1
|
Lin Y, Meng H, He Y, Liang W, Niu Y, Liu Z, Wang Z, Tian Y, Chang S. Short-term effects of air pollution on the infectious disease spectrum in Shanghai, China: a time-series analysis from 2013 to 2019. Front Public Health 2025; 13:1454809. [PMID: 39957988 PMCID: PMC11825447 DOI: 10.3389/fpubh.2025.1454809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
Background Epidemiological evidence on the effects of air pollution on infectious diseases remains inconsistent, highlighting the need for further research and analysis. We aimed to investigate the relationship between exposure to fine particulate matter (PM2.5) and ozone (O3) and the risk of national notifiable infectious diseases in Shanghai, a megacity in China. Methods A double-pollutant model was used for each air pollutant, utilizing time-series analysis to separately apply single and distributed lag models (DLMs) to assess the exposure-lag-response relationship for 43 national notifiable infectious diseases (NNIDs) from 2013 to 2019. The model was adjusted for seasonality, long-term trends, mean temperature, relative humidity, and other air pollutants. Analysis was further conducted for seven NNID categories (vaccine-preventable; bacterial; gastrointestinal and enterovirus; sexually transmitted and bloodborne; vector-borne; zoonotic; and quarantinable diseases) as well as specific diseases. Results The study included 661,267 NNID cases and found that PM2.5 and O3 exposures were associated with increased NNID risks, although not within the same categories. A 10 μg/m3 increase in O3 was associated with a higher risk of total NNIDs (relative risk [RR] at lag 1 month: 1.29, 95% confidence interval [CI]: 1.02-1.65), vaccine-preventable diseases (RR at lag 1 month: 1.75, 95% CI: 1.02-3.01), and sexually transmitted and bloodborne diseases (RR at lag 2 month: 1.12, 95% CI: 1.00-1.26). However, the association with PM2.5 remained inconclusive. Conclusion These findings suggest a potential link between ambient air pollution exposure and the risk of infectious diseases, highlighting the urgent need for a comprehensive understanding of the relationship between air pