1
|
Zhou Y, Xiao H, Liu Q, Wang L, Gong Y, Remón J. Synergistic production of nitrogen-rich hydrochar and solid biofuels via co-hydrothermal carbonization of microalgae and macroalgae: When nitrogen circularity matters. ENVIRONMENTAL RESEARCH 2025; 268:120749. [PMID: 39761783 DOI: 10.1016/j.envres.2024.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
This work explores the synergies between N-rich (Chlorella pyrenoidosa) microalgae and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions. Biomass synergies enhanced hydrochar quality at lower temperatures through deoxygenation reactions and/or liquid-phase repolymerization. In contrast, at higher temperatures, interactions between carbohydrates and proteins via solid-phase Maillard and Mannich reactions decreased hydrochar fuel quality but enriched nitrogen functionalities, such as pyridine-N. Optimization revealed that high N retention and hydrochar yield (up to 23%) were achieved by mixing up to 50 wt% macroalgae with microalgae at 223 °C for 174 min, maintaining functional N content (6 wt% N, 16% pyridine-N). Additionally, an energy-dense hydrochar (34% yield and 26 MJ/kg HHV) was synergistically produced by co-treating 70 wt% microalgae and 30 wt% macroalgae at 180 °C for 60 min. This synergistic algal approach highlights the potential of synergistic algal co-HTC to enhance nitrogen circularity, improve feedstock flexibility, and support sustainable biofuel and material production from marine resources.
Collapse
Affiliation(s)
- Yingdong Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Haiting Xiao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Qing Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Lan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yuan Gong
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain.
| |
Collapse
|
2
|
Xiong W, Luo Y, Shangguan W, Deng Y, Li R, Song D, Zhang M, Li Z, Xiao R. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Optimal parameters for enhanced nutrient reclamation, carbon sequestration, and heavy metals passivation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:174-185. [PMID: 39326066 DOI: 10.1016/j.wasman.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Hydrochar, the primary product of hydrothermal carbonization (HTC) of wet organic waste, is recognized as a versatile, carbon-abundant material with diverse applications. However, optimizing its performance for specific uses remains challenging. Therefore, this study introduced a co-HTC process involving carbon-rich lignocellulosic materials and ash-rich livestock manure [i.e., Zanthoxylum bungeanum branch residue (ZB) and swine manure (SM), respectively]. The impacts of HTC temperature (i.e., 180 °C, 220 °C, and 240 °C) and mass ratios (i.e., 1:0, 7:3, 5:5, 3:7, and 0:1) on hydrochar properties (e.g., pH, EC, nutrient contents, heavy metal content and availability, chemical stability, etc) and the characteristics of process water were evaluated. Results reveal that co-HTC dramatically improved the quality of hydrochars compared with that derived from a single feedstock. Notably, the ZB:SM ratio had a more substantial impact on total nutrient content, carbon stability, and heavy metal accumulation and mobility. Additionally, the synergistic effects of ZB and SM were greatly dependent on the HTC temperature. By adjusting the feedstock mass ratio and HTC temperature, a highly-functionalized hydrochar can be produced. For example, hydrochars produced at 240 °C with a 7:3 ZB to SM ratio (HC240-7) is optimal for degraded soil amendment, enhancing carbon sequestration and nutrient supplementation. Results from this study could provide valuable insights for improving waste management through HTC and expanding the environmental and agricultural application of hydrochar.
Collapse
Affiliation(s)
- Weijie Xiong
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China
| | - Yuping Luo
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China
| | - Wengao Shangguan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China
| | - Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China
| | - Ronghua Li
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, 401147 Chongqing, PR China
| | - Muyuan Zhang
- Chongqing Academy of Ecology and Environmental Sciences, 401147 Chongqing, PR China
| | - Zengyi Li
- Auking Agricultural Science Corporation, Chengdu 610213, Sichuan, PR China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Beibei 400715, Chongqing, PR China.
| |
Collapse
|
3
|
Cheng S, Yang T, Huang J, Tian H, Zhang W, Xin F, Qiao Y. Study on the effect of conditioner on NO x precursor control behavior from sewage sludge pyrolysis: Focusing on conditioner assessments and in-situ fixation mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:1-10. [PMID: 39137581 DOI: 10.1016/j.wasman.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
The nitrogen transformation during sludge pyrolysis is affected by the dewater conditioner. However, the comparative analysis of the conditioner under identical pyrolysis conditions has been previously absent. In this study, Ca-, Fe- and Al-based conditioners were selected as the representatives. A comprehensive evaluation considering the cost of the conditioners and the product characteristics was conducted. Additionally, the in-situ fixation mechanism of the conditioner on nitrogen-containing gas was concurrently revealed. Among the six conditioners, CaO and AlCl3 were identified as the top performers, ranking first and second, respectively. Furthermore, Fe/Ca-based conditioners reduced NH3 and HCN release by 1.5 ∼ 5.53 % and 0 ∼ 1.55 %, respectively, by facilitating the conversion of amine-N to a more stable form in condensable fraction. Fe promoted volatile amine-N cyclization, while Ca encouraged its dehydrogenation. Both Fe/Ca-based conditioners increased 7.5 ∼ 14.8 % nitrogen retention in char, by inhibiting the decomposition of protein-N. Al-based conditioners had little effect on NH3 and HCN, but contributed to 2.3 ∼ 2.8 % production of stabilized nitrogen in char. The introduction of Cl in Fe/Ca/Al chloride conditioners would promote the decomposition of inorganic ammonium salts to produce NH3 at 30 ∼ 185 °C. And Cl also reacted with volatiles through electrophilic substitution reaction, leading to the formation of halogenated hydrocarbons in condensable fraction and the release of more NH3, HCN, and HNCO at 30 ∼ 465 °C. The findings of this study provide a detailed comparative analysis of various conditioners under uniform conditions and reveal the in-situ fixation mechanism of nitrogen-containing gas. This will provide guidance for the sludge conditioning-dewatering-drying integrated treatment and disposal.
Collapse
Affiliation(s)
- Shan Cheng
- School of Energy and Power Engineering, Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, Changsha University of Science and Technology, Changsha 410114, China
| | - Ting Yang
- School of Energy and Power Engineering, Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, Changsha University of Science and Technology, Changsha 410114, China
| | - Jingchun Huang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hong Tian
- School of Energy and Power Engineering, Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei Zhang
- School of Energy and Power Engineering, Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, Changsha University of Science and Technology, Changsha 410114, China
| | - Feng Xin
- School of Energy and Power Engineering, Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, Changsha University of Science and Technology, Changsha 410114, China
| | - Yu Qiao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Mu D, Wang C, Geng X, Zhao Y, Mohamed TA, Wu D, Wei Z. Effect of Maillard reaction based on catechol polymerization on the conversion of food waste to humus. CHEMOSPHERE 2024; 353:141560. [PMID: 38417496 DOI: 10.1016/j.chemosphere.2024.141560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
The pollution and harm of food waste (FW) are increasingly concerned, which has the dual attributes of pollutants and resources. This study aimed to improve the synthesis efficiency of FW humic substances (HS), and investigating the effect of catechol on the formation mechanism and structure of humic acid (HA) and fulvic acid (FA). Results indicated that catechol incorporation could enable to exhibit higher HS yield and more complex structure, especially the maximum particle size of FA reached 4800 nm. This was due to the combination of catechol with multiple nitrogenous compounds, which accelerated molecular condensation. Spectroscopic scans analysis revealed that Maillard reaction occurs first. Subsequently, Maillard reaction products and amino acids were combined with different sites of catechol, which leads to the difference of molecular structure of HS. The structure of FA is characterized by an abundance of carboxyl and hydroxyl groups, whereas HA is rich in benzene and heterocyclic structures. The structural difference was responsible for the disparity in the functional properties of FA and HA. Specifically, the presence of amino, hydroxyl, pyridine, and carboxyl groups in FA contributes significantly to its chelating activity. This research provides an efficient and sustainable unique solution for the high-value of FW conversion, and provides evidence for understanding the structural evolution of HA and FA.
