1
|
Liu W, Chen Z, Li T, Wen X. Geographical distribution and risk of antibiotic resistance genes in sludge anaerobic digestion process across China. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137290. [PMID: 39837034 DOI: 10.1016/j.jhazmat.2025.137290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Anaerobic digestion (AD) is gaining increasing attention as the central reservoir of antibiotic resistance genes (ARGs), while the geographical distribution of ARGs in AD is neglected. Accordingly, a sampling scheme on full-scale AD plants across China was implemented, and the resistome therein was excavated. The abundance of ARGs in AD sludge ranged from 0.198 to 0.574 copies/cell. Some of the frequently reported and emergent ARGs were detected in our AD system. Both the abundance and composition of ARGs presented significant differences between the south and north regions of China, hinting the physical/economic factors may function in the formation of ARG profiles. The risk scores of AD samples were in middle of domestic and hospital wastewater. Risk scores were significantly higher in the north. Besides, the proportion of Rank I and Rank II ARGs was also higher in north, which explained the regional difference of ARG composition in a micro-perspective. This study provides a fundamental survey on the of ARG level and profile in AD process across China, reveals the biogeography of ARGs and inspires the control strategies of antibiotic resistance.
Collapse
Affiliation(s)
- Wei Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhan Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tianle Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Xia F, Fan T, Wang M, Yang L, Ding D, Wei J, Zhou Y, Jiang D, Deng S. Biodegradation of CAHs and BTEX in groundwater at a multi-polluted pesticide site undergoing natural attenuation: Insights from identifying key bioindicators using machine learning methods based on microbiome data. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117609. [PMID: 39893882 DOI: 10.1016/j.ecoenv.2024.117609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025]
Abstract
Groundwater pollution, particularly in retired pesticide sites, is a significant environmental concern due to the presence of chlorinated aliphatic hydrocarbons (CAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX). These contaminants pose serious risks to ecosystems and human health. Natural attenuation (NA) has emerged as a sustainable solution, with microorganisms playing a crucial role in pollutant biodegradation. However, the interpretation of the diverse microbial communities in relation to complex pollutants is still challenging, and there is limited research in multi-polluted groundwater. Advanced machine learning (ML) algorithms help identify key microbial indicators for different pollution types (CAHs, BTEX plumes, and mixed plumes). The accuracy and Area Under the Curve (AUC) achieved by Support Vector Machines (SVM) were impressive, with values of 0.87 and 0.99, respectively. With the assistance of model explanation methods, we identified key bioindicators for different pollution types which were then analyzed using co-occurrence network analysis to better understand their potential roles in pollution degradation. The identified key genera indicate that oxidation and co-metabolism predominantly drive dechlorination processes within the CAHs group. In the BTEX group, the primary mechanism for BTEX degradation was observed to be anaerobic degradation under sulfate-reducing conditions. However, in the CAHs&BTEX groups, the indicative genera suggested that BTEX degradation occurred under iron-reducing conditions and reductive dechlorination existed. Overall, this study establishes a framework for harnessing the power of ML alongside co-occurrence network analysis based on microbiome data to enhance understanding and provide a robust assessment of the natural attenuation degradation process at multi-polluted sites.
Collapse
Affiliation(s)
- Feiyang Xia
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Da Ding
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yan Zhou
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dengdeng Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Zhao Y, He J, Pang H, Li L, Cui X, Liu Y, Jiang W, Liu X. Anaerobic digestion and biochar/hydrochar enhancement of antibiotic-containing wastewater: Current situation, mechanism and future prospects. ENVIRONMENTAL RESEARCH 2025; 264:120087. [PMID: 39455046 DOI: 10.1016/j.envres.2024.120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
The increasing consumption of antibiotics by humans and animals and their inappropriate disposal have increased antibiotic load in municipal and pharmaceutical industry waste, resulting in severe public health risks worldwide. Anaerobic digestion (AD) is the main force of antibiotic-containing wastewater treatment, and the adaptability of biochar/hydrochar (BC/HC) makes it an attractive addition to AD systems, which aim to promote methane production efficiency. Nevertheless, further studies are needed to better understand the multifaceted function of BC/HC and its role in antibiotic-containing wastewater AD. This review article examines the current status of AD of antibiotic-containing wastewater and the effects of different preparation conditions on the physicochemical properties of BC/HC and AD status. The incorporation of BC/HC into the AD process has several potential benefits, contingent upon the physical and chemical properties of BC/HC. These benefits include mitigation of antibiotic toxicity, establishment of a stable system, enrichment of functional microorganisms and enhancement of direct interspecies electron transfer. The mechanism by which BC/HC enhances the AD of antibiotic-containing wastewater, with focus on microbial enhancement, was analysed. A review of the literature revealed that the challenge of optimization and process improvement must be addressed to enhance efficiency and clarify the mechanism of BC/HC in the AD of antibiotic-containing wastewater. This review aims to provide significant insights and details into the BC/HC-enhanced AD of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Yuanyi Zhao
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Junguo He
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China.
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xinxin Cui
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Yunlong Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Weixun Jiang
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Xinping Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| |
Collapse
|
4
|
Wang J, Xu L, Wang Y, He C, Mei H, Xuan L, Wang Y, Dong F, Wang W. Rapid start-up and excellent performance of anaerobic membrane bioreactor for treating poly (butylene adipate-co-terephthalate) wastewater by using one-step feeding mode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122544. [PMID: 39316878 DOI: 10.1016/j.jenvman.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The traditional anaerobic treatment process for highly concentrated, toxic, and acidic poly (butylene adipate-co-terephthalate) (PBAT) wastewater faces challenges. In contrast, the anaerobic membrane bioreactor (AnMBR) offers the advantage of robust performance, but the influence of start-up modes has not been explored. This study investigated the impact of one-step and stepwise startup (gradual dilution of wastewater) strategies in AnMBR treating PBAT wastewater. The results indicated that the one-step startup group achieved COD removal efficiency of 91.2% ± 2.7% and methane conversion rate of 234.7 ± 8.5 mLCH4/gCOD, which were 21.7% and 81.8 mL CH4/gCOD respectively higher than those achieved by the stepwise start-up group. Furthermore, the one-step startup led to the reduction of startup time by 10 days and the decrease in the average membrane fouling cycle by 6.6 days. Compared to the stepwise start-up group, the one-step startup group exhibited a lower abundance of Bacteroidota (11.3%), and a higher abundance of Proteobacteria (27.1%), Chloroflexi (10.5%), and Actinobacteria (11.8%). The one-step startup strategy facilitated the rapid development of a toxicity-tolerant hydrogenotrophic methanogenic pathway. Consequently, the one-step startup method provided a promising approach for the rapid start-up and excellent performance of AnMBR in PBAT wastewater treatment.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Luyao Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan Wang
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Hong Mei
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Liang Xuan
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Yuwei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fang Dong
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
5
|
Ariani IK, Aydin S, Yangin-Gomec C. Assessment of antibiotics removal and transformation products by Eichhornia crassipes-assisted biomass in a UASB reactor treating pharmaceutical effluents. BIOFOULING 2024; 40:915-931. [PMID: 39564881 DOI: 10.1080/08927014.2024.2429554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
The dried roots of an aquatic plant (Eichhornia crassipes commonly known as water hyacinth) were included in the biomass of an upflow anaerobic sludge bed (UASB) reactor to evaluate the improvement effect on treating antibiotic-containing synthetic pharmaceutical effluent. The removals of three different antibiotics, namely erythromycin (ERY), tetracycline (TET) and sulfamethoxazole (SMX), were investigated using the unacclimatized inoculum during the startup period. Then, about 2.5% E. crassipes (w/w of volatile solids) was added to biomass during the last month of operation. Almost complete removal of each antibiotic was achieved, with efficiencies up to 99% (with initial ERY, TET and SMX of 200, 75 and 230 mg L-1, respectively) regardless of E. crassipes addition. The presence of transformation products (TPs) of selected antibiotics was also investigated and ERY showed a higher potential to transform into its metabolites than SMX and TET. With the studied amount of E. crassipes, no positive impact against TPs formation was observed.
Collapse
Affiliation(s)
| | - Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Cigdem Yangin-Gomec
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Xu M, Yu B, Chen Y, Zhou P, Xu X, Qi W, Jia Y, Liu J. Mitigating greenhouse gas emission and enhancing fermentation by phosphorus slag addition during sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122740. [PMID: 39378818 DOI: 10.1016/j.jenvman.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
During the composting of sewage sludge (SS), a quantity of greenhouse gases has been produced. This study aimed to clarify the microbial mechanisms associated with the addition of industrial solid waste phosphorus slag (PS) to SS composting, specifically focusing on its impact on greenhouse gas emissions and the humification. The findings indicated that the introduction of PS increased the temperature and extended the high-temperature phase. Moreover, the incorporation of 10% and 15% PS resulted in a decrease of N2O emissions by 68.9% and 88.6%, respectively. Microbial diversity analysis indicated that PS improved waste porosity, ensuring the aerobic habitat. Therefore, the environmental factors of the system were altered, leading to the enrichment of various functional bacterial species, such as Firmicutes and Chloroflexi, and a reduction of pathogenic bacterium Dokdonella. Consequently, incorporating PS into SS composting represents an effective waste treatment strategy, exhibiting economic feasibility and promising application potential.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bao Yu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yue Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ping Zhou
- Kunming Dianchi Water Treatment Co., Ltd, Kunming, 650228, China
| | - Xingkun Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Qi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yufeng Jia
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
8
|
Huang W, Cao L, Ge R, Wan Z, Zheng D, Li F, Li G, Zhang F. Higher thermal remediation temperature facilitates the sequential bioaugmented reductive dechlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134825. [PMID: 38876014 DOI: 10.1016/j.jhazmat.2024.134825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The coupling of thermal remediation with microbial reductive dechlorination (MRD) has shown promising potential for the cleanup of chlorinated solvent contaminated sites. In this study, thermal treatment and bioaugmentation were applied in series, where prior higher thermal remediation temperature led to improved TCE dechlorination performance with both better organohalide-respiring bacteria (OHRB) colonization and electron donor availability. The 60 °C was found to be a key temperature point where the promotion effect became obvious. Amplicon sequencing and co-occurrence network analysis demonstrated that temperature was a more dominating factor than bioaugmentation that impacted microbial community structure. Higher temperature of prior thermal treatment resulted in the decrease of richness, diversity of indigenous microbial communities, and simplified the network structure, which benefited the build-up of newcoming microorganisms during bioaugmentation. Thus, the abundance of Desulfitobacterium increased from 0.11 % (25 °C) to 3.10 % (90 °C). Meanwhile, released volatile fatty acids (VFAs) during thermal remediation functioned as electron donors and boosted MRD. Our results provided temperature-specific information on synergistic effect of sequential thermal remediation and bioaugmentation, which contributed to better implementation of the coupled technologies in chloroethene-impacted sites.
Collapse
Affiliation(s)
- Wan Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lifeng Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Runlei Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ziren Wan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Di Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fangzhou Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Fang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
9
|
Zhang Y, Li C, Zhu X, Angelidaki I. Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion. Molecules 2024; 29:3489. [PMID: 39124894 PMCID: PMC11313690 DOI: 10.3390/molecules29153489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
High-level erythromycin (ERY) fermentation wastewater will pose serious threats to lake environments. Anaerobic digestion (AD) has advantages in treating high-level antibiotic wastewater. However, the fate of antibiotic resistance genes (ARGs) and microbial communities in AD after stepwise exposure to high-level ERY remains unclear. In this study, an AD reactor was first exposed to 0, 5, 10, 50, 100 and 200 mg/L ERY and then re-exposed to 0, 50, 200 and 500 mg/L ERY to investigate the effect of ERY on AD. The results show that AD could adapt to the presence of high-level ERY (500 mg/L) and could maintain efficient CH4 production after domestication with low-level ERY (50 mg/L). The AD process could achieve higher removal of ERY (>94%), regardless of the initial ERY concentration. ErmB and mefA, conferring resistance through target alteration and efflux pumps, respectively, were dominant in the AD process. The first exposure to ERY stimulated an increase in the total ARG abundance, while the AD process seemed to discourage ARG maintenance following re-exposure to ERY. ERY inhibited the process of acetoclastic methanogenesis, but strengthened the process of hydrogenotrophic methanogenesis. This work provides useful information for treating high-level ERY fermentation wastewater by the AD process.
Collapse
Affiliation(s)
- Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China;
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Xinyu Zhu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| |
Collapse
|
10
|
Chen S, Yao F, Pi Z, He L, Luo K, Li X, Yang Q. Evaluating the role of salinity in enhanced biogas production from two-stage anaerobic digestion of food waste by zero-valent iron. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119911. [PMID: 38150931 DOI: 10.1016/j.jenvman.2023.119911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Salts including NaCl are the most common food flavoring agents so they are often accumulated in food waste (FW) and have potential impact on anaerobic digestion (AD) of FW. In this study, the enhanced biogas production from two-stage anaerobic digestion (TSAD) of FW by microscale zero-valent iron (ZVI) under different salinity (3, 6, 9, and 15 g NaCl/L) was evaluated. Under salinity stress, ZVI becomes a continue-release electron donor due to the enhanced corrosion and dissolution effect and the slow-down surface passivation, further improving the performance of TSAD. Experimental results revealed that the biogas production including H2 and CH4 from TSAD with 10 g/L ZVI addition was promoted under salinity stress. The maximum H2 and CH4 yield (303.38 mL H2/g-VS and 253.84 mL CH4/g-VS) were observed at the salinity 9 g NaCl/L. Compared with that of zero salinity, they increased by 40.94% and 318.46%, respectively. Additionally, Sedimentibacter, an exoelectrogen that can participate in the direct interspecies electron transfer, also exhibited the highest relative abundance (34.96%) at the salinity 9 g NaCl/L. These findings obtained in this study might be of great importance for understanding the influence of salinity on the enhanced AD by ZVI.
Collapse
Affiliation(s)
- Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Kun Luo
- Department of Materials and Environmental Engineering, Changsha University, Changsha, 410003, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
11
|
Yang J, Chen R, Zhang Q, Zhang L, Li Q, Zhang Z, Wang Y, Qu B. Green and chemical-free pretreatment of corn straw using cold isostatic pressure for methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165442. [PMID: 37442465 DOI: 10.1016/j.scitotenv.2023.165442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
In this study, the effect of cold isostatic pressure (CIP) pretreatment on the physicochemical properties and subsequent anaerobic digestion (AD) performance of corn straw (CS) was explored. The CS was subjected to CIP pretreatment by pressures of 200, 400 and 600 MPa, respectively, while AD was carried out at medium temperature (35 ± 2 °C). The results showed that CIP pretreatment disrupted the dense structure of the CS and altered the crystallinity index and surface hydrophobicity of the CS, thereby affecting the AD process. The presence of CIP pretreatment increased the initial reducing sugar concentration by 0.11-0.27 g/L and increased the maximum volatile fatty acids content by 112.82-436.64 mg/L, which facilitated the process of acidification and hydrolysis of the AD. It was also observed that the CIP pretreatment maintained the pH in the range of 6.37-7.30, maintaining the stability of the overall system. Moreover, the cumulative methane production in the CIP pretreatment group increased by 27.17 %-64.90 % compared to the control group. Analysis of the microbial results showed that CIP pretreatment increased the abundance of cellulose degrading bacteria Ruminofilibacter from 21.50 % to 27.53 % and acetoclastic methanogen Methanosaeta from 45.48 % to 56.92 %, thus facilitating the hydrolysis and methanogenic stages. The energy conversion analysis showed that CIP is a green and non-polluting pretreatment strategy for the efficient AD of CS to methane.
Collapse
Affiliation(s)
- Jiancheng Yang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, People's Republic of China
| | - Ruijie Chen
- College of Art and Science, Northeast Agr Univ, Harbin 150030, People's Republic of China
| | - Quanguo Zhang
- Huanghe S&T Univ, Inst Agr Engn, Zhengzhou 450006, People's Republic of China; Henan Agr Univ, Key Lab New Mat & Facil Rural Renewable Energy, MOA China, Zhengzhou 450002, People's Republic of China
| | - Linhai Zhang
- Taiyuan Donglong Machinery Co., Ltd., Taiyuan 030013, People's Republic of China
| | - Qichen Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Zhiyun Zhang
- College of Animal Medicine, Northeast Agr Univ, Harbin 150030, People's Republic of China
| | - Yuxin Wang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, People's Republic of China
| | - Bin Qu
- College of Art and Science, Northeast Agr Univ, Harbin 150030, People's Republic of China.
