1
|
Qiu SQ, Tang YJ, Hu LX, Pei CL, Hong DC, Lin DY, Kang G, Zhou SZ, Liang BL, Chen SJ, Bai H, Ying GG. Unveiling airborne threats: Vertical profiles of multiple emerging pollutants in PM 2.5 across the urban atmosphere of Southern China. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137056. [PMID: 39752836 DOI: 10.1016/j.jhazmat.2024.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 03/12/2025]
Abstract
PM2.5 has a detrimental impact on human health and has become a focus of widespread concern. The tempo-spatial distribution of emerging pollutants has been extensively studied, while there is a scarcity of understanding their vertical distribution in atmospheric environment. Here we investigated the vertical profiles of phthalate esters (PAEs), organophosphate esters (OPEs), neonicotinoids (NEOs), and per-and polyfluorinated substances (PFASs) in PM2.5 at ground level (4.5 m), 118 m, and 488 m in an urban environment. Results reveal that the PAEs in PM2.5 had higher concentrations than OPEs, NEOs, and PFASs. Vertical pollutant distribution generally exhibits a decline in concentration with increasing altitude. However, the opposite pattern also occurs, especially for NEOs and PFASs. The underlying mechanisms are multifaceted, encompassing the physicochemical characteristics of pollutants, meteorological parameters, and air-mass trajectories, each contributing to the vertical profile in varying degree. Additionally, the indoor health risks posed by outdoor pollutants at 118 m and 488 m were evaluated and found to be comparable to the outdoor risks at the ground. To our knowledge, this is the first exploration of the vertical characteristics of emerging pollutants at heights exceeding 100 meters, which provides a crucial reference for the prevention and control of emerging pollutants.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yan-Jun Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Cheng-Lei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - Da-Chi Hong
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - Da-Ying Lin
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Geng Kang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Sheng-Zhen Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Bao-Ling Liang
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - She-Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li Y, Zhan F, Shunthirasingham C, Lei YD, Oh J, Weng C, Ben Chaaben A, Lu Z, Lee K, Gobas FAPC, Hung H, Wania F. Inferring atmospheric sources of gaseous organophosphate esters from spatial patterns. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:643-652. [PMID: 39913418 PMCID: PMC11864208 DOI: 10.1093/etojnl/vgae089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 02/27/2025]
Abstract
Organophosphate esters (OPEs) have emerged as pervasive environmental contaminants, with concentrations often exceeding those of traditional flame retardants and plasticizers by orders of magnitude. Here, we present concentrations of OPEs in the atmospheric gas phase collected using passive air samplers deployed in the coastal regions of Quebec and British Columbia in southern Canada. Four OPEs, i.e., tri-n-butyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris (phenyl) phosphate (TPhP) were reliably and ubiquitously detected, with TCPP showing the highest level, followed by TBP. Concentration levels of TCPP and TCEP are correlated with each other and with population, possibly indicating emission from consumer products. Spatial patterns of TBP and TPhP are more indicative of industrial usage, with airports possibly being a major source for TBP. The positive relationships between atmospheric OPEs and population are influenced by ambient temperature, whereby the size of the populated area around a sampling site influencing the air concentration appears to be decreasing at higher temperatures.
Collapse
Affiliation(s)
- Yuening Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Faqiang Zhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Ying Duan Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jenny Oh
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON, Canada
| | - Chunwen Weng
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Amina Ben Chaaben
- Institut des Sciences de la Mer, Université du Quebec à Rimouski, Rimouski, QC, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer, Université du Quebec à Rimouski, Rimouski, QC, Canada
| | - Kelsey Lee
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Frank A P C Gobas
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, North York, ON, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
3
|
Xia K, Qin M, Han M, Zhang X, Wu X, Liu M, Liu S, Wang X, Liu W, Xie Z, Yuan R, Liu Q. Elucidating the size distribution of p‑Phenylenediamine-Derived quinones in atmospheric particles. ENVIRONMENT INTERNATIONAL 2025; 197:109329. [PMID: 39978217 DOI: 10.1016/j.envint.2025.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Transformed from p-phenylenediamines (PPDs) antioxidant, PPD-derived quinones (PPD-Qs) have recently been recognized as emerging contaminants due to their potential negative impacts on the environment and human health. While there have been measurements of airborne PPD-Qs, the size distribution of PPD-Qs and the impact of particle size on PPD transformation chemistry remain largely unknown. Here, through the measurements of atmospheric particles in three megacities in China (Beijing, Xi'an, and Hefei), we find that PPD-Qs are widely distributed in these cities. Further analysis of the size-fractioned particles in Hefei indicates that 48 % of PPD-Qs reside in coarse particles. Given that previous studies mainly focus on the measurement of PPD-Qs in fine particles, the previously reported PPD-Q concentrations and the corresponding human exposure dosages are likely to be significantly underestimated. Furthermore, the ratio of PPD-Q to PPD concentration (PPD-Q/PPD) for particles with size range of 0.056 - 0.1 μm is up to 3 times higher than that with size range of 10 - 18 μm, highlighting the key role of particle size in determining the atmospheric oxidation reactivity of PPDs. Model simulations reveal a size-dependent pattern for the estimated concentration of particulate PPD-Qs in human body. In addition, we also demonstrate that PPD-Qs can induce the formation of cellular reactive oxygen species, suggesting that they may pose risks to human health. Overall, our results emphasize the importance of considering the particle size effect when evaluating the reaction potential and exposure risk of airborne PPD-Qs.
Collapse
Affiliation(s)
- Kaihui Xia
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Meng Qin
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Mingming Han
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Department of Anesthesiology, The First Affliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Mingyuan Liu
- Division of Ambient Air Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China
| | - Shang Liu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Xinkai Wang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhouqing Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Renmin Yuan
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Qifan Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China.
| |
Collapse
|
4
|
Wu H, Yu M, Huang J, Zhang Q, Yao R, Liu H, Yu X, Jin L, Sun J. Pollution characteristics and risk assessment of organophosphate esters in mollusks along the coast of South China. MARINE POLLUTION BULLETIN 2025; 210:117317. [PMID: 39579595 DOI: 10.1016/j.marpolbul.2024.117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Organophosphate esters (OPEs) are emerging pollutants and used extensively in industrial production as alternative to the traditional flame retardants. This study investigated the contamination characteristics and health risks of OPEs in 104 mollusks from 15 cities along the coastal region of South China. Σ8OPEs ranged from 48.2 to 1937 ng/g dw, with a mean value of 295 ng/g dw. TDCIPP, TCPP, and TCEP were the dominant OPEs. Different spatial distributions were observed, with higher concentrations in Guangdong Province. A statistically positive but non-significant linear correlation was found between the trophic level of mollusk and OPEs concentration. The trophic magnification factors were >1, suggesting that OPEs have the potential to biomagnify in mollusks. OPEs in mollusks pose low non-carcinogenic and carcinogenic risks to consumers. This study provides an important basis for managing the safety risks associated with OPEs in mollusks.
Collapse
Affiliation(s)
- Haochuan Wu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; School of Housing, Building and Planning, Universiti Sains Malaysia, George Town 11800, Pulau Pinang, Malaysia
| | - Mingling Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Jiahui Huang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Qi Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; School of Housing, Building and Planning, Universiti Sains Malaysia, George Town 11800, Pulau Pinang, Malaysia
| | - Runlin Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Hang Liu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaolong Yu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Jianteng Sun
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| |
Collapse
|
5
|
Cui J, Ge Y, Guo M, Zhang L, Zhang S, Zhao L, Shi Y, Baqar M, Yao Y, Zhu H, Wang L, Cheng Z, Sun H. Occupational exposure to traditional and emerging organophosphate esters: A comparison of levels across different sources and blood distribution. ENVIRONMENT INTERNATIONAL 2024; 194:109165. [PMID: 39637534 DOI: 10.1016/j.envint.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Currently, there is limited knowledge regarding occupational exposure of traditional and emerging organophosphate esters (OPEs) from e-waste and automobile dismantling activities, and their distribution within the human blood. In the present study, we collected dust and urine samples from e-waste (ED) (n = 91 and 130, respectively) and automobile dismantling (AD) plants (n = 93 and 94, respectively), as well as serum-plasma-whole blood samples (sets from 128 participants) within ED areas for analyzing traditional and emerging organophosphate tri-esters (tri-OPEs) and organophosphate di-esters (di-OPEs). Median concentration of ∑tri-OPEs and ∑di-OPEs in dust (37,400 and 9,000 ng/g in ED, and 27,000 and 14,700 ng/g in AD areas, respectively) and urine samples (11.8 and 21.9 ng/mL in ED areas, and 17.2 and 15.0 ng/mL in AD areas, respectively) indicated that both e-waste and automobile dismantling activities served as important pollution source for OPEs. Dust ingestion has been evidenced to be the main exposure pathway compared to dermal absorption and inhalation. The median concentration (ng/mL) of OPEs in blood matrices descended order as follow: whole blood (13.1) > serum (11.6) > plasma (10.4) for ∑tri-OPEs, and plasma (3.51) > serum (0.36) > whole blood (0.23) for ∑di-OPEs. Concentration ratios of OPEs varied across blood matrices, depending on the compounds, suggesting that the essentiality of appropriate biomonitoring matrix for conducting comprehensive exposure assessments.
Collapse
Affiliation(s)
- Jingren Cui
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Meiqi Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Wu Y, Zeng X, Gao S, Liang Y, Liang Q, Yu Z. Characterizing organophosphate esters and chlorinated paraffins in surface soils affected by diverse e-waste disassembling process in South China: Occurrence, distinct emission, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124843. [PMID: 39209053 DOI: 10.1016/j.envpol.2024.124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
E-waste recycling activities are a crucial emission source of organic pollutants, posing potential risks to the surrounding environment and human health. To understand the potential impact related to diverse e-waste dismantling activities, we investigated two categories of popular flame retardants (i.e., organophosphate esters (OPEs) and chlorinated paraffins (CPs) and their resultant possible ecological risk in 53 surface soil samples from Qingyuan, a well-known e-waste recycling region in South China. Varied concentrations of ΣOPEs (20.5-8720 ng/g) and ΣCPs (920-16800 ng/g) were observed at diverse dismantling sites, while relatively low levels of ΣOPEs (6.13-1240 ng/g) and ΣCPs (14.8-2870 ng/g) were found in surrounding soils. These results indicated that primitive e-waste dismantling processes were the primary emission source of OPEs and CPs in the studied area, with e-waste dumping and manual dismantling being the most important emission sources for OPEs and CPs. More importantly, CPs could be degraded/transformed into more toxic intermediates via dechlorination and decarbonization during the burning of e-waste. Furthermore, our results indicated the potential ecological risks posed by OPEs and CPs related to e-waste recycling.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Guangzhou, 511458, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qianyong Liang
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Guangzhou, 511458, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
7
|
Bai C, Ge X, Huang Z, Qi Z, Ren H, Yu Y, An T. Polybrominated diphenyl ethers and their alternatives in soil cores from a typical flame-retardant production park: Vertical distribution and potential influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124597. [PMID: 39047890 DOI: 10.1016/j.envpol.2024.124597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
With the prohibition on the production and use of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs) have emerged as their alternatives. However, the vertical transport and associated influencing factors of these chemicals into soil are not clearly understood. To clarify the vertical distribution of the pollutants and related influencing factors, surface soil and soil core samples were collected at a depth in the range of 0.10-5.00 m in a typical 20-year-old flame-retardant production park and surrounding area. PBDEs and DBDPE show a clear point source distribution around the production park with their central concentrations up to 2.88 × 104 and 8.46 × 104 ng/g, respectively. OPFRs are mainly found in residential areas. The production conversion of PBDEs to DBDPE has obvious environmental characteristics. The vertical distribution revealed that most of the pollutants have penetrated into the soil 5.00 m or even deeper. The median concentrations of deca-BDE and DBDPE reached 50.9 and 9.85 × 103 ng/g, respectively, even at a depth of 5.00 m. Soil organic matter plays a crucial role in determining the vertical distribution, while soil clay particles have a greater impact on the high molecular weight and/or highly brominated compounds.
Collapse
Affiliation(s)
- Chifei Bai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhaofa Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Helong Ren
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
8
|
Guo J, Chen Z, Chen X, Xu Z, Ruan J. Organophosphate flame retardants in air from formal e-waste recycling workshops in China: Size-distribution, gas-particle partitioning and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124593. [PMID: 39043313 DOI: 10.1016/j.envpol.2024.124593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/25/2024]
Abstract
In order to understand the organophosphate flame retardants (OPFRs) pollution and evaluate the inhalation exposure risk in formal e-waste recycling facilities, the air concentrations, particle size distribution and gas-particle partitioning of OPFRs in four typical workshops were investigated. The total Σ15OPFR concentrations inside workshops were in the range of 64.7-682 ng/m3, with 5.80-23.4 ng/m3 in gas phase and 58.8-658 ng/m3 in particle phase. Triphenyl phosphate (TPHP) and tris(2-chloroisopropyl) phosphate (TCIPP) were main analogs, both of which contributed to 49.0-85.7% of total OPFRs. In the waste printed circuit boards thermal treatment workshop, the OPFRs concentration was the highest, and particle-bound OPFRs mainly distributed in 0.7-1.1 μm particles. The proportions of TPHP in different size particles increased as the decrease of particle size, while TCIPP presented an opposite trend. The gas-particle partitioning of OPFR analogs was dominated by absorption process, and did not reach equilibrium state due to continuous emission of OPFRs from the recycling activities. The deposition fluxes of OPFRs in respiratory tract were 65.7-639 ng/h, and the estimated daily intake doses of OPFRs were 8.52-76.9 ng/(kg·day) in four workshops. Inhalation exposure was an important exposure pathway for e-waste recycling workers, and deposition fluxes of size-segregated OPFRs were mainly in head airways region.
Collapse
Affiliation(s)
- Jie Guo
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| | - Zhenyu Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Xuan Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, PR China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, 510275, PR China
| |
Collapse
|
9
|
Mo WQ, Huang ZS, Li QQ, Yao J, Zhu CY, Guo HY, Zeng Y, Chen SJ. Spatial variation, emissions, transport, and risk assessment of organophosphate esters in two large petrochemical complexes in southern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122106. [PMID: 39111006 DOI: 10.1016/j.jenvman.2024.122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Organophosphate esters (OPEs) serve as significant flame retardants and plasticizers in various petrochemical downstream products. The petrochemical industry could be a potential source of atmospheric OPEs, but their emissions from this industry are poorly understood. The present study revealed the spatial variation, emission, and atmospheric transport of traditional and novel OPEs (TOPEs and NOPEs, respectively) in atmospheric particulate matter (PM) across Hainan and Guangdong petrochemical complexes (HNPC and GDPC, respectively) in southern China. The total concentrations of TOPEs ranged from 232 to 46,002 pg/m3 and from 200 to 20,347 pg/m3 in the HNPC and GDPC, respectively, which were substantially higher than those of NOPEs (HNPC: 23.5-147 pg/m3, GDPC: 13.9-465 pg/m3). Enterprises involved in the production of downstream petrochemical products presented relatively high concentrations of OPEs, indicating evident emissions of these pollutants in the petrochemical industry. The correlations of PM-bound OPEs in the atmosphere are determined mainly by their coaddition to industrial products or their coexistence in technical mixtures. The annual emissions of TOPEs and NOPEs in the HNPC were 42.6 kg and 0.34 kg, respectively, and those in the GDPC were 116 kg and 1.85 kg, respectively. OPEs from the HNPC can reach Vietnam, Cambodia, and Guangxi Province, China, and those from the GDPC can reach Guangxi Province and Hunan Province via atmospheric transmission after 24 h of emission. The OPE concentrations reaching the receptor regions were generally less than 3.20 pg/m3. Risk assessment revealed that OPE inhalation exposure on two petrochemical complexes likely poses minor risks for people living in the study areas, but the risk resulting from two chlorinated OPEs should be noted since they are close to the threshold values. This study has implications for enhancing control measures for OPE emissions to reduce health risks related to the petrochemical industry.
Collapse
Affiliation(s)
- Wen-Qing Mo
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Zhen-Shan Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Qi-Qi Li
- Faculty of Resources and Architectural Engineering, Gannan University of Science and Technology, China
| | - Jun Yao
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Chun-You Zhu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Hui-Ying Guo
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Tran-Lam TT, Pham PT, Bui MQ, Dao YH, Le GT. Organophosphate esters and their metabolites in silver pomfret (Pampus argenteus) of the Vietnamese coastal areas: Spatial-temporal distribution and exposure risk. CHEMOSPHERE 2024; 362:142724. [PMID: 38950748 DOI: 10.1016/j.chemosphere.2024.142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
A large number of studies on organophosphate esters (tri-OPEs) in marine organisms have not assessed the simultaneous occurrence of tri-OPEs and their metabolites (di-OPEs) in these species. This research investigated the concentration and geographical distribution of 15 tri-OPEs and 7 di-OPEs in 172 samples of Pampus argenteus that were collected annually from 2021 to 2023 at three distinct locations along the Vietnamese coast. As a result, tri-OPEs and di-OPEs were detected in numerous fish samples, indicating their widespread spatial and temporal occurrence in marine fish and pointing out the importance of monitoring their levels. The tri-OPEs and di-OPEs ranged within 2.1-38.9 ng g-1 dry weight (dw) and 3.2-263.4 ng g-1 dw, respectively. The mean concentrations of tri-OPEs ranged from 0.4 (TIPrP) to 5.4 ng g-1 dw (TBOEP), with TBOEP and TEHP having the highest mean values. In addition, the profiles of tri-OPEs in fish exhibited a descending order: Σalkyl OPEs > ΣCl-alkyl OPEs > Σaryl OPEs. The di-OPEs, namely BEHP and DMP, had the highest mean levels, measuring 33.4 ng g-1 dw and 23.8 ng g-1 dw, respectively. Furthermore, there have been significant findings of strong positive correlations between di-OPEs and tri-OPE pairs (p < 0.05). It is worth noting that there is a noticeable difference in the composition of tri-OPEs between the North and other regions. Despite these findings, the presence of OPE-contaminated fish did not pose any health risks to Vietnam's coastal population.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam; Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City, 70000, Viet Nam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Minh Quang Bui
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam.
| |
Collapse
|
11
|
Naseem S, Tabinda AB, Baqar M, Khan MA, Zia-Ur-Rehman M. Occurrence, spatial distribution and ecological risk assessment of Organophosphate Esters in surface water and sediments from the Ravi River and its tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174828. [PMID: 39025139 DOI: 10.1016/j.scitotenv.2024.174828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Organophosphate esters (OPEs) are widely used as substitutes for brominated flame retardants and characterized as emerging contaminants. Due to their toxicity and persistent nature, OPEs are becoming a matter of greater concern worldwide. However, information about the pollution profile of OPEs and associated ecological risks is still scarce in environmental matrices of the South Asian region, particularly Pakistan. Hence, the current study was conducted to investigate the occurrence, spatial distribution patterns, ecological risks and riverine flux of 10 organophosphate esters in surface water and sediments of Ravi River and its four tributaries. The concentrations of ∑10OPEs were in the range of 19.2 - 105 ng/L, with the dominance of chlorinated-OPEs (51 %) in surface water, whereas in case of sediments, the ∑10OPEs concentrations ranged from 20.7 to 149 ng/g dw, with high abundance of non - chlorinated alkyl-OPEs, which contributed about 56 % to total OPE concentration. The correlation analysis signified a strong positive relation of OPEs with TOC (p < 0.05, R = 0.76) in sediments; and in addition to this, field-based LogKoc values were estimated to be higher than predicted LogKoc. Moreover, a significantly positive correlation (p < 0.05, R = 0.88) was observed between LogKoc and LogKow, implying that hydrophobicity plays a significant role in OPE distribution in different environmental matrices. The global comparison revealed that contamination status of OPEs in the present study was comparatively lower than other regional findings, furthermore, principal component analysis suggested vehicular emissions, industrial discharges, household supplies and atmospheric deposition as main sources of OPEs occurrence in current study region. Furthermore, the riverine flux of ∑10OPEs was estimated to be 0.68 tons/yr and the ecological risk assessment indicated that all OPEs, except EHDPP and TCrP, showed negligible or insignificant ecological risks for aquatic organisms.
Collapse
Affiliation(s)
- Samra Naseem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan.
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mehroze Ahmad Khan
- Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories, Lahore 54600, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories, Lahore 54600, Pakistan
| |
Collapse
|
12
|
Ge Y, Cui J, Zhang L, Zhang S, Baqar M, Cheng Z. Informal E-waste dismantling activities accelerated the releasing of liquid crystal monomers (LCMs) in Pakistan: Occurrence, distribution, and exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172987. [PMID: 38734084 DOI: 10.1016/j.scitotenv.2024.172987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Liquid crystal monomers (LCMs) are emerging contaminants characterized by their persistence, bioaccumulation potential, and toxicity. They have been observed in several environmental matrices associated with electronic waste (e-waste) dismantling activities, particularly in China. However, there is currently no information on the pollution caused by LCMs in other developing countries, such as Pakistan. In this study, we collected soil samples (n = 59) from e-waste dismantling areas with different functions in Pakistan for quantification analysis of 52 target LCMs. Thirty out of 52 LCMs were detected in the soil samples, with the concentrations ranging from 2.14 to 191 ng/g (median: 16.3 ng/g), suggesting widespread contamination by these emerging contaminants. Fluorinated LCMs (median: 10.4 ng/g, range: 1.27-116 ng/g) were frequently detected and their levels were significantly (P < 0.05) higher than those of non-fluorinated LCMs (median: 6.11 ng/g, range: not detected (ND)-76.7 ng/g). The concentrations and profiles of the observed LCMs in the soil samples from the four functional areas varied. The informal dismantling of e-waste poses a potential exposure risk to adults and infants, with median estimated daily intake (EDI, ng/kg bw/day) values of 0.0420 and 0.1013, respectively. Calculation of the hazard quotient (HQ) suggested that some LCMs (e.g., ETFMBC (1.374) and EDFPB (1.257)) may pose potential health risks to occupational workers and their families. Considering the widespread contamination and risks associated with LCMs, we strongly recommend enhancing e-waste management and regulation in Pakistan.
Collapse
Affiliation(s)
- Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jingren Cui
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
13
|
Liao G, Weng X, Wang F, Kuen Yu YH, Arrandale VH, Chan AHS, Lu S, Tse LA. Estimated daily intake and cumulative risk assessment of organophosphate esters and associations with DNA damage among e-waste workers in Hong Kong. CHEMOSPHERE 2024; 360:142406. [PMID: 38782132 DOI: 10.1016/j.chemosphere.2024.142406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Organophosphate esters (OPEs) are extensively used as additives in various products, including electronic equipment, which becomes e-waste when obsolete. Nevertheless, no study has evaluated OPEs exposure levels and the related health risks among e-waste workers in Hong Kong. Therefore, 201 first-spot morning urine samples were collected from 101 e-waste workers and 100 office workers to compare eight urinary OPE metabolites (mOPEs) levels in these groups. The concentrations of six mOPEs were similar in e-waste workers and office workers, except for significantly higher levels of diphenyl phosphate (DPHP) in e-waste workers and bis(1-chloro-2propyl) phosphate (BCIPP) in office workers. Spearman correlation analysis showed that most non-chlorinated mOPEs were correlated with each other in e-waste workers (i.e., nine out of ten pairs, including di-p-cresyl phosphate (DpCP) and di-o-cresyl phosphate (DoCP), DpCP and bis(2-butoxyethyl) phosphate (BBOEP), DpCP and DPHP, DpCP and dibutyl phosphate (DBP), DoCP and BBOEP, DoCP and DPHP, DoCP and DBP, BBOEP and DPHP, DPHP and DBP), indicating that handling e-waste could be the exposure source of specific OPEs. The median values of estimated daily intake (EDI) and hazard quotient (HQ) suggested that the health risks from OPEs exposures were under the recommended thresholds. However, linear regression models, Quantile g-computation, and Bayesian kernel machine regression found that urinary mOPEs elevated 8-hydroxy-2-deoxyguanosine (8-OhdG) levels individually or as a mixture, in which DPHP contributed prominently. In conclusion, although e-waste might not elevate the internal OPEs levels among the participating Hong Kong e-waste workers, attention should be paid to the potential DNA damage stimulated by OPEs under the currently recommended thresholds.
Collapse
Affiliation(s)
- Gengze Liao
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Xueqiong Weng
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feng Wang
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | | | | | - Alan Hoi-Shou Chan
- Department of Systems Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Lap Ah Tse
- J.C. School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China; Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Han Y, Zhao J, Li Z, Zhu L. Distribution, traceability, and risk assessment of organophosphate flame retardants in agricultural soils along the Yangtze River Delta in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41013-41024. [PMID: 38842776 DOI: 10.1007/s11356-024-33838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Severe pollution threatens the ecosystem and human health in the Yangtze River Delta (YRD) in China because of the rapid development of industry in this area. This study examines the types, distribution, concentration, and origin of fourteen typical organophosphate flame retardants (OPFRs) in agricultural soils within the YRD region to offer insights for pollutant control and policy-making. The total concentration of OPFRs (ΣOPFRs) varied between 79.19 and 699.58 μg/kg dry weight (dw), averaging at 209.61 μg/kg dw. Among the OPFRs detected, tributoxyethyl phosphate (TBEP) was identified as the main congener, followed by tri-n-butyl phosphate (TnBP), tris(2-chloroisopropyl) phosphate (TCPP), and trimethyl phosphate (TMP). Source analysis, conducted through correlation coefficients and PCA, indicated that OPFRs in agricultural soils within the YRD region mainly originate from emissions related to plastic products and transportation. The health risk exposure to ΣOPFRs in agricultural soil was considered negligible for farmers, with values below 1.24 × 10-2 and 1.76 × 10-9 for noncarcinogenic and carcinogenic risks, respectively. However, the ecological risk of ΣOPFRs in all the samples ranged from 0.08-1.08, indicating a medium to high risk level. The results offer a comprehensive understanding of OPFR pollution in agricultural soils in the YRD region and can be useful for pollution control that mitigates ecological and health risks in this region.
Collapse
Affiliation(s)
- Yongxiang Han
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang, 310018, Hangzhou, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Deng W, Wen M, Xiong J, Wang C, Huang J, Guo Z, Wang W, An T. Atmospheric occurrences and bioavailability health risk of PAHs and their derivatives surrounding a non-ferrous metal smelting plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134200. [PMID: 38593661 DOI: 10.1016/j.jhazmat.2024.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Non-ferrous metal smelting emits large amounts of organic compounds into the atmosphere. Herein, 20 parent polycyclic aromatic hydrocarbons (PPAHs), 9 nitrated PAHs (NPAHs), 14 chlorinated PAHs (ClPAHs), and 6 alkylated PAHs (APAHs) in atmospheric samples from a typical non-ferrous metal smelting plant (NMSP) and residential areas were detected. In NMSP, benzo[a]pyrene, dibenz[a,h]anthracene, 6-nitrochrysene, 9-chlorofluorene, and 1-methylfluorene were the predominant compounds in the particulate phase, while phenanthrene constituted 57.3% in the gaseous phase. The concentration of PAHs in residential areas around NMSP was 1.8 times higher than that in the control area. Additionally, there was a significant negative correlation between the concentration and the distance from the NMSP. In terms of health risks, although the skin penetration coefficient of PM2.5 is smaller than that of the gaseous phase, dermal absorption of PM2.5 posed a greater threat to the population, the incremental lifetime cancer risk (ILCR) of NMSP was 1.8 × 10-4. After considering bioavailability, BILCR decreased by 1-2 orders of magnitude in different regions, and dermal absorption decreased more than inhalation intake. Nevertheless, the dermal absorption of PM2.5 in NMSP still presents a probable carcinogenic risk. This study provides a necessary reference for the subsequent control of NMSP contamination.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhizhao Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Wang S, Jin J, Ma Y, Stubbings WA, Gbadamosi MR, Abou-Elwafa Abdallah M, Harrad S. Organophosphate triesters and their diester degradation products in the atmosphere-A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123653. [PMID: 38402940 DOI: 10.1016/j.envpol.2024.123653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
Organophosphate triesters (tri-OPEs) have found substantial use as plasticizers and flame retardants in commercial and industrial products. Despite upcoming potential restrictions on use of OPEs, widespread environmental contamination is likely for the foreseeable future. Organophosphate diesters (di-OPEs) are known biotic or abiotic degradation products of tri-OPEs. In addition, direct use of di-OPEs as commercial products also contributes to their presence in the atmosphere. We review the available data on contamination with tri-OPEs and di-OPEs in both indoor and outdoor air. Concentrations of tri-OPEs in indoor air exceed those in outdoor air. The widespread discovery of tri-OPE traces in polar regions and oceans is noteworthy and is evidence that they undergo long-range transport. There are only two studies on di-OPEs in outdoor air and no studies on di-OPEs in indoor air until now. Current research on di-OPEs in indoor and outdoor air is urgently needed, especially in countries with potentially high exposure to di-OPEs such as the UK and the US. Di-OPE concentrations are higher at e-waste dismantling areas than at surrounding area. We also summarise the methods employed for sampling and analysis of OPEs in the atmosphere and assess the relative contribution to atmospheric concentrations of di-OPEs made by environmental degradation of triesters, compared to the presence of diesters as by-products in commercial triester products. Finally, we identify shortcomings of current research and provide suggestions for future research.
Collapse
Affiliation(s)
- Shijie Wang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Jingxi Jin
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Yulong Ma
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - William A Stubbings
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Muideen Remilekun Gbadamosi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom.