Collapse
Affiliation(s)
- Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Di Wu
- College of Life Science, Northeast Forestry University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
5
|
Wang Z, Huang J, Wang J, Hu Z, Xu M, Qiao Y. Co-hydrothermal carbonization of sludge and food waste for hydrochar valorization: Effect of mutual interaction on sulfur transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167318. [PMID: 37742985 DOI: 10.1016/j.scitotenv.2023.167318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/02/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Co-hydrothermal carbonization of sludge and food waste is a promising method for hydrochar valorization. The sulfur content and form of hydrochar are the key parameters that determine its further utilization. However, the effect of the chemical composition of food waste on sulfur redistribution remains unknown. Herein, the sulfur transformation behavior during the co-hydrothermal carbonization of sludge and model compounds (cellulose, starch, xylan, and palmitic acid) of food waste was investigated, with focus on the detailed reaction pathways from inorganic-S/organic-S media in aqueous to hydrochar. The added model compounds, particularly the starch and xylan, increased the sulfur retention ratio from 41.0 to 44.7- 49.2 % in hydrochar. Among them, starch and xylan can react with aliphatic-S in aqueous via cyclization and oxidization to form the thiophene-S/aromatic-S and sulfone-S and can react with SO42--S to form sulfone-S via sulfonate reaction. These formed organic-S can polymerize with hydrolyzed intermediates (i.e., 5 hydroxymethyl-furfural, glucose, and xylose) from model compounds to transform into hydrochar. Cellulose enhanced the formation of sulfone-S in hydrochar via the reactions between the water-insoluble partial hydrolysate and SO42- in the aqueous. Additionally, palmitic acid hydrolysate provided an acidic environment that facilitated the polymerization of thiophene-S/aromatic-S from aqueous to hydrochar. Generally, the chemical composition of food waste largely affects the redistribution behavior of sulfur during co-hydrothermal carbonization, and this occurs primarily due to the differences in the hydrolysate and degree of hydrolysis for various model compounds. The results can provide guidance for preparing sludge-based hydrochar possessing different sulfur content and species, that can be used as clean fuel or carbon material.
Collapse
Affiliation(s)
- Zhenqi Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingchun Huang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junwen Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhen Hu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghou Xu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Qiao
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Mu D, Ma K, He L, Wei Z. Effect of microbial pretreatment on degradation of food waste and humus structure. BIORESOURCE TECHNOLOGY 2023; 385:129442. [PMID: 37399958 DOI: 10.1016/j.biortech.2023.129442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The study aimed to investigate the pretreatment characteristics of food waste (FW) by Bacillus licheniformis and Bacillus oryzaecorticis, and to determine the contribution of microbial hydrolysis in the structure of fulvic acid (FA) and humic acid (HA). FW was pretreated with Bacillus oryzaecorticis (FO) and Bacillus licheniformis (FL), and the resulting solution was heated to synthesize humus. The results showed that the acidic substances produced by microbial treatments led to a decrease in pH. In addition, Bacillus oryzaecorticis degraded starch and released a large amount of reducing sugar, providing OH and COOH to FA molecules. Bacillus licheniformis showed a positive effect on the HA structure, which had higher OH, CH3 and aliphatics. FO is more beneficial to retain OH and COOH, while FL is more beneficial to retain amino and aliphatics. This study provided evidence for the application of Bacillus licheniformis and Bacillus oryzaecorticis in waste management.
Collapse
Affiliation(s)
- Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kexin Ma
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liangzi He
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
7
|
Zhang Q, Mu K, Zhao B, Yi L. The Role of the Mannich Reaction in Nitrogen Migration during the Co-Hydrothermal Carbonization of Bovine Serum Albumin and Lignin with Various Forms of Acid-Alcohol Assistance. Molecules 2023; 28:molecules28114408. [PMID: 37298884 DOI: 10.3390/molecules28114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Co-hydrothermal carbonization (co-HTC) of N-rich and lignocellulosic biomass is a potential way to produce hydrochar with high yield and quality, but the nitrogen will also enrich in a solid product. In this study, a novel co-HTC with acid-alcohol assistance is proposed, and the model compounds bovine serum albumin (BSA) and lignin were used to investigate the role of the acid-alcohol-enhanced Mannich reaction in nitrogen migration. The results showed that the acid-alcohol mixture could inhibit nitrogen enrichment in solids and the order of the denitrification rate was acetic acid > oxalic acid > citric acid. Acetic acid promoted solid-N hydrolysis to NH4+ while oxalic acid preferred to convert it to oil-N. More tertiary amines and phenols were generated with oxalic acid-ethanol addition and then formed quaternary-N and N-containing aromatic compounds through the Mannich reaction. In the citric acid-ethanol-water solution, NH4+ and amino acids were captured to form diazoxide derivatives in oil and pyrroles in solids through both nucleophilic substitution and the Mannich reaction. The results are able to guide biomass hydrochar production with the targeted regulation of nitrogen content and species.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Kai Mu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bo Zhao
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Linlin Yi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Xie L, Gou L, Xu D, Kapusta K, Dai L, Wang Y. Coupling influences of organic components and temperature on nitrogen transformation and hydrochar characterization during hydrothermal carbonization of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161354. [PMID: 36603624 DOI: 10.1016/j.scitotenv.2022.161354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) in sewage sludge (SS) should be reduced if it is to be used to produce clean solid fuels. However, the N transformation during hydrothermal carbonization (HTC) of SS is not yet fully understood. Since the composition of SS is complex, it is wise to study a model compound, which should have typical functional groups of organic components. Hence, in this study, six model components (protein, lipid, cellulose, hemicellulose, humic acid, and lignin) representing the main organic components in SS were mixed with SS and treated at 150-270 °C for 1 h. The influence of the organic component and reaction temperature on hydrochar yield, hydrochar characterization, and N distribution in the products was investigated. Except for proteins and lipids, all the other components were found to contribute to the N content and aromatization of the hydrochar. Humus shows the best comprehensive performance in terms of both reducing the N content and increasing the aromaticity. The strongest effects of hemicellulose and cellulose on N retention in hydrochar are found to occur at 210 °C and 240 °C, respectively. The N retention caused by lignin is correlated with the Mannich reaction at 240 °C, while humus significantly promotes N transformation at 240 °C. For carbohydrates, lignin, and humus, the temperatures required for increasing the N content and aromaticity maintain a high degree of consistency. Although protein pulls down the energy recovery (ER) and yield of the hydrochar, observations indicate that it favors the carbonization process. This finding can be used for estimating the N content and quality of hydrochar and provides references for future research targeting the upgrading of hydrochar.
Collapse
Affiliation(s)
- Longfei Xie
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Le Gou
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Donghai Xu
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Krzysztof Kapusta
- Główny Instytut Górnictwa (Central Mining Institute), Plac Gwarków 1, 40-166 Katowice, Poland
| | - Liyi Dai
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| | - Yuanyuan Wang
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
9
|
Son Le H, Chen WH, Forruque Ahmed S, Said Z, Rafa N, Tuan Le A, Ağbulut Ü, Veza I, Phuong Nguyen X, Quang Duong X, Huang Z, Hoang AT. Hydrothermal carbonization of food waste as sustainable energy conversion path. BIORESOURCE TECHNOLOGY 2022; 363:127958. [PMID: 36113822 DOI: 10.1016/j.biortech.2022.127958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Every day, a large amount of food waste (FW) is released into the environment, causing financial loss and unpredictable consequences in the world, highlighting the urgency of finding a suitable approach to treating FW. As moisture content makes up 75% of the FW, hydrothermal carbonization (HTC) is a beneficial process for the treatment of FW since it does not require extensive drying. Moreover, the process is considered favorable for carbon sequestration to mitigate climate change in comparison with other processes because the majority of the carbon in FW is integrated into hydrochar. In this work, the reaction mechanism and factors affecting the HTC of FW are scrutinized. Moreover, the physicochemical properties of products after the HTC of FW are critically presented. In general, HTC of FW is considered a promising approach aiming to attain simultaneously-two core benefits on economy and energy in the sustainable development strategy.
