1
|
Krickov IV, Lim AG, Shirokova LS, Korets MА, Pokrovsky OS. Fluvial carbon dioxide emissions peak at the permafrost thawing front in the Western Siberia Lowland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173491. [PMID: 38796013 DOI: 10.1016/j.scitotenv.2024.173491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
In order to foresee the impact of permafrost thaw on CO2 emissions by high-latitude rivers, in-situ measurements across a permafrost and climate/vegetation gradient, coupled with assessment of possible physico-chemical and landscape controlling factors are necessary. Here we chose 34 catchments of variable stream order (1 to 9) and watershed size (1 to >105 km2) located across a permafrost and biome gradient in the Western Siberian Lowland (WSL), from the permafrost-free southern taiga to the continuous permafrost zone of tundra. Across the south-north transect, maximal CO2 emissions (2.2 ± 1.1 g C-CO2 m-2 d-1) occurred from rivers of the discontinuous/sporadic permafrost zone, i.e., geographical permafrost thawing boundary. In this transitional zone, fluvial C emission to downstream export ratio was as high as 8.0, which greatly (x 10) exceeded the ratio in the permafrost free and continuous permafrost zones. Such a high evasion at the permafrost thawing front can stem from an optimal combination of multiple environmental factors: maximal active layer thickness, sizable C stock in soils, and mobilization of labile organic nutrients from dispersed peat ice that enhanced DOC and POC processing in the water column, likely due to priming effect. Via a substituting space for time approach, we foresee an increase in CO2 and CH4 fluvial evasion in the continuous and discontinuous permafrost zone, which is notably linked to the greening of tundra increases in biomass of the riparian vegetation, river water warming and thermokarst lake formation on the watershed.
Collapse
Affiliation(s)
- Ivan V Krickov
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk 634050, Russia
| | - Artem G Lim
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk 634050, Russia
| | - Liudmila S Shirokova
- Geosciences and Environment Toulouse, UMR 5563 CNRS, Univeristy of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France; N. Laverov Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk 163000, Russia
| | - Mikhail А Korets
- V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Oleg S Pokrovsky
- Geosciences and Environment Toulouse, UMR 5563 CNRS, Univeristy of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France.
| |
Collapse
|
2
|
Kurashev DG, Manasypov RM, Raudina TV, Krickov IV, Lim AG, Pokrovsky OS. Dissolved organic matter quality in thermokarst lake water and sediments across a permafrost gradient, Western Siberia. ENVIRONMENTAL RESEARCH 2024; 252:119115. [PMID: 38729413 DOI: 10.1016/j.envres.2024.119115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Thermokarst (thaw) lakes of permafrost peatlands are among the most important sentinels of climate change and sizable contributors of greenhouse gas emissions (GHG) in high latitudes. These lakes are humic, often acidic and exhibit fast growing/drainage depending on the local environmental and permafrost thaw. In contrast to good knowledge of the thermokarst lake water hydrochemistry and GHG fluxes, the sediments pore waters remain virtually unknown, despite the fact that these are hot spots of biogeochemical processes including GHG generation. Towards better understating of dissolved organic matter (DOM) quality at the lake water - sediment interface and in the sediments pore waters, here we studied concentration and optical (UV, visual) properties of DOM of 11 thermokarst lakes located in four permafrost zones of Western Siberia Lowland. We found systematic evaluation of DOM concentration, SUVA and various optical parameters along the vertical profile of lake sediments. The lake size and hence, the stage of lake development, had generally weak control on DOM quality. The permafrost zone exhibited clear impact on DOM porewater concentration, optical characteristics, aromaticity and weight average molecular weight (WAMW). The lowest quality of DOM, reflected in highest SUVA and WAMW, corresponding to the dominance of terrestrial sources, was observed at the southern boundary of the permafrost, in the sporadic/discontinuous zone. This suggests active mobilization of organic matter leachates from the interstitial peat and soil porewaters to the lake, presumably via subsurface or suprapermafrost influx. Applying a substitute space for time scenario for future evolution of OM characteristics in thermokarst lake sediments of Western Siberia, we foresee a decrease of DOM quality, molecular weight and potential bioavailability in lakes of continuous permafrost zone, and an increase in these parameters in the sporadic/discontinuous permafrost zone.
Collapse
Affiliation(s)
- Danil G Kurashev
- BIO-GEO-CLIM Laboratory, Tomsk State University, 634050, Tomsk, Russia
| | - Rinat M Manasypov
- BIO-GEO-CLIM Laboratory, Tomsk State University, 634050, Tomsk, Russia; Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia.
| | - Tatiana V Raudina
- BIO-GEO-CLIM Laboratory, Tomsk State University, 634050, Tomsk, Russia
| | - Ivan V Krickov
- BIO-GEO-CLIM Laboratory, Tomsk State University, 634050, Tomsk, Russia
| | - Artem G Lim
- BIO-GEO-CLIM Laboratory, Tomsk State University, 634050, Tomsk, Russia
| | - Oleg S Pokrovsky
- GET UMR 5563 CNRS University of Toulouse (France), 31400, Toulouse, France
| |
Collapse
|
3
|
Noskov YA, Manasypov RM, Ermolaeva NI, Antonets DV, Shirokova LS, Pokrovsky OS. Environmental factors controlling seasonal and spatial variability of zooplankton in thermokarst lakes along a permafrost gradient of Western Siberia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171284. [PMID: 38432389 DOI: 10.1016/j.scitotenv.2024.171284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.
Collapse
Affiliation(s)
- Yury A Noskov
- Biological Institute, BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin av., 634050 Tomsk, Russia; Institute of Systematics and Ecology of Animals SB RAS, 11 Frunze str., 630091 Novosibirsk, Russia.
| | - Rinat M Manasypov
- Biological Institute, BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin av., 634050 Tomsk, Russia
| | - Nadezhda I Ermolaeva
- Institute for Water and Environmental Problems SB RAS, 1 Molodezhnaya str., 656038 Barnaul, Russia
| | - Denis V Antonets
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Liudmila S Shirokova
- Federal Center for Integrated Arctic Research, Institute of Ecological Problem of the North, 23 Nab. Severnoi Dviny, 163000 Arkhangelsk, Russia
| | - Oleg S Pokrovsky
- GET UMR 5563 CNRS University of Toulouse (France), 14 Avenue Edouard Belin, 31400 Toulouse, France.
| |
Collapse
|
4
|
Li Q, Wang B, Zhang Q, Huang J, Ding S, Xie H, Feng Y. Water quality and periphyton functional response to input of dissolved manure-derived hydrochars (DHCs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115541. [PMID: 35777158 DOI: 10.1016/j.jenvman.2022.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) plays a critical role in the global carbon cycle and provides food and energy for aquatic organisms. Recently, hydrochar, as a solid carbonaceous substance derived from hydrothermal carbonization, has been increasingly used as a soil amendment. Upon entering the soil, dissolved components (DHCs) were released from hydrochar as exogenous DOM, finally entering the aquatic ecosystems by runoff, which participates in environmental geochemical processes. However, relevant reports revealing the response of the aquatic ecosystem to the input of DHCs remain insufficiently elucidated. For the first time, the fundamental features of DHCs and their influence on water quality and aquatic biological function were investigated in this study. DHCs at 260 °C (DHC260) had lower yields, a greater [C/N], worse biodegradability, and larger humic acid relative amounts than did DHCs at 180 °C (DHC180). The DHC structural alterations in periphyton-incubated aquatic ecosystems suggested that protein substances were more easily degraded or assimilated by periphyton, especially for DHC180, with rates of decrease of 34.5-63.5%. The increased chemical oxygen demand (COD) degradation in the DHC260 treatments was most likely due to humic acid substances with higher COD equivalents. Furthermore, DHC260 caused phosphorus to accumulate in periphyton, reducing aquatic phosphorus concentration. Notably, the abundances of Flavobacteria and Cyanobacteria associated with water blooms increased 12.7-25.5- and 1.3-8.3-fold, respectively; consequently, the promotional impact of DHCs on algal blooms should be considered. This result extends the nonnegligible role of DHCs in aquatic ecosystems and underlines the need to regulate the hydrochar application process.
Collapse
Affiliation(s)
- Qiaoqiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiuyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|