| |
Collapse
|
12
|
Liu J, Yu J, Tan Y, Dang R, Zhou M, Hernández M, Lichtfouse E, Xiao L. Biomethane is produced by acetate cleavage, not direct interspecies electron transfer: genome-centric view and carbon isotope. BIORESOURCE TECHNOLOGY 2023; 387:129589. [PMID: 37532062 DOI: 10.1016/j.biortech.2023.129589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Understanding the source of methane (CH4) is of great significance for improving the anaerobic fermentation efficiency in bioengineering, and for mitigating the emission potential of natural ecosystems. Microbes involved in the process named direct interspecies electron transfer coupling with CO2 reduction, i.e., electrons released from electroactive bacteria to reduce CO2 into CH4, have attracted considerable attention for wastewater treatment in the past decade. However, how the synergistic effect of microbiota contributes to this anaerobic carbon metabolism accompanied by CH4 production still remains poorly understood, especial for wastewater with antibiotic exposure. Results show that enhancing lower-abundant acetoclastic methanogens and acetogenic bacteria, rather than electroactive bacteria, contributed to CH4 production, based on a metagenome-assembled genomes network analysis. Natural and artificial isotope tracing of CH4 further confirmed that CH4 mainly originated from acetoclastic methanogenesis. These findings reveal the contribution of direct acetate cleavage (acetoclastic methanogenesis) and provide insightsfor further regulation of methanogenic strategies.
Collapse
Affiliation(s)
- Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Yang Tan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Run Dang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Meng Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Marcela Hernández
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
13
|
Zhang Z, Li C, Wang G, Yang X, Zhang Y, Wang R, Angelidaki I, Miao H. Mechanistic insights into Fe 3O 4-modified biochar relieving inhibition from erythromycin on anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118459. [PMID: 37399623 DOI: 10.1016/j.jenvman.2023.118459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Anaerobic digestion (AD) of antibiotic manufacturing wastewater to degrade residual antibiotics and produce mixture of combustible gases has been investigated actively in the past decades. However, detrimental effect of residual antibiotic to microbial activities is commonly faced in AD process, leading to the reduction of treatment efficiency and energy recovery. Herein, the present study systematically evaluated the detoxification effect and mechanism of Fe3O4-modified biochar in AD of erythromycin manufacturing wastewater. Results showed that Fe3O4-modified biochar had stimulatory effect on AD at 0.5 g/L erythromycin existence. A maximum methane yield of 327.7 ± 8.0 mL/g COD was achieved at 3.0 g/L Fe3O4-modified biochar, leading to the increase of 55.7% compared to control group. Mechanistic investigation demonstrated that different levels of Fe3O4-modified biochar could improve methane yield via different metabolic pathways involved in specific bacteria and archaea. Low levels of Fe3O4-modified biochar (i.e., 0.5-1.0 g/L) led to the enrichment of Methanothermobacter sp., strengthening the hydrogenotrophic pathway. On the contrary, high levels of Fe3O4-modified biochar (2.0-3.0 g/L) favored the proliferation of acetogens (e.g., Lentimicrobium sp.) and methanogen (Methanosarcina sp.) and their syntrophic relations played vital role on the simulated AD performance at erythromycin stress. Additionally, the addition of Fe3O4-modified biochar significantly decreased the abundance of representative antibiotic resistant genes (ARGs), benefiting the reduction of environmental risk. The results of this study verified that the application of Fe3O4-modified biochar could be an efficient approach to detoxify erythromycin on AD system, which brings high impacts and positive implications for biological antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Ruming Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
14
|
Sun W, Qian X, Wang X, Gu J. Residual enrofloxacin in cattle manure increased persistence and dissemination risk of antibiotic resistance genes during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116864. [PMID: 36436244 DOI: 10.1016/j.jenvman.2022.116864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion is a common approach to dispose and recycle livestock manures, and the agricultural application of anaerobic digestives represents an important pathway of spreading antibiotic resistance genes (ARGs) from livestock manures to soils. Enrofloxacin is a clinically important fluoroquinolone antibiotic with high residual concentrations in livestock manure, and propagation of fluoroquinolone resistance genes poses a huge risk to public health. Compared with other antibiotics, enrofloxacin is relatively durable in anaerobic digestion system. However, its effect on the persistence of ARGs during anaerobic digestion and its mechanism are not clear. In this study, we investigated effects of 0, 4, and 8 mg/L enrofloxacin on the abundance, persistence, and transferring risk of five plasmid-mediated fluroquinolone ARGs and five typic clinically important non-fluoroquinolone ARGs during cattle manure digestion. The responses of integrons and microbial communities to enrofloxacin were assessed to uncover the underlying mechanisms. All the ten detected ARGs were highly persistent in anaerobic digestion, among them seven ARGs increased over 8.2 times after digestion. Network analysis revealed that the potential hosts of ARGs were critical functional taxa during anaerobic digestion, which can explain the high persistence of ARGs. Residual enrofloxacin significantly increased the abundance of aac(6')-ib-cr, sul1, intI1, and intI2 throughout the digestion, but had no impact on the other ARGs, demonstrating its role in facilitating horizontal gene transfer of the plasmid-mediated aac(6')-ib-cr. The influence of enrofloxacin on microbial communities disappeared at the end of digestion, but the ARG profiles remained distinctive between the enrofloxacin treatments and the control, suggesting the high persistence of enrofloxacin induced ARGs. Our results suggested the high persistence of ARGs in anaerobic digestion system, and highlighted the role of residual enrofloxacin in livestock manure in increasing dissemination risk of fluroquinolone resistance genes.
Collapse
Affiliation(s)
- Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Interdisciplinary Research Center for Soil Microbial Ecology and Land Sustainable Productivity in Dry Areas, Yangling, Northwest A&F University, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Interdisciplinary Research Center for Soil Microbial Ecology and Land Sustainable Productivity in Dry Areas, Yangling, Northwest A&F University, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Interdisciplinary Research Center for Soil Microbial Ecology and Land Sustainable Productivity in Dry Areas, Yangling, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
15
|
Wang C, Wang Y, Yan S, Li Y, Zhang P, Ren P, Wang M, Kuang S. Biochar-amended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 367:128253. [PMID: 36334868 DOI: 10.1016/j.biortech.2022.128253] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Improper disposal of antibiotic fermentation dregs poses a risk of releasing antibiotics and antibiotic resistant bacteria to the environment. Therefore, this study evaluated the effects of biochar addition to lincomycin fermentation dregs (LFDs) composting. Biochar increased compost temperature and enhanced organic matter decomposition and residual antibiotics removal. Moreover, a 1.5- to 17.0-fold reduction in antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) was observed. Adding biochar also reduced the abundances of persistent ARGs hosts (e.g., Streptomyces, Pseudomonas) and ARG-related metabolic pathways and genes (e.g., ATP-binding cassette type-2 transport, signal transduction and multidrug efflux pump genes). By contrast, compost decomposition improved due to enhanced metabolism of carbohydrates and amino acids. Overall, adding biochar into LFDs compost reduced the proliferation of ARGs and enhanced microbial community metabolism. These results demonstrate that adding biochar to LFDs compost is a simple and efficient way to decrease risks associated with LFDs composting.
Collapse
Affiliation(s)
- Chenhao Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yafei Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yingchun Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Zhang
- Heilongjiang Lianshun Biotechnology Co. Ltd., Qitaihe 154264, China
| | - Peng Ren
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
16
|
Wu Z, Liu G, Ji Y, Li P, Yu X, Qiao W, Wang B, Shi K, Liu W, Liang B, Wang D, Yanuka-Golub K, Freilich S, Jiang J. Electron acceptors determine the BTEX degradation capacity of anaerobic microbiota via regulating the microbial community. ENVIRONMENTAL RESEARCH 2022; 215:114420. [PMID: 36167116 DOI: 10.1016/j.envres.2022.114420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wenzhong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dong Wang
- Jiangsu Academy of Environmental Science and Technology Co., Ltd, Nanjing, 210095, China
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
17
|
Zhao W, Zhang X, Cai Y, Zhao S, Wang S. Effects of metronidazole on mesophilic and thermophilic fermentation: Biodegradation mechanisms, microbial communities, and reversibility. BIORESOURCE TECHNOLOGY 2022; 362:127795. [PMID: 35988858 DOI: 10.1016/j.biortech.2022.127795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Metronidazole (MNZ), an antibiotic that is specifically used for the treatment of anaerobic infections, may inhibit anaerobic fermentation. This work was designed to understand the fate and effects of MNZ in mesophilic fermentation (MF) and thermophilic fermentation (TF), respectively. The results showed that the removal of MNZ mainly occurred via biodegradation, rather than adsorption, and that MNZ could be completely degraded by opening the imidazole ring. MFs were more strongly inhibited by MNZ than TFs. MNZ concentration increased from 0 to 25 mg/L, hydrogen yield (HY) decreased from 167.5 to 16.8 mL/g glucose (90.0% decrease), and butyrate yield almost completely disappeared in MFs, whereas in TFs, HY decreased only from 101.1 to 89.3 mL/g glucose (11.7% decrease), and ethanol yield increased by 39.8%. Illumina MiSeq sequencing analysis showed that MNZ reduced the abundance of hydrogen-producing bacteria. Furthermore, the inhibition of MNZ on anaerobic fermentation was reversible.
Collapse
Affiliation(s)
- Wenqian Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Rani J, Pandey KP, Kushwaha J, Priyadarsini M, Dhoble AS. Antibiotics in anaerobic digestion: Investigative studies on digester performance and microbial diversity. BIORESOURCE TECHNOLOGY 2022; 361:127662. [PMID: 35872275 DOI: 10.1016/j.biortech.2022.127662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing consumption of antibiotics in both humans and animals has increased their load in municipal and pharmaceutical industry waste and may cause serious damage to the environment. Impact of antibiotics on the performance of commercially used anaerobic digesters in terms of bioenergy output, antibiotics' removal and COD removal have been compared critically with a few studies indicating >90% removal of antibiotics. AnMBR performed the best in terms of antibiotic removal, COD removal and methane yield. Most of the antibiotics investigated have adverse effects on microbiome associated with different stages and methane generation pathways of AD which has been assessed using high throughput technologies like metatranscriptomics, metaproteomics and flow cytometry. Perspectives have been given for understanding the fate and elimination of antibiotics from AD. The challenge of optimization and process improvement needs to be addressed to increase efficiency of the anaerobic digesters.
Collapse
Affiliation(s)
- Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| |
Collapse
|
19
|
The Removal of Erythromycin and Its Effects on Anaerobic Fermentation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127256. [PMID: 35742505 PMCID: PMC9223550 DOI: 10.3390/ijerph19127256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023]
Abstract
In view of the problems of antibiotic pollution, anaerobic fermentation technology was adopted to remove erythromycin in this study. The removal of erythromycin and its effects mechanism on anaerobic fermentation were studied, including biogas performance, process stability, substrate degradability, enzyme activity, and microbial communities. The results showed that the removal rates of erythromycin for all tested concentrations were higher than 90% after fermentation. Erythromycin addition inhibited biogas production. The more erythromycin added, the lower the CH4 content obtained. The high concentration of erythromycin (20 and 40 mg/L) resulted in more remarkable variations of pH values than the control group and 1 mg/L erythromycin added during the fermentation process. Erythromycin inhibited the hydrolysis process in the early stage of anaerobic fermentation. The contents of chemical oxygen demand (COD), NH4+–N, and volatile fatty acids (VFA) of erythromycin added groups were lower than those of the control group. Erythromycin inhibited the degradation of lignocellulose in the late stage of fermentation. Cellulase activity increased first and then decreased during the fermentation and addition of erythromycin delayed the peak of cellulase activity. The inhibitory effect of erythromycin on the activity of coenzyme F420 increased with elevated erythromycin concentrations. The relative abundance of archaea in erythromycin added groups was lower than the control group. The decrease in archaea resulted in the delay of the daily biogas peak. Additionally, the degradation rate of erythromycin was significantly correlated with the cumulative biogas yield, COD, pH, and ORP. This study supports the reutilization of antibiotic-contaminated biowaste and provides references for further research.
Collapse
|