vary greatly as a function of the specific PFAS. Therefore, the difference between SSLs calculated with the revised versus standard models will vary as a function of the specific PFAS, with greater differences typically observed for longer-chain PFAS. It is anticipated that this revised model will be useful for developing improved SSLs that can be used to enhance site investigations and management for PFAS-impacted sites.
Collapse
Affiliation(s)
- Mark L. Brusseau
- Environmental Science Department, The University of Arizona, Tucson, AZ 85721
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, AZ 85721
| | - Bo Guo
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
17
|
Bierbaum T, Klaas N, Braun J, Nürenberg G, Lange FT, Haslauer C. Immobilization of per- and polyfluoroalkyl substances (PFAS): Comparison of leaching behavior by three different leaching tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162588. [PMID: 36871732 DOI: 10.1016/j.scitotenv.2023.162588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The evaluation of PFAS immobilization performance in laboratory experiments, especially the long-term stability, is a challenge. To contribute to the development of adequate experimental procedures, the impact of experimental conditions on the leaching behavior was studied. Three experiments on different scales were compared: batch, saturated column, and variably saturated laboratory lysimeter experiments. The Infinite Sink (IS) test - a batch test with repeated sampling - was applied for PFAS for the first time. Soil from an agricultural field amended with paper-fiber biosolids polluted with various perfluoroalkyl acids (PFAAs; 655 μg/kg ∑18PFAAs) and polyfluorinated precursors (1.4 mg/kg ∑18precursors) was used as the primary material (N-1). Two types of PFAS immobilization agents were tested: treatment with activated carbon-based additives (soil mixtures: R-1 and R-2), and solidification with cement and bentonite (R-3). In all experiments, a chain-length dependent immobilization efficacy is observed. In R-3, the leaching of short-chain PFAAs was enhanced relative to N-1. In column and lysimeter experiments with R-1 and R-2, delayed breakthrough of short-chain PFAAs (C4) occurred (> 90 days; in column experiments at liquid-to-solid ratio (LS) > 30 L/kg) with similar temporal leaching rates suggesting that leaching in these cases was a kinetically controlled process. Observed differences between column and lysimeter experiments may be attributed to varying saturation conditions. In IS experiments, PFAS desorption from N-1, R-1, and R-2 is higher than in the column experiments (N-1: +44 %; R-1: +280 %; R-2: +162 %), desorption of short-chain PFAS occurred predominantly in the initial phase (< 14 days). Our findings demonstrate that sufficient operating times are essential in percolation experiments, e.g., in column experiments >100 days and LS > 30 L/kg. IS experiments may provide a faster estimate for nonpermanent immobilization. The comparison of experimental data from various experiments is beneficial to evaluate PFAS immobilization and to interpret leaching characteristics.
Collapse
Affiliation(s)
- Thomas Bierbaum
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany.
| | - Norbert Klaas
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany
| | - Jürgen Braun
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany
| | - Gudrun Nürenberg
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Frank Thomas Lange
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Claus Haslauer
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany
| |
Collapse
|
18
|
Lv L, Liu B, Zhang B, Yu Y, Gao L, Ding L. A systematic review on distribution, sources and sorption of perfluoroalkyl acids (PFAAs) in soil and their plant uptake. ENVIRONMENTAL RESEARCH 2023; 231:116156. [PMID: 37196690 DOI: 10.1016/j.envres.2023.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in environment, which have attracted increasing concerns in recent years. This study collected the data on PFAAs concentrations in 1042 soil samples from 15 countries and comprehensively reviewed the spatial distribution, sources, sorption mechanisms of PFAAs in soil and their plant uptake. PFAAs are widely detected in soils from many countries worldwide and their distribution is related to the emission of the fluorine-containing organic industry. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are found to be the predominant PFAAs in soil. Industrial emission is the main source of PFAAs contributing 49.9% of the total concentrations of PFAAs (Ʃ PFAAs) in soil, followed by activated sludge treated by wastewater treatment plants (WWTPs) (19.9%) and irrigation of effluents from WWTPs, usage of aqueous film-forming foam (AFFFs) and leaching of leachate from landfill (30.2%). The adsorption of PFAAs by soil is mainly influenced by soil pH, ionic strength, soil organic matter and minerals. The concentrations of perfluoroalkyl carboxylic acids (PFCAs) in soil are negatively correlated with the length of carbon chain, log Kow, and log Koc. The carbon chain lengths of PFAAs are negatively correlated with the root-soil concentration factors (RCFs) and shoot-soil concentration factors (SCFs). The uptake of PFAAs by plant is influenced by physicochemical properties of PFAAs, plant physiology and soil environment. Further studies should be conducted to make up the inadequacy of existing knowledge on the behavior and fate of PFAAs in soil-plant system.