| |
Collapse
|
17
|
Liang C, Zeng MX, Yuan XZ, Liu LY. An overview of current knowledge on organophosphate di-esters in environment: Analytical methods, sources, occurrence, and behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167656. [PMID: 37813257 DOI: 10.1016/j.scitotenv.2023.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Organophosphate di-esters (di-OPEs) are highly related to tri-OPEs. The presence of di-OPEs in the environment has gained global concerns, as some di-OPEs are more toxic than their respective tri-OPE compounds. In this study, current knowledge on the analytical methods, sources, environmental occurrence, and behavior of di-OPEs were symmetrically reviewed by compiling data published till March 2023. The determination of di-OPEs in environmental samples was exclusively achieved with liquid chromatography mass spectrometry operated in negative mode. There are several sources of di-OPEs, including industrial production, biotic and abiotic degradation from tri-OPEs under environmental conditions. A total of 14 di-OPE compounds were determined in various environments, including dust, sediment, sludge, water, and atmosphere. The widespread occurrence of di-OPEs suggested that human and ecology are generally exposed to di-OPEs. Among all environmental matrixes, more data were recorded for dust, with the highest concentration of di-OPEs up to 32,300 ng g-1. Sorption behavior, phase distribution, gas-particle partitioning behavior was investigated for certain di-OPEs. Suggestions on future studies in the perspective of human exposure to and environmental behavior of di-OPEs were proposed.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Meng-Xiao Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
18
|
Li J, Jiang H, Qin J, Qin Y, Zhou X, Shi S, Shu Z, Gao Y, Tan J. Unexpectedly high levels and health risks of atmospheric polychlorinated biphenyls in modern mechanical dismantling of obsolete electrical equipment: Investigations in a large integrated e-waste dismantling industrial estate. ENVIRONMENT INTERNATIONAL 2023; 182:108333. [PMID: 37995389 DOI: 10.1016/j.envint.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Large industrial estates for electrical and electronic waste (e-waste) mechanical dismantling and recycling are gradually replacing outmoded small factories and intensive domestic workshops for e-waste manual and chemical dismantling. However, the air pollution and health risks of persistent organic pollutants during the modern mechanical processing of e-waste, especially obsolete electrical equipment, still remain unclear. Here, unexpectedly high levels (409.3 ng/m3) and health risks of airborne polychlorinated biphenyls (PCBs) were found during the mechanical processing of obsolete electric equipment or parts in a large integrated dismantling industrial estate, which is comparable to or a dozen times higher than those reported during chemical processing. In contrast, the levels (936.0 pg/m3) and health risks of particulate polybrominated diphenyl ethers (PBDEs) were all lower than those of previous studies. PCB emissions (44.9-3300.5 ng/m3) varied significantly across six mechanical dismantling places specifically treating waste motors, electrical appliances, hardware, transformers, and metals, respectively. The high PCB content and mass processing number of obsolete electrical equipment probably result in the highest PCB emissions from the mechanical dismantling of obsolete motors, followed by waste electrical appliances and metals. The PCB non-cancer and cancer risks associated with inhalation and dermal exposure in different mechanical dismantling places were all above the given potential risk limits. In particular, the health risks of dismantling obsolete motor exceeded the definite risk levels. Little difference in PCB emissions and health risks between working and non-working time suggested the importance of PCB volatilization from most e-waste. Such high PCB emissions and health risks of PCBs undoubtedly posed a severe threat to frontline workers, but fortunately, they decreased significantly with the increasing distance from the industrial estate. We highlight that PCB emissions and associated health risks from obsolete electrical equipment with high PCB content during mechanical dismantling activities should be of great concern.
Collapse
Affiliation(s)
- Jingnan Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Juanjuan Qin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yuanyuan Qin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoxuan Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Shu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Gao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihua Tan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Deng W, Wen M, Wang C, Huang J, Zhang S, Ma S, Xiong J, Wang W, Zhang X, An T. Atmospheric occurrences and health risk assessment of polycyclic aromatic hydrocarbons and their derivatives in a typical coking facility and surrounding areas. CHEMOSPHERE 2023; 341:139994. [PMID: 37652242 DOI: 10.1016/j.chemosphere.2023.139994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Coking facilities release large quantities of polycyclic aromatic hydrocarbons (PAHs) and their derivatives into the ambient air. Here we examined the profiles, spatial distributions, and potential sources of atmospheric PAHs and their derivatives in an industrial coking plant and its surrounding environment (gaseous and particulate). The mean concentrations of PAHs, nitrated PAHs (NPAHs), chlorinated PAHs (ClPAHs), and brominated PAHs (BrPAHs) in the air of the coking facility were 923, 23.8, 16.7 and 4.25 ng m-³, respectively, 1-2 orders of magnitude higher than those in the surrounding area and the control area. Linear regressions between contaminant concentrations and distance from the coking facility suggested that the concentrations of PAHs (r2 = 0.82, p < 0.05), NPAHs (r2 = 0.77, p < 0.01), and BrPAHs (r2 = 0.62, p < 0.01) were negatively correlated with distance. Additionally, the particle-bound fractions of PAHs and their derivatives were significantly correlated with their molecular weights (p < 0.01). Based on the calculation of the gas/particle partitioning coefficients (log KP) for PAHs and their derivatives and the corresponding subcooled liquid vapor pressures (log PL), the slope values for PAHs, NPAHs, ClPAHs, and BrPAHs ranged from -1 to -0.6, indicating that deposition of PAHs and their derivatives occurred through both adsorption and absorption. Five emissions sources were identified by positive matrix factorization (PMF), including coking emissions, oil pollution, industrial and combustion sources, secondary formation, and traffic emissions, with coking emissions accounting for more than 50% of total emissions. Furthermore, the results of the health risks assessment suggested that atmospheric PAHs and their derivatives in the coke plant and surrounding area negatively impacted human health.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
20
|
Liu YS, Li HR, Lao ZL, Ma ST, Liao ZC, Song AM, Liu MY, Liu YS, Ying GG. Organophosphate esters (OPEs) in a heavily polluted river in South China: Occurrence, spatiotemporal trends, sources, and phase distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122492. [PMID: 37659627 DOI: 10.1016/j.envpol.2023.122492] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
In the past decade, organophosphate esters (OPEs) undergo rapid increase in production and use. Meanwhile, owing to their additive property, OPEs exhibit liability to escape from related products and therefore ubiquity in various environments. Moreover, numerous researches verify their bioavailability and negative effects on biota and human, hence their occurrence and associated risks have caught much concern, particularly those in aquatic systems. So far, however, OPEs in water are generally investigated as a whole, their phase distribution and behavior in waterbodies are incompletely characterized. We examined 25 OPEs in water (including dissolved and particulate phases), sediment, and sediment core samples from the Lian River, which flows through the Guiyu e-waste recycling zone and Shantou specific economic zone in South China. Compared to most global waterbodies, the Lian River showed high or ultrahigh OPE levels in both water and sediments, particularly in the reaches surrounded by e-waste recycling and plastic-related industries, which were the top two greatest OPE sources. Non-industrial and agriculture-related anthropogenic activities also contributed OPEs. Sediment core data suggested that OPEs have been present in waters in Guiyu since the 1960s and showed a temporal trend consistent with the local waste-recycling business. The phase distribution of OPEs in the Lian River was significantly correlated with their hydrophobicity and solubility. Owing to their wide range of physicochemical properties, OPE congeners showed significant percentage differences in the Lian River water and sediments. Generally, OPEs in water reflect their dynamic real-time inputs, while those in sediment signify their accumulative deposition, which is another cause of their phase distribution disparities in the Lian River. The physicochemical parameters of OPEs first imposed negative and then positive influences on their dissolved phase-sediment distribution, indicating the involvement of both the adsorption of dissolved OPEs and the deposition of particle-bound OPEs.
Collapse
Affiliation(s)
- Yi-Shan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Zhi-Lang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Sheng-Tao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Zi-Cong Liao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Ai-Min Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Ming-Yang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
21
|
Zhao L, Zhu H, Cheng Z, Shi Y, Zhang Q, Wang Y, Sun H. Co-occurrence and distribution of organophosphate tri- and di-esters in dust and hand wipes from an e-waste dismantling plant in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163176. [PMID: 37003336 DOI: 10.1016/j.scitotenv.2023.163176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Electronic waste (e-waste) dismantling facilities are a well-known source of emerging contaminants including organophosphate esters (OPEs). However, little information is available regarding the release characteristics and co-contaminations of tri- and di-esters. This study, therefore, investigated a broad range of tri- and di-OPEs in dust and hand wipe samples collected from an e-waste dismantling plant and homes as comparison. The median ∑tri-OPE and ∑di-OPE levels in dust and hand wipe samples were approximately 7- and 2-fold higher than those in the comparison group, respectively (p < 0.01). Triphenyl phosphate (median: 11,700 ng/g and 4640 ng/m2) and bis(2-ethylhexyl) phosphate (median: 5130 ng/g and 940 ng/m2) were the dominant components of tri- and di-OPEs, respectively. The combination of Spearman rank correlations and the determinations of molar concentration ratios of di-OPEs to tri- OPEs revealed that apart from the degradation of tri-OPEs, di-OPEs could originate from direct commercial application, or as impurities in tri-OPE formulas. Significant positive correlations (p < 0.05) were found for most tri- and di-OPE levels between the dust and hand wipes from dismantling workers, whereas this was not observed in those from the ordinary microenvironment. Our results provide robust evidence that e-waste dismantling activities contribute to OPEs contamination in the surroundings and further human exposure pathways and toxicokinetics are needed to be elucidated.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
22
|
Yu YJ, Li MY, Li LZ, Liao ZQ, Zhu XH, Li ZC, Xiang MD, Kuang HX. Construction of Models To Predict the Effectiveness of E-Waste Control through Capture of Volatile Organic Compounds and Metals/Metalloids Exposure Fingerprints: A Six-Year Longitudinal Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37319360 DOI: 10.1021/acs.est.3c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The significant health implications of e-waste toxicants have triggered the global tightening of regulation on informal e-waste recycling sites (ER) but with disparate governance that requires effective monitoring. Taking advantage of the opportunity to implement e-waste control in the Guiyu ER since 2015, we investigated the temporal variations in levels of oxidative DNA damage, 25 volatile organic compound metabolites (VOCs), and 16 metals/metalloids (MeTs) in urine in 918 children between 2016 and 2021 to demonstrate the effectiveness of e-waste control in reducing population exposure risks. The hazard quotients of most MeTs and levels of 8-hydroxy-2'-deoxyguanosine in children decreased significantly during this time, indicating that e-waste control effectively reduces the noncarcinogenic risks of MeT exposure and levels of oxidative DNA damage. Using mVOC-derived indexes as a feature, a bagging-support vector machine algorithm-based machine learning model was constructed to predict the extent of e-waste pollution (EWP). The model exhibited excellent performance with accuracies >97.0% in differentiating between slight and severe EWP. Five simple functions established using mVOC-derived indexes also had high accuracy in predicting the presence of EWP. These models and functions provide a novel human exposure monitoring-based approach for assessing e-waste governance or the presence of EWP in other ERs.
Collapse
Affiliation(s)
- Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Meng-Yang Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Lei-Zi Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, P.R. China
| | - Zeng-Quan Liao
- School of Life Sciences, South China Normal University, Guangzhou 510631, P.R. China
| | - Xiao-Hui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Zhen-Chi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| |
Collapse
|
23
|
Huo Y, Li M, Jiang J, Zhou Y, Ma Y, Xie J, He M. The aomogeneous and heterogeneous oxidation of organophosphate esters (OPEs) in the atmosphere: Take diphenyl phosphate (DPhP) as an example. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121395. [PMID: 36871750 DOI: 10.1016/j.envpol.2023.121395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Organophosphate esters (OPEs) are widely detected in the atmosphere. However, the atmospheric oxidative degradation mechanism of OPEs has not been closely examined. This work took density functional theory (DFT) to investigate the tropospheric ozonolysis of organophosphates, represented by diphenyl phosphate (DPhP), including adsorption mechanisms on the surface of titanium dioxide (TiO2) mineral aerosols and oxidation reaction of hydroxyl groups (·OH) after photolysis. Besides, the reaction mechanism, reaction kinetics, adsorption mechanism, and ecotoxicity evaluation of the transformation products were also studied. At 298 K, the total reaction rate constants kO3, kOH, kTiO2-O3, and kTiO2-OH are 5.72 × 10-15 cm3 molecule-1 s-1, 1.68 × 10-13 cm3 molecule-1 s-1, 1.91 × 10-23 cm3 molecule-1 s-1, and 2.30 × 10-10 cm3 molecule-1 s-1. The atmospheric lifetime of DPhP ozonolysis in the near-surface troposphere is 4 min, much lower than that of hydroxyl radicals (·OH). Besides, the lower the altitude is, the stronger the oxidation is. The TiO2 clusters carry DPhP promoting ·OH oxidation but inhibiting ozonolysis of DPhP. Finally, the main transformation products of this process are glyoxal, malealdehyde, aromatic aldehydes, etc., which are still ecotoxic. The findings shed new light on the atmospheric governance of OPEs.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
24
|
Dang Y, Tang K, Wang Z, Cui H, Lei J, Wang D, Liu N, Zhang X. Organophosphate Esters (OPEs) Flame Retardants in Water: A Review of Photocatalysis, Adsorption, and Biological Degradation. Molecules 2023; 28:molecules28072983. [PMID: 37049746 PMCID: PMC10096410 DOI: 10.3390/molecules28072983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
As a substitute for banned brominated flame retardants (BFRs), the use of organophosphate esters (OPEs) increased year by year with the increase in industrial production and living demand. It was inevitable that OPEs would be discharged into wastewater in excess, which posed a great threat to the health of human beings and aquatic organisms. In the past few decades, people used various methods to remove refractory OPEs. This paper reviewed the photocatalysis method, the adsorption method with wide applicability, and the biological method mainly relying on enzymolysis and hydrolysis to degrade OPEs in water. All three of these methods had the advantages of high removal efficiency and environmental protection for various organic pollutants. The degradation efficiency of OPEs, degradation mechanisms, and conversion products of OPEs by three methods were discussed and summarized. Finally, the development prospects and challenges of OPEs’ degradation technology were discussed.
Collapse
|
25
|
Tang J, Ma S, Hu X, Lin M, Li G, Yu Y, An T. Handwipes as indicators to assess organophosphate flame retardants exposure and thyroid hormone effects in e-waste dismantlers. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130248. [PMID: 36327841 DOI: 10.1016/j.jhazmat.2022.130248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dermal exposure is increasingly recognized as an important pathway for organic pollutant exposure. However, data on dermal exposure are limited, particularly with respect to the health effects. This study evaluated association between organophosphorus flame retardants (OPFRs) in handwipes and internal body burden on workers and adult residents in an electronic waste (e-waste) dismantling area. The impact of dermal exposure to OPFRs on thyroid hormones (THs) served as a biomarker for early effects. Triphenyl phosphate (TPhP) was the most detected compound in handwipes, with median levels of 1180, 200, and 24.0 ng in people identified as e-waste bakers, e-waste dismantlers, and adult residents. Among e-waste dismantlers, TPhP levels in handwipes were positively correlated with paired serum TPhP and urinary diphenyl phosphate (DPhP) levels. In multiple linear regression models controlling for sex, age and smoking, TPhP levels in handwipes of e-waste dismantlers were significantly negatively correlated with three THs used to evaluate thyroid function: serum reverse 3,3',5-triiodo-L-thyronine (rT3), 3,3'-diiodo-L-thyronine (3,3'-T2), and 3,5-diiodo-L-thyronine (3,5-T2). These findings suggest that handwipes can act as non-invasive exposure indicators to assess body burden of dermal exposure to TPhP and health effects on THs of e-waste dismantlers. This study highlights importance of OPFR effect on human THs through dermal exposure.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
26
|
Zhang S, Liang Z, Wang X, Ye Z, Li G, An T. Bioaerosols in an industrial park and the adjacent houses: Dispersal between indoor/outdoor, the impact of air purifier, and health risk reduction. ENVIRONMENT INTERNATIONAL 2023; 172:107778. [PMID: 36724713 DOI: 10.1016/j.envint.2023.107778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Inhaling airborne pathogens may cause severe epidemics showing huge threats to indoor dwellings residents. The ventilation, environmental parameters, and human activities would affect the abundance and pathogenicity of bioaerosols in indoor. However, people know little about the indoor airborne microbes especially pathogens near the industrial park polluted with organics and heavy metals. Herein, the indoor bioaerosols' community composition, source and influencing factors near an electronic waste (e-waste) industrial park were investigated. Results showed that the average bioaerosol level in the morning was lower than evening. Bioaerosol concentration and activity in indoor (1936 CFU/m3 and 7.62 × 105 ng/m3 sodium fluorescein in average) were lower than the industrial park (4043 CFU/m3 and 7.77 × 105 ng/m3 sodium fluorescein), and higher microbial viability may be caused by other pollutants generated during e-waste dismantling process. Fluorescent biological aerosol particles occupied 17.6%-23.7% of total particles, indicating that most particles were non-biological. Bacterial communities were richer and more diverse than fungi. Furthermore, Bacillus and Cladosporium were the dominant indoor pathogens, and pathogenic fungi were more influenced by environmental factors than bacteria. SourceTracker analysis indicates that outdoor was the main source of indoor bioaerosols. The hazard quotient (<1) of airborne microbes through inhalation was negligible, but long-term exposure to pathogens could be harmful. Air purifiers could effectively remove the airborne fungi and spheroid bacteria than cylindrical bacteria, but open doors and windows would reduce the purification efficiency. This study is great important for risk assessments and control of indoor bioaerosols near industrial park.