Collapse
Affiliation(s)
- Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Zafar Said
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah P. O. Box 27272, United Arab Emirates; U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nazifa Rafa
- Department of Land Economy, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, UK
| | - Anh Tuan Le
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Düzce University, 81620, Düzce, Türkiye
| | - Ibham Veza
- Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam
| | - Xuan Quang Duong
- School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Vietnam
| | - Zuohua Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh city, Vietnam.
| |
Collapse
|
10
|
Ebrahimi M, Hassanpour M, Rowlings DW, Bai Z, Dunn K, O'Hara IM, Zhang Z. Effects of lignocellulosic biomass type on nutrient recovery and heavy metal removal from digested sludge by hydrothermal treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115524. [PMID: 35717693 DOI: 10.1016/j.jenvman.2022.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Sludge is a nutrient-rich organic waste generated from wastewater treatment plants. However, the application of sludge as a nutrient source is limited by its high contents of water and pollutants. In this study, the effects of biomass type on nutrient recovery and heavy metal removal from digested sludge by hydrothermal treatment (HTT) were investigated. Blending biomass with digested sludge for HTT at 180-240 °C increased the recovery of nitrogen in the treated solids. At the HTT temperature of 240 °C, HTT with hardwood sawdust led to the highest nitrogen recovery of 70.6%, compared to the lowest nitrogen recovery of 36.5% without biomass. Blending biomass slightly decreased the recovery of phosphorus compared to those without biomass. Nevertheless, the lowest phosphorus recovery of 91.3% with the use of hardwood sawdust at the HTT temperature of 240 °C was only ∼7.0% less than that without biomass. Blending biomass reduced the contents of macro-metals such as Ca, Fe, Mg and Al in treated solids but the metal contents varied with different biomasses. Regarding the heavy metals, the use of rice husk did not decrease the contents of Ni and Co while blending bagasse did not decrease the content of Cr at HTT temperatures of 210 °C and 240 °C compared to the use of other biomasses. The different effects of biomass type on nutrient recovery and heavy metals were likely related to the types and abundances of organic acids such as acetic acid, oxygen-containing functional groups such as C-OH and COOH, oxide minerals such as silica from biomasses and the overall effects of these factors. This study provides very useful information in selection of lignocellulosic biomass for HTT of sludge for nutrient recovery and heavy metal removal.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - David W Rowlings
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kameron Dunn
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia.
| |
Collapse
|
11
|
Karatas O, Khataee A, Kalderis D. Recent progress on the phytotoxic effects of hydrochars and toxicity reduction approaches. CHEMOSPHERE 2022; 298:134357. [PMID: 35313162 DOI: 10.1016/j.chemosphere.2022.134357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal carbonization of wet biomasses has been known to produce added-value materials for a wide range of applications. From catalyst substrates, to biofuels and soil amendments, hydrochars have distinct advantages to offer compared to conventional materials. With respect to the agricultural application of hydrochars, both positive and negative results have been reported. The presence of N, P and K in certain hydrochars is appealing and may contribute to the reduction of chemical fertilizer application. However, regardless of biomass, hydrothermal carbonization results in the production of phytotoxic organic compounds. Additionally, hydrochars from sewage sludge often contain heavy metal concentrations which exceed the regulatory limits set for agricultural use. This review critically discusses the phytotoxic aspects of hydrochar and provides an account of the substances commonly responsible for these. Furthermore, phytotoxicity reduction approaches are proposed and compared with each other, in view of field-scale applications.
Collapse
Affiliation(s)
- Okan Karatas
- Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey; Department of Environmental Engineering, Bursa Technical University, Bursa, 16310, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Dimitrios Kalderis
- Department of Electronics Engineering, Hellenic Mediterranean University, Chania, Crete, 73100, Greece.
| |
Collapse
|