Collapse
Affiliation(s)
- Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| | - Bimi Zhang
- Food and Drug Engineering Institute, Jilin Province Economic Management Cadre College, Changchun, 130012, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| |
Collapse
|
19
|
Huang YR, Liu SS, Zi JX, Cheng SM, Li J, Ying GG, Chen CE. In Situ Insight into the Availability and Desorption Kinetics of Per- and Polyfluoroalkyl Substances in Soils with Diffusive Gradients in Thin Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7809-7817. [PMID: 37155686 DOI: 10.1021/acs.est.2c09348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The physicochemical exchange dynamics between the solid and solution phases of per- and polyfluoroalkyl substances (PFAS) in soils needs to be better understood. This study employed an in situ tool, diffusive gradients in thin films (DGT), to understand the distribution and exchange kinetics of five typical PFAS in four soils. Results show a nonlinear relationship between the PFAS masses in DGT and time, implying that PFAS were partially supplied by the solid phase in all of the soils. A dynamic model DGT-induced fluxes in soils/sediments (DIFS) was used to interpret the results and derive the distribution coefficients for the labile fraction (Kdl), response time (tc), and adsorption/desorption rates (k1 and k-1). The larger labile pool size (indicated by Kdl) for the longer chain PFAS implies their higher potential availability. The shorter chain PFAS tend to have a larger tc and relatively smaller k-1, implying that the release of these PFAS in soils might be kinetically limited but not for more hydrophobic compounds, such as perfluorooctanesulfonic acid (PFOS), although soil properties might play an important role. Kdl ultimately controls the PFAS availability in soils, while the PFAS release from soils might be kinetically constrained (which may also hold for biota uptake), particularly for more hydrophilic PFAS.
Collapse
Affiliation(s)
- Yue-Rui Huang
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Si-Si Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jin-Xin Zi
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sheng-Ming Cheng
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Guang-Guo Ying
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
20
|
Jahn KL, Lincoln SA, Freeman KH, Saffer DM. Preferential Retention and Transport of Perfluorooctanesulfonic Acid in a Dolomite Aquifer. GROUND WATER 2023; 61:318-329. [PMID: 36103019 DOI: 10.1111/gwat.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) can represent a significant human health risk if present in aquifers used as a drinking water source. Accurate assessment of PFAS exposure risks requires an improved understanding of field-scale PFAS transport in groundwater. Activities at a former firefighter training site in University Park, Pennsylvania introduced perfluorooctanesulfonic acid (PFOS) to the underlying dolomite aquifer. Groundwater sampling from 2015 to 2018 delineated a PFOS plume with two concentration maxima located approximately 20 and approximately 220 m downgradient of the training site, separated by a zone of lower concentrations. We use a combination of analytical and numerical models, informed by independent measurements of aquifer porosity, hydraulic conductivity, and organic carbon content, to interpret the field observations. Our analysis demonstrates that preferential retention and transport resulting from simple heterogeneity in bedrock sorption, as caused by organic carbon (OC) content variability, provides a plausible explanation for plume separation. Dissolved PFOS partitions strongly to organic solids (high Koc ), so even a small OC (<1 wt%) significantly retards PFOS transport, whereas zones with little to no OC allow for transport rates that approximate those of a conservative solute. Our work highlights an important consideration for modeling the groundwater transport of PFOS, and other compounds with high Koc . In aquifers with discrete layers of varying OC, models using a uniform site-average OC will underestimate transport distances, thereby misrepresenting exposure risks for downgradient communities.
Collapse
Affiliation(s)
- Kalle L Jahn
- USGS New York Water Science Center, Troy, NY, USA
| | - Sara A Lincoln
- Department of Geosciences, The Pennsylvania State University, University Park, PA
- Akima Systems Engineering, Herndon, VA
| | - Katherine H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA
| | - Demian M Saffer
- Institute for Geophysics, Department of Geological Sciences, University of Texas at Austin, Austin, TX
| |
Collapse
|
21
|
Wanzek T, Stults JF, Johnson MG, Field JA, Kleber M. Role of Mineral-Organic Interactions in PFAS Retention by AFFF-Impacted Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5231-5242. [PMID: 36947878 PMCID: PMC10764056 DOI: 10.1021/acs.est.2c08806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A comprehensive, generalized approach to predict the retention of per- and polyfluoroalkyl substances (PFAS) from aqueous film-forming foam (AFFF) by a soil matrix as a function of PFAS molecular and soil physiochemical properties was developed. An AFFF with 34 major PFAS (12 anions and 22 zwitterions) was added to uncontaminated soil in one-dimensional saturated column experiments and PFAS mass retained was measured. PFAS mass retention was described using an exhaustive statistical approach to generate a poly-parameter quantitative structure-property relationship (ppQSPR). The relevant predictive properties were PFAS molar mass, mass fluorine, number of nitrogens in the PFAS molecule, poorly crystalline Fe oxides, organic carbon, and specific (BET-N2) surface area. The retention of anionic PFAS was nearly independent of soil properties and largely a function of molecular hydrophobicity, with the size of the fluorinated side chain as the main predictor. Retention of nitrogen-containing zwitterionic PFAS was related to poorly crystalline metal oxides and organic carbon content. Knowledge of the extent to which a suite of PFAS may respond to variations in soil matrix properties, as developed here, paves the way for the development of reactive transport algorithms with the ability to capture PFAS dynamics in source zones over extended time frames.