Collapse
Affiliation(s)
- Simeng Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zikai Ye
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Yang Y, Luo M, Qi Z, Fan Z, Hashmi MZ, Li G, Yu Y. Temporal trends and health risks of organophosphorus flame retardants in fishes in Taihu Lake from 2013 to 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120733. [PMID: 36435280 DOI: 10.1016/j.envpol.2022.120733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus flame retardants (OPFRs) are synthetic, physical additive flame retardants widely detected in the environment. To investigate the temporal trends of OPFRs in Taihu regions and the associated health risks from fish consumption, 150 fish samples of five species were collected from Taihu Lake in China from 2013 to 2018. Eight OPFRs were measured, having 2-ethylhexyl diphenyl phosphate (90.7%) and tris (1,3-dichloro-2 propyl) phosphate (21.5%) as the most and least frequently detected OPFRs, respectively. Among the eight OPFRs, tris (chloropropyl) phosphate concentration (446 pg/g, wet weight) was higher than others. The maximum cumulative concentration of the OPFRs (∑8OPFRs) was observed in large icefish (1.69 × 103 pg/g), while silver carp (841 pg/g) had the lowest. For the temporal trends, higher levels of ∑8OPFRs (1.91 × 103 pg/g) were detected in 2013 than in other years, although no significant change in the trend occurred over time. The estimated daily intake of OPFRs from large icefish consumption was 1.20 × 103 pg/kg-bw/day, higher than that of other fish species. The Monte Carlo simulations showed that ≤0.3% of adults and children would suffer non-cancer health risks from OPFRs via fish consumption. This study provides the first data on temporal trends of OPFRs in Taihu Lake.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Meiqiong Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhiyong Fan
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | | | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
28
|
Zhang Q, Chu M, Lin S, Lou J, Wang C. Partitioning behavior-oriented health risk assessment on internal organophosphorus flame retardants exposure. ENVIRONMENTAL RESEARCH 2023; 216:114704. [PMID: 36334827 DOI: 10.1016/j.envres.2022.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Though the partitioning behavior of organophosphorus flame retardants (OPFRs) has been recognized in vitro incubation assay, health risk assessment on those internal exposure with or without partitioning indexes in human blood is still unclear. In this study, nine commonly used OPFRs were quantified in 96 pairs of plasma and blood cell samples from Chinese volunteers. Non-carcinogenic and carcinogenic risk (CR) assessment building upon two distinct scenarios were conducted and compared. The dominant OPFRs in both plasma and blood cells were TBEP, TBP and TPHP. TCEP was the most enriched compound in plasma with Fplasma nearly to 1.0 (0.92), followed by TCPP, TBEP, TPHP, TBP and TEHP (from 0.61 to 0.76). The partitioning behavior of TCP in plasma was equivalent to blood cells with Fplasma at 0.50. When fully considered the Fplasma, the estimated average daily intake (DI) of ∑OPFRs (638.44 ng/kg BW/day) reached nearly 1.48-fold higher than the conventional calculation (dividing the concentration of plasma (Cplasma) by a factor of 2.0). Accordingly, we found the average hazard quotation (index) of TBP, TPHP and ∑OPFRs was underrated 1.50-fold when neglected the partitioning behaviors. Notably, the average CR of TCEP exceeded 10-6 at the highest concentration (1.19 × 10-6 ng/mL in plasma) only when the Fplasma was introduced. These data conjointly demonstrated that most of the DI levels and the corresponding risk index of OPFRs would be underestimated without factoring Fplasma into calculation, especially for those of low plasma partitioning. To our best knowledge, this study initially uncovered the gap between introducing Fplasma and dividing Cplasma by 2.0 during health risk assessment on internal OPFRs exposure.
Collapse
Affiliation(s)
- Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Mengjie Chu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Shu Lin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Cui Wang
- School of Life Science; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
29
|
Wu Y, Li G, An T. Toxic Metals in Particulate Matter and Health Risks in an E-Waste Dismantling Park and Its Surrounding Areas: Analysis of Three PM Size Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215383. [PMID: 36430101 PMCID: PMC9691227 DOI: 10.3390/ijerph192215383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 05/28/2023]
Abstract
Heavy metals generated from e-waste have created serious health risks for residents in e-waste disposal areas. This study assessed how airborne toxic metals from an e-waste dismantling park (EP) influenced surrounding residential areas after e-waste control. PM2.5, PM10, and total suspended particles (TSP) were sampled from 20 sites, including an EP, residential areas, and an urban site; ten kinds of metals were analyzed using ICP-MS and classified as PM2.5, PM2.5-10, and PM10-100. Results showed that metals at the EP tended to be in coarser particles, while metals from residential areas tended to be in finer particles. A source analysis showed that metals from the EP and residential areas may have different sources. Workers' cancer and non-cancer risks were higher when exposed to PM2.5-10 metals, while residents' risks were higher when exposed to PM2.5 metals. As and Cr were the most strongly associated with cancer risks, while Mn was the most strongly associated with the non-cancer risk. Both workers and residents had cancer risks (>1.0 × 10-6), but risks were lower for residents. Therefore, e-waste control can positively affect public health in this area. This study provides a basis for further controlling heavy metal emissions into the atmosphere by e-waste dismantling and encouraging worldwide standardization of e-waste dismantling.
Collapse
Affiliation(s)
- Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
30
|
Han B, Chen L, Li Y, Yu L, Zhang J, Tao S, Liu W. Spatial distribution and risk assessment of 11 organophosphate flame retardants in soils from different regions of agricultural farmlands in mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156806. [PMID: 35738380 DOI: 10.1016/j.scitotenv.2022.156806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The occurrence and distribution of organophosphate flame retardants (OPFRs) in nationwide farmland soils of mainland China are rarely measured. The current study was the first to collect 325 farmland soil samples from 109 cities throughout mainland China. Ten organophosphate esters (OPEs), including alkyl-OPEs, Cl-OPEs, and aryl-OPEs, together with an organophosphate intermediates (TPPO), were determined. The results indicated that ΣOPFRs ranged from 2.41 ng/g to 35.8 ng/g dry weight (dw), and ΣOPFRs in northeastern and southern China were significantly (p < 0.01) higher than those in northwestern and central China. Alkyl-OPEs and Cl-OPEs served as the main components of OPEs, and the novel aryl-OPEs showed the highest detection frequency (> 92 %). Principal component analysis (PCA) was employed to identify the different sources of OPEs, in which atmospheric deposition, irrigation, or direct release of plastic mulch acted as the main input routes in farmland soils. The potential risks of OPFRs were assessed through soil ingestion exposure and ecotoxicological impacts. Our results showed that direct exposure to farmland soils had no high risks to the human body and ecological environments. This study provides new evidence for further understanding the spatial distributions and contamination status of OPFRs in farmland soils throughout mainland China.