Collapse
Affiliation(s)
- Thomas Wanzek
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - John F. Stults
- Department Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | - Mark G. Johnson
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, Oregon 97333, United States
| | - Jennifer A. Field
- Department Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Markus Kleber
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
22
|
Abou-Khalil C, Kewalramani J, Zhang Z, Sarkar D, Abrams S, Boufadel MC. Effect of clay content on the mobilization efficiency of per- and polyfluoroalkyl substances (PFAS) from soils by electrokinetics and hydraulic flushing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121160. [PMID: 36716947 DOI: 10.1016/j.envpol.2023.121160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The need for the efficient remediation of soils impacted by per- and polyfluoroalkyl substances (PFAS) is substantially growing because of the notable upsurge in societal and regulatory awareness of this class of chemicals. To remediate PFAS-contaminated soils using mobilization approaches, the choice of appropriate techniques highly depends on the soil's composition, particularly the clay content, which significantly affects the soil's permeability. Here, we investigated the PFAS mobilization efficiency from soils with different clay contents by using two techniques: electrokinetic (EK) remediation and hydraulic flushing. Artificial kaolinite was added to a loamy sand soil to prepare four soil blends with clay contents of 5, 25, 50, and 75%, each contaminated with perfluorooctanoic acid (PFOA) and perfulorooctanesulfonic acid (PFOA) at 10,000 μg/kg. EK remediation was conducted by applying a low voltage (30 V) with a current of 100 mA, and hydraulic flushing was carried out by applying a hydraulic gradient (HG) with a slope of 6.7%. Results show that, with a 14-day treatment duration, the EK-mobilization efficiency was enhanced substantially with the increase of clay content (removal of PFOS increased from 20% at 5% clay to 80% at 75% clay), most likely due to the increase of electroosmotic flow due to the higher content of particles having a zeta potential (i.e., clay). For HG, increasing the clay content significantly suppressed the mobilization of PFAS (removal of PFOS decreased from 40% at 5% clay to 10% at 75% clay) due to a notable decrease in the soil's permeability. Based on the results, applying hydraulic flushing and washing techniques for mobilizing PFAS would be appropriate when treating permeable soils with a maximum clay content of about 25%; otherwise, other suitable mobilization techniques such as EKs should be considered.
Collapse
Affiliation(s)
- Charbel Abou-Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jitendra Kewalramani
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Zhiming Zhang
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Stewart Abrams
- Langan Engineering and Environmental Services, Inc., 300 Kimball Dr., Parsippany, NJ 07054, USA
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
23
|
Campos-Pereira H, Kleja DB, Ahrens L, Enell A, Kikuchi J, Pettersson M, Gustafsson JP. Effect of pH, surface charge and soil properties on the solid-solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils. CHEMOSPHERE 2023; 321:138133. [PMID: 36791815 DOI: 10.1016/j.chemosphere.2023.138133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The pH-dependent soil-water partitioning of six perfluoroalkyl substances (PFASs) of environmental concern (PFOA, PFDA, PFUnDA, PFHxS, PFOS and FOSA), was investigated for 11 temperate mineral soils and related to soil properties such as organic carbon content (0.2-3%), concentrations of Fe and Al (hydr)oxides, and texture. PFAS sorption was positively related to the perfluorocarbon chain length of the molecule, and inversely related to solution pH for all substances. The negative slope between log Kd and pH became steeper with increasing perfluorocarbon chain length of the PFAS (r2 = 0.75, p ≤ 0.05). Organic carbon (OC) alone was a poor predictor of the partitioning for all PFASs, except for FOSA (r2 = 0.71), and the OC-normalized PFAS partitioning, as derived from organic soil materials, underestimated PFAS sorption to the soils. Multiple linear regression suggested sorption contributions (p ≤ 0.05) from OC for perfluorooctane sulfonate (PFOS) and FOSA, and Fe/Al (hydr)oxides for PFOS, FOSA, and perfluorodecanoate (PFDA). FOSA was the only substance under study for which there was a statistically significant correlation between its binding and soil texture (silt + clay). To predict PFAS sorption, the surface net charge of the soil organic matter fraction of all soils was calculated using the Stockholm Humic Model. When calibrated against charge-dependent PFAS sorption to a peat (Oe) material, the derived model significantly underestimated the measured Kd values for 10 out of 11 soils. To conclude, additional sorbents, possibly including silicate minerals, contribute to the binding of PFASs in soil. More research is needed to develop geochemical models that can accurately predict PFAS sorption in soils.
Collapse
Affiliation(s)
- Hugo Campos-Pereira
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden
| | - Dan B Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden; Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Anja Enell
- Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden
| | - Johannes Kikuchi
- Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden; Department of Thematic Studies, Linköping University, SE-581 83, Linköping, Sweden
| | | | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
24
|
Krahn KM, Cornelissen G, Castro G, Arp HPH, Asimakopoulos AG, Wolf R, Holmstad R, Zimmerman AR, Sørmo E. Sewage sludge biochars as effective PFAS-sorbents. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130449. [PMID: 36459882 DOI: 10.1016/j.jhazmat.2022.130449] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The use of sewage sludge to produce biochar-based sorbents for per- and polyfluoroalkyl substances (PFAS) removal from water and soil may be an economically and environmentally sustainable waste management option. This study compared the sorption of six perfluorinated carboxylic acids (PFCAs) by two sewage sludge biochars (SSBCs) and one wood chip biochar (WCBC), dry pyrolyzed at 700 °C. Batch sorption tests were conducted by adding individual PFCAs and a PFCA-mixture to pure biochars and mixtures of biochar and a sandy soil (1.3% TOC). PFAS-sorption to the SSBCs exhibited log-linear biochar-water distribution coefficients (log Kd), comparable to those previously reported for commercial activated carbons (e.g., 5.73 ± 0.02 for perfluorooctanoic acid at 1 µg/L). The strong sorption of PFCAs was attributed to the SSBCs relatively high pore volumes in the pore size range that can accommodate these compounds. Sorption was attenuated by the presence of soil (by factors 3-10), by the presence of a mixture of PFCAs (by factors of 6-532) and by both together (by factors of 8-6581), indicating strongly competitive sorption between PFCA-congeners, and less severe sorption attenuation by soil organic matter. These findings could enable sustainable value chains for SSBs in soil remediation and water filtration solutions.
Collapse
Affiliation(s)
- Katinka M Krahn
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway; Lindum AS, 3036 Drammen, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | | | - Raoul Wolf
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway
| | | | | | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| |
Collapse
|
25
|
Using a batch test to derive sorption data of fluoroquinolone antibiotics in humic acids. MethodsX 2023; 10:102109. [PMID: 36970026 PMCID: PMC10033734 DOI: 10.1016/j.mex.2023.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Fluoroquinolone antibiotics (FQs) are of concern due to their disrupting effects on environmental bacterial communities. Evaluating FQ sorption by soil components is important to understand their interaction with soils and to address their environmental (bio)availability. However, data in soil organic components, especially humic acids, are scarce. Batch experiments following OECD guidelines are suitable for testing the sorption of pollutants in solid matrices. Here, we applied this methodology, with specific changes in the experimental setup, to derive sorption data and to identify the factors affecting sorption of four common FQs in seven humic acids with contrasting properties. The effect of shaking time, pH, calcium concentration in solution and dissolved organic carbon (DOC) content on the quantification of the solid-liquid distribution coefficient (Kd) of norfloxacin in three reference humic acids was evaluated. Sorption reversibility and sorption analogy of four FQs were additionally assessed in these three reference materials, whereas the effect of initial norfloxacin concentration was evaluated in the overall set of seven humic acids. Sorption was fast, strong, non-linear, irreversible and affected by changes in the pH and calcium levels in solution. The bell-shaped sorption trend at varying pH values confirmed the key role of FQ speciation in sorption and the high Kd values indicated a positive effect of soil organic matter components on FQ sorption in bulk soils at environmentally relevant pH values.•Relevant factors affecting sorption of pollutants in environmental matrices must be considered to derive Kd values with low variability and high representativeness.•In this article we modify the experimental conditions of standard batch tests to identify the factors that affect the sorption of FQs in humic acids.•The methodological approach followed can be extrapolated to the evaluation of other combinations of pollutant and environmental matrix.
Collapse
|
26
|
Sadia M, Nollen I, Helmus R, ter Laak TL, Béen F, Praetorius A, van Wezel AP. Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3062-3074. [PMID: 36779784 PMCID: PMC9979608 DOI: 10.1021/acs.est.2c06015] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
This study investigates human exposure to per- and polyfluoroalkyl substances (PFAS) via drinking water and evaluates human health risks. An analytical method for 56 target PFAS, including ultrashort-chain (C2-C3) and branched isomers, was developed. The limit of detection (LOD) ranged from 0.009 to 0.1 ng/L, except for trifluoroacetic-acid and perfluoropropanoic-acid with higher LODs of 35 and 0.24 ng/L, respectively. The method was applied to raw and produced drinking water from 18 Dutch locations, including groundwater or surface water as source, and applied various treatment processes. Ultrashort-chain (300 to 1100 ng/L) followed by the group of perfluoroalkyl-carboxylic-acids (PFCA, ≥C4) (0.4 to 95.1 ng/L) were dominant. PFCA and perfluoroalkyl-sulfonic-acid (≥C4), including precursors, showed significantly higher levels in drinking water produced from surface water. However, no significant difference was found for ultrashort PFAS, indicating the need for groundwater protection. Negative removal of PFAS occasionally observed for advanced treatment indicates desorption and/or degradation of precursors. The proportion of branched isomers was higher in raw and produced drinking water as compared to industrial production. Drinking water produced from surface water, except for a few locations, exceed non-binding provisional guideline values proposed; however, all produced drinking waters met the recent soon-to-be binding drinking-water-directive requirements.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Ingeborg Nollen
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Rick Helmus
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Thomas L. ter Laak
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Frederic Béen
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Annemarie P. van Wezel
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
27
|
Burkhard LP, Votava LK. Review of per- and polyfluoroalkyl substances (PFAS) bioaccumulation in earthworms. ENVIRONMENTAL ADVANCES 2022; 11:1-10. [PMID: 38481605 PMCID: PMC10936581 DOI: 10.1016/j.envadv.2022.100335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used across the globe in commercial products such textiles, firefighting foams, and surface coatings. Some PFAS, such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are known to be bioaccumulative. Numerous terrestrial ecosystems including sites near PFAS manufacturing facilities, facilities using PFAS in their manufacturing processes, firefighting training areas, landfills, and agricultural fields treated with some pesticide formulations, have been contaminated with PFAS. Earthworms reside at the base of the terrestrial food chain and to perform risk assessments at terrestrial sites contaminated with PFAS, information on the bioaccumulation of PFAS is needed. To understand the bioaccumulation of PFAS by earthworms, a literature search was performed, and biota-soil accumulation factors (BSAFs), measured in laboratory tests and at field sites contaminated with PFAS, were assembled and evaluated in this review. Based on this review, we conclude that there is enough data available for carboxylic and sulfonic acid PFAS classes to derive useful BSAFs for terrestrial risk assessments. Laboratory tests with PFOS and PFOA will be close to or at steady-state conditions with standardized testing protocols, and for the longer chain carboxylic and sulfonic acids, it is unlikely they will reach steady-state with the completion of the uptake exposure. For PFAS classes beyond the carboxylic and sulfonic acids, data are limited and performing terrestrial risk assessments with these PFAS will be difficult. Lastly, additional measurements are needed for non-acid PFAS classes as well as from field settings for all PFAS classes. Across all studies, PFOS and PFOA had average (standard deviation, count) BSAFs (kg-OC/kg-ww) of 0.167 (0.311, 60) and 0.0413 (0.175, 47), respectively.
Collapse
Affiliation(s)
- Lawrence P. Burkhard
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804 USA
| | - Lauren K. Votava
- Oak Ridge Associated Universities Student Services Contractor to U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804 USA
| |
Collapse
|
28
|
Gnesda WR, Draxler EF, Tinjum J, Zahasky C. Adsorption of PFAAs in the Vadose Zone and Implications for Long-Term Groundwater Contamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16748-16758. [PMID: 36395358 DOI: 10.1021/acs.est.2c03962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent environmental contaminants that sorb to air-water and solid interfaces throughout the vadose zone. These sorption processes lead to decadal leaching of PFAS from the source zones to groundwater systems. While these processes are increasingly well understood, critical gaps exist in describing the vertically variable adsorption in the presence of vadose zone heterogeneity and methods for efficiently upscaling the laboratory observations to predict field-scale PFAA transport and retardation. In this work, we build upon fundamental theories and scalable relationships to define a semi-analytical framework for synthesizing and upscaling PFAA adsorption in heterogeneous vadose zone systems. Solid-phase and air-water interfacial adsorption are quantified mechanistically for several PFAAs and then applied to a contaminated site in Northern Wisconsin. The results highlight the dominance of air-water and organic carbon solid-phase adsorption processes in the vadose zone. Strong sorption heterogeneity─driven by depth-dependent adsorption mechanisms─produces complex spatially variable retardation profiles. We develop vadose zone retardation potentials to quantify this field-scale heterogeneity and propose vertical integration methods to upscale spatially resolved information for transport modeling. This work highlights the importance of accounting for multiscale and multiprocess heterogeneity for accurately describing and predicting the long-term fate and transport of PFAAs in the subsurface.
Collapse
Affiliation(s)
- William R Gnesda
- Department of Geoscience, University of Wisconsin─Madison, Madison, Wisconsin53715, United States
| | - Elliot F Draxler
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin53715, United States
| | - James Tinjum
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin53715, United States
| | - Christopher Zahasky
- Department of Geoscience, University of Wisconsin─Madison, Madison, Wisconsin53715, United States
| |
Collapse
|
29
|
Sviridov AV, Maltsev GI, Timofeev KL. Adsorption of Metal Ions on Aluminosilicates. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Mroczko O, Preisendanz HE, Wilson C, Mashtare ML, Elliott HA, Veith TL, Soder KJ, Watson JE. Spatiotemporal patterns of PFAS in water and crop tissue at a beneficial wastewater reuse site in central Pennsylvania. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1282-1297. [PMID: 36070520 PMCID: PMC9828414 DOI: 10.1002/jeq2.20408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a collective name for thousands of synthetic compounds produced to enhance consumer and industrial products since the 1940s. They do not easily degrade, and some are known to pose serious ecological and human health concerns at trace concentrations (ng L-1 levels). Per- and polyfluoroalkyl substances persist in treated wastewater and are inadvertently introduced into the environment when treated wastewater is reused as an irrigation source. The Pennsylvania State University (PSU) has been spray-irrigating its wastewater at a 2.45 km2 mixed-use agricultural and forested site known as the "Living Filter" since the 1960s. To understand the spatiotemporal patterns of 20 PFAS at the Living Filter, water samples were collected bimonthly from fall 2019 through winter 2021 from the PSU's wastewater effluent and from each of the site's 13 monitoring wells. Crop tissue was collected at the time of harvest to assess PFAS presence in corn silage and tall fescue grown at the study site. Total measured PFAS concentrations in the monitoring wells ranged from nondectable to 155 ng L-1 , with concentrations increasing with the direction of groundwater flow. Concentrations within each well exhibited little temporal variability across sampling events, with mixed relationships between PFAS and groundwater elevation observed between wells. Further, >84% of the PFAS present in livestock feed crops were short-chain compounds, with PFAS consumed annually by livestock fed crops harvested from the site estimated to be 2.46-7.67 mg animal-1 yr-1 . This research provides insight into the potential impacts of long-term beneficial reuse of treated wastewater on groundwater and crop tissue quality.
Collapse
Affiliation(s)
- Olivia Mroczko
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Heather E Preisendanz
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
- Institute for Sustainable Agricultural, Food, and Environmental Science, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Christopher Wilson
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Michael L Mashtare
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Herschel A Elliott
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Tamie L Veith
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Kathy J Soder
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - John E Watson
- Dep. of Ecosystem Science and Management, The Pennsylvania State Univ., University Park, PA, 16802, USA
| |
Collapse
|
31
|
Liu Y, Bahar MM, Samarasinghe SVAC, Qi F, Carles S, Richmond WR, Dong Z, Naidu R. Ecological risk assessment for perfluorohexanesulfonic acid (PFHxS) in soil using species sensitivity distribution (SSD) approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129667. [PMID: 36104899 DOI: 10.1016/j.jhazmat.2022.129667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Perfluorohexanesulfonic acid (PFHxS) is one of the persistent organic pollutants that has been recommended to be listed in Annex A of the Stockholm Convention. It has gained increasing attention in recent years due to its toxic effects. The guideline values of PFHxS are commonly associated with PFOS in various countries and regulatory agencies. In this study, multispecies bioassays were conducted to determine the ecological toxic effects of PFHxS, including plants, soil invertebrates, and soil microorganisms, which indicated the EC10/NOEC values ranged from 2.9 to 250 mg/kg. Where possible, logistic models were used to calculate the EC30 values for various endpoints. The species sensitivity distributions were employed to estimate the ecological investigation levels for PFHxS contamination in soils using toxicity results from literature and this study. The calculation using EC10/NOEC values from both literature and this study indicated a most conservative HC5 as 1.0 mg/kg (hazardous concentration for 5 % of the species being impacted). However, utilisation of EC30 values derived from this study resulted in a much higher HC5 for PFHxS in contaminated soils (13.0 mg/kg) which is at the higher end of the existing guideline values for PFOS for protecting ecological systems. The results obtained in this study can be useful in risk assessment processes to minimize any uncertainty using combined values with PFOS.
Collapse
Affiliation(s)
- Yanju Liu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Md Mezbaul Bahar
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - S V A Chamila Samarasinghe
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | | | - William R Richmond
- Department of Water and Environmental Regulation, Government of Western Australia, 8 Davidson Terrace, Joondalup WA 6027, Australia.
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijging 100191, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| |
Collapse
|
32
|
Weidemann E, Lämmer R, Stahl T, Göckener B, Bücking M, Breuer J, Kowalczyk J, Just H, Boeddinghaus RS, Gassmann M. Leaching and Transformation of Perfluoroalkyl Acids and Polyfluoroalkyl Phosphate Diesters in Unsaturated Soil Column Studies. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2065-2077. [PMID: 35751449 DOI: 10.1002/etc.5417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/01/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally ubiquitous, anthropogenic substances with adverse effects on organisms, which shows the need to study their environmental fate and leaching behavior. In the present soil columns study, the leaching behavior and fate of nontransformable and transformable (precursors) were investigated. Ten nontransformable PFAS in two different soils, two precursors and two field soils, which were already contaminated with a mixture of PFAS, and two uncontaminated controls, were set up for a time span of 2 years. At the end of the study, the molecular balance could not be closed for nontransformable PFAS. This effect was positively correlated to the fluorinated carbon chain length. The precursors, which were both polyfluoroalkyl phosphate diesters (diPAP), had different transformation products and transformation rates, with a higher rate for 6:2 diPAP than 8:2 diPAP. After 2 years, amounts of diPAP were still found in the soil with no significant vertical movement, showing high adsorption to soils. Transformation products were estimated to be simultaneously formed. They were predominantly found in the percolation water; the amounts left in soil were negligible. Up to half of the initial precursor amounts could not be balanced and were considered missing amounts. The results of contaminated field soil experiments showed the challenge to estimate PFAS leaching without knowing all occurring precursors and complex transformation dynamics. For this purpose, it was shown that a broad examination of contaminated soil with different analytical methods can help with qualitative estimations of leaching risks. For a better quantitative estimation, analytical determination of more PFAS and a quantification of the missing amounts are needed. Environ Toxicol Chem 2022;41:2065-2077. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Eva Weidemann
- Department of Hydrology and Substance Balance, University of Kassel, Kassel, Germany
| | - René Lämmer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Thorsten Stahl
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe, Münster, Germany
| | - Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Mark Bücking
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Jörn Breuer
- Center for Agricultural Technology Augustenberg (LTZ), Karlsruhe, Germany
| | | | - Hildegard Just
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Matthias Gassmann
- Department of Hydrology and Substance Balance, University of Kassel, Kassel, Germany
| |
Collapse
|
33
|
Fabregat-Palau J, Vidal M, Rigol A. Examining sorption of perfluoroalkyl substances (PFAS) in biochars and other carbon-rich materials. CHEMOSPHERE 2022; 302:134733. [PMID: 35500630 DOI: 10.1016/j.chemosphere.2022.134733] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The use of carbon-rich sorbents to remove and/or immobilize perfluoroalkyl substances (PFAS) in contaminated environmental scenarios is attracting increasing interest. The identification of key sorbent properties responsible for PFAS sorption and the development of models that can predict the distribution coefficients (Kd) for PFAS sorption in these materials are crucial in the screening of candidate materials for environmental remediation. In this study, sorption kinetics, sorption isotherms, and the effects of pH, calcium concentration and dissolved organic carbon (DOC) content on PFAS sorption were evaluated in four representative carbon-rich materials: two biochars with contrasting properties, a compost, and charcoal fines rejected by the metallurgical industry. Subsequently, the sorption of seven PFAS with numbers of fluorinated carbons ranging from 4 to 11 was evaluated in a total of ten carbon-rich materials, including activated carbons, so as to build up a Kd prediction model. The sorption of PFAS increased with greater fluorinated chain length, suggesting that hydrophobic interactions play a major role in sorption and electrostatic interactions a minor one. These results were confirmed by a principal component analysis, which revealed that the CORG/O molar ratio and the specific surface area of the material were the two main sorbent properties affecting PFAS sorption. Furthermore, the DOC content in solution had a negative effect on PFAS sorption. Using this information, a simple Kd prediction model applicable to a wide range of materials and PFAS was developed, using only a few easily-derived physicochemical properties of sorbent (CORG/O molar ratio and SSA) and PFAS (number of CF2), and was externally validated with data gathered from the literature.
Collapse
Affiliation(s)
- Joel Fabregat-Palau
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Miquel Vidal
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Anna Rigol
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
34
|
Liu Z, Xu C, Johnson AC, Sun X, Wang M, Xiong J, Chen C, Wan X, Ding X, Ding M. Exploring the source, migration and environmental risk of perfluoroalkyl acids and novel alternatives in groundwater beneath fluorochemical industries along the Yangtze River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154413. [PMID: 35276179 DOI: 10.1016/j.scitotenv.2022.154413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The widely used legacy perfluoroalkyl acids (PFAAs) with serious environmental hazards are gradually restricted and being replaced by novel alternatives. Here, for an efficient control of emerging environmental risks in groundwater, we systematically studied the source apportionment, spatial attenuation, composition change and risk zoning of 12 PFAAs and five novel alternatives within a region of ~200 km2 around a mega fluorochemical industrial park (FIP) along the Yangtze River, and in-depth explored potential association between groundwater and soil pollution as well as influencing factors on contaminant migration and risk distribution in the aquifer. Short-chain PFAAs and novel alternatives together accounted for over 70% in groundwater, revealing their prevalence in replacing legacy perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Novel alternatives for PFOA were mainly hexafluoropropylene oxide dimer acid (GenX) and hexafluoropropylene oxide trimer acid (HFPO-TA), while those for PFOS were 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) and 6:2 fluorotelomer sulfonic acid (6:2 FTS). PFAAs (maximum total: 1339 ng/L) and novel alternatives (maximum total: 208 ng/L) in groundwater were mostly derived from the FIP, and exhibited an exponentially decreasing trend with increasing distance. Compared with those in groundwater, more diverse sources of PFAAs and novel alternatives in surface soil were identified. The transport of these chemicals may be retarded by clayed surface soils with high organic matter contents. High aquifer permeability could generally promote the dilution and migration of PFAAs and novel alternatives in groundwater, as well as reduce the differences in their spatial distribution. Shorter-chain components with smaller molecules and higher hydrophilicity exhibited greater migration capacities in the aquifer. In addition, different levels of health risk from PFOS and PFOA were zoned based on drinking groundwater, and high risks tended to be distributed in areas with relatively poor aquifer water yield due to higher pollutant accumulation.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew C Johnson
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon OX 10 8BB, UK
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbe, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan 430034, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muyang Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
35
|
Loganathan N, Wilson AK. Adsorption, Structure, and Dynamics of Short- and Long-Chain PFAS Molecules in Kaolinite: Molecular-Level Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8043-8052. [PMID: 35543620 DOI: 10.1021/acs.est.2c01054] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ubiquitous presence of poly- and perfluoroalkyl substances (PFAS) in different natural settings poses a serious threat to environmental and human health. Soils and sediments represent one of the important exposure pathways of PFAS for humans and animals. With increasing bioaccumulation and mobility, it is extremely important to understand the interactions of PFAS molecules with the dominant constituents of soils such as clay minerals. This study reports for the first time the fundamental molecular-level insights into the adsorption, interfacial structure, and dynamics of short- and long-chain PFAS molecules at the water-saturated mesopores of kaolinite clay using classical molecular dynamics (MD) simulations. At environmental conditions, all the PFAS molecules are exclusively adsorbed near the hydroxyl surface of the kaolinite, irrespective of the terminal functional groups and metal cations. The interfacial adsorption structures and coordination environments of PFAS are strongly dependent on the nature of the functional groups and their hydrophobic chain length. The formation of large, aggregated clusters of long-chain PFAS at the hydroxyl surface of kaolinite is responsible for their restricted dynamics in comparison to short-chain PFAS molecules. Such comprehensive knowledge of PFAS at the clay mineral interface is critical to developing novel site-specific degradation and mitigation strategies.
Collapse
Affiliation(s)
- Narasimhan Loganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
36
|
Zhang Y, Cornelissen G, Silvani L, Zivanovic V, Smebye AB, Sørmo E, Thune G, Okkenhaug G. Industrial byproducts for the soil stabilization of trace elements and per- and polyfluorinated alkyl substances (PFASs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153188. [PMID: 35051478 DOI: 10.1016/j.scitotenv.2022.153188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The present work was the first exploration of the use of industrial byproducts from iron and titanium processing as sorbents for the stabilization of soil contamination. The main aim was to test slag waste and iron-rich charred fossil coal ("Fe-char"), as sorbents for per- and polyfluorinated alkyl substances (PFASs), as well as lead (Pb) and antimony (Sb), in four soils from a firefighting training area (PFASs) and a shooting range (Pb and Sb). Adding slag (10-20%) to shooting range soils decreased the leaching of Pb and Sb up to 50-90%. Fe-char amendment to these soils resulted in a moderate reduction in Sb leaching (20-70%) and a slightly stronger effect on Pb (40-50%). The sorption is most likely explained by the presence of Fe oxyhydroxides. These are present in the highest concentrations in the slag, probably resulting in more effective metal binding to the slag than to the Fe-char. Fe-char but not slag proved to be a strong sorbent for PFASs (reducing PFAS leaching from the soil by up to 99.7%) in soil containing low total organic carbon (TOC; 1.2%) but not in high-TOC soil (34%). The sorption coefficient KD for Fe-char was high, in the range of 104.3 to 106.5 L/kg at 1 ng/L in the low-TOC soil. The KD value increased with increasing perfluorocarbon chain length, exceeding PFAS sorption to biochar in the low ng/L concentration range. This result indicates that the mechanism behind the strong PFAS sorption to Fe-char was mainly van der Waals dispersive interactions between the hydrophobic PFAS-chain and the aromatic π-electron systems on nanopore walls within the Fe-char matrix. Overall, this study indicates that industrial byproducts can provide sustainable and cost-effective materials for soil remediation. However, the sorbent needs to be tailored to the type of soil and type of contamination.
Collapse
Affiliation(s)
- Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Lushan Gate, Lushan South Road, Yuelu District, Changsha 100084, China; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, PB 5003 NMBU, Ås 1432, Norway
| | - Gerard Cornelissen
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, PB 5003 NMBU, Ås 1432, Norway; Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, PB 3930 Ullevaal Stadion, 0806 Oslo, Norway
| | - Ludovica Silvani
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, PB 3930 Ullevaal Stadion, 0806 Oslo, Norway
| | - Valentina Zivanovic
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, PB 5003 NMBU, Ås 1432, Norway
| | - Andreas Botnen Smebye
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, PB 3930 Ullevaal Stadion, 0806 Oslo, Norway
| | - Erlend Sørmo
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, PB 5003 NMBU, Ås 1432, Norway; Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, PB 3930 Ullevaal Stadion, 0806 Oslo, Norway
| | - Gorm Thune
- Lindum AS, Lerpeveien 155, Drammen, Norway
| | - Gudny Okkenhaug
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, PB 5003 NMBU, Ås 1432, Norway; Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, PB 3930 Ullevaal Stadion, 0806 Oslo, Norway.
| |
Collapse
|
37
|
MacInnis J, De Silva AO, Lehnherr I, Muir DCG, St Pierre KA, St Louis VL, Spencer C. Investigation of perfluoroalkyl substances in proglacial rivers and permafrost seep in a high Arctic watershed. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:42-51. [PMID: 34908076 DOI: 10.1039/d1em00349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We measured perfluoroalkyl substances (PFAS) in proglacial rivers and along a non-glacial freshwater continuum to investigate the role of snow and ice melting in their transport and fate within the Lake Hazen watershed (82° N). PFAS concentrations in glacial rivers were higher than those in surface waters of Lake Hazen, suggesting melting glacial ice increased PFAS concentrations in the lake. Stream water derived from subsurface soils along a non-glacial (permafrost thaw and snowmelt) freshwater continuum was a source of PFAS to Lake Hazen. Lower concentrations were found downstream of a meadow wetland relative to upstream locations along the continuum, suggesting PFAS partitioning into vegetation and soil as water flowed downstream towards Lake Hazen. Our estimations indicate that total PFAS inputs from glacial rivers and snowmelt were 1.6 kg (78%) and 0.44 kg (22%), respectively, into Lake Hazen, totalling 2.04 kg, and the output of PFAS from Lake Hazen was 0.64 kg. A positive net annual change of 1.4 kg indicates PFAS had notable residence times and/or net storage in Lake Hazen.
Collapse
Affiliation(s)
- John MacInnis
- Department of Chemistry, Memorial University, St. John's, NL A1B 3X7, Canada.
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada.
| | - Igor Lehnherr
- Department of Geography, Geomatics and Environment, University of Toronto, Mississauga, ON L5L 1C6, Canada.
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada.
| | - Kyra A St Pierre
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Vincent L St Louis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Christine Spencer
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada.
| |
Collapse
|