Collapse
Affiliation(s)
- BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - JiaoDi Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
31
|
Wang S, Xiong Z, Wang L, Yang X, Yan X, Li Y, Zhang C, Liang T. Potential hot spots contaminated with exogenous, rare earth elements originating from e-waste dismantling and recycling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119717. [PMID: 35810987 DOI: 10.1016/j.envpol.2022.119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Dismantling and recycling e-waste has been recognized as a potential emission source of rare earth elements (REEs). However, the presence of REEs in typical regional soils has yet to be studied. Given the potential health implications of such soil contamination, it is vital to study the characteristics, spatial distribution, and pollution level of REEs caused by e-waste dismantling as well as determine the influencing mechanism. This study focused on Guiyu Town as an example site, which is a typical e-waste dismantling base. From the site, 39 topsoil samples of different types were collected according to grid distribution points. Soil profiles were also collected in the dismantling and non-dismantling areas. The REE characteristic parameters showed that the REE distribution was abnormal and was affected by multiple factors. The results of the integrated pollution index showed that approximately 61.5% of soil samples were considered to be lightly polluted. Spatial distribution and correlation analysis showed that hot spots of REE-polluted soil coincided with known, main pollution sources. Moreover, there was a significant negative correlation (p ≤0.05) between the REE concentration and the distance from the pollution source. E-waste disassembly and recycling greatly affect the physical and chemical properties of the surrounding soil as well as downward migration areas. In the disassembly area, REE accumulated more easily in the surface layer (0-20 cm). Geographical detector results showed that distance factor was the main contribution factor for both light rare earth elements (LREE) and heavy rare earth element (HREE) (q = 34.59% and 53.33%, respectively). REE distribution in soil was nonlinear enhanced by different factors. Taken together, these results showed that e-waste disassembling and recycling not only directly affected the spatial distribution of REEs, but that their distribution was also affected by land use type and soil properties.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhunan Xiong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - You Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Chaosheng Zhang
- Department of Geography, National University of Ireland, Galway, Ireland
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
32
|
Lao JY, Wu R, Cui Y, Zhou S, Ruan Y, Leung KMY, Wu J, Zeng EY, Lam PKS. Significant input of organophosphate esters through particle-mediated transport into the Pearl River Estuary, China. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129486. [PMID: 35809364 DOI: 10.1016/j.jhazmat.2022.129486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Most organophosphate esters (OPEs) enter the marine environment through atmospheric deposition and surface runoff, yet the role of particle-mediated transport in their inputs and loss processes remains poorly understood. To fill this knowledge gap, samples of size-segregated atmospheric particles, suspended particulate matter (SPM) in seawater, and sediments in the Pearl River Estuary (PRE) were collected and analyzed for OPEs. Total concentrations of atmospheric particulate OPEs showed a decreasing trend with increasing offshore distance in the PRE. The spatial and vertical distribution patterns of OPEs in SPM were diverse, which could be largely affected by physicochemical properties of SPM, marine microbial activities, hydrodynamic conditions, and environmental factors. Sediment in the region close to Modaomen outlet was subject to relatively high OPE concentrations. Approximately 24,100 and 65,100 g d-1 of particulate OPEs were imported into the PRE through atmospheric deposition and surface runoff, respectively; 83,200 g d-1 of which were exported to the open sea. The input and environmental fate of particulate OPEs were found to be dependent on sources, particulate media, and chemical species. The present study provides insights into the influence of OPEs in the PRE through particle-mediated transport and calls for more concern on anthropogenic impact on the estuary.
Collapse
Affiliation(s)
- Jia-Yong Lao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yongsheng Cui
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shiwen Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jiaxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Office of the President, Hong Kong Metropolitan University, Hong Kong, China.
| |
Collapse
|
33
|
Lao JY, Lin H, Qin X, Ruan Y, Leung KMY, Zeng EY, Lam PKS. Insights into the Atmospheric Persistence, Transformation, and Health Implications of Organophosphate Esters in Urban Ambient Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12003-12013. [PMID: 35948419 PMCID: PMC9454243 DOI: 10.1021/acs.est.2c01161] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transformation of organophosphate esters (OPEs) in natural ambient air and potential health risks from coexposure to OPEs and their transformation products are largely unclear. Therefore, a novel framework combining field-based investigation, in silico prediction, and target and suspect screening was employed to understand atmospheric persistence and health impacts of OPEs. Alkyl-OPE transformation products ubiquitously occurred in urban ambient air. The transformation ratios of tris(2-butoxyethyl) phosphate were size-dependent, implying that transformation processes may be affected by particle size. Transformation products of chlorinated- and aryl-OPEs were not detected in atmospheric particles, and atmospheric dry deposition might significantly contribute to their removal. Although inhalation risk of coexposure to OPEs and transformation products in urban ambient air was low, health risks related to OPEs may be underestimated as constrained by the identification of plausible transformation products and their toxicity testing in vitro or in vivo at current stage. The present study highlights the significant impact of particle size on the atmospheric persistence of OPEs and suggests that health risk assessments should be conducted with concurrent consideration of both parental compounds and transformation products of OPEs, in view of the nonnegligible abundances of transformation products in the air and their potential toxicity in silico.
Collapse
Affiliation(s)
- Jia-Yong Lao
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huiju Lin
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuefei Ruan
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- ; . Tel: + 852 3442-7833. Fax: + 852 3442-0524
| | - Kenneth M. Y. Leung
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Eddy Y. Zeng
- Guangdong
Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Paul K. S. Lam
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Office
of the President, Hong Kong Metropolitan
University, Hong Kong SAR 999077, China
- ; . Tel: +852 2768-6089. Fax: +852 3442-0524
| |
Collapse
|
34
|
Chen J, Li G, Yu H, Liu H, An T. The respiratory cytotoxicity of typical organophosphorus flame retardants on five different respiratory tract cells: Which are the most sensitive one? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119564. [PMID: 35654249 DOI: 10.1016/j.envpol.2022.119564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/10/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPHP) is a frequently used flame retardant and indoor semi-volatile pollutant exposing humans with endocrinal disrupting effects. However, its respiratory tract toxicity remains unclear. Herein, we mainly focused on exploring the cytotoxicity of TPHP to the cells from five different parts of the human respiratory tract (from top to bottom): human nasal epithelial (HNEpC) cells, human bronchial epithelial (16HBE) cells, normal nasopharyngeal epithelial (NP69) cells, human lung epithelial cells (Beas-2B) cells, and human lung fibrocells (HFL1 cells) cells. The cell viability, micronucleus induction, endoplasmic reticulum stress gene, intracellular Ca2+ concentration, mitochondrial membrane potential (MMP) were investigated in short-term as well as extended exposure of TPHP. HFL1 and HNEpC cells were found to be irreversible damage, while other three type cells achieved homeostasis through self-rescue. Moreover, expression of downstream genes of Nrf2 signaling pathway were upregulated for 1.3-7.0 times and glutathione detoxification enzyme activity changed for 2-10 (U/mg protein) in HNEpC cells. Furthermore, the vascular endothelial growth factor (VEGF), a disease-related factor, increased 1.0-3.5-fold in HNEpC cells. RNA-sequencing results suggested that protein linkage recombination, molecular function regulation and metabolic processes signal pathway were all affected by TPHP exposure in HNEpC. This is a first report to compare respiratory cytotoxicity in whole human respiratory tract under OPFR exposure and found HNEpC cells were the most sensitive target of TPHP. Molecular biological mechanisms uncovered that TPHP exposure in HNEpC can induce the activation of MAPK signal pathway and demonstrate potential respiratory growth differentiation and stress disorder in human nasal cells upon TPHP exposure.
Collapse
Affiliation(s)
- Jingyi Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education, China), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education, China), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education, China), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education, China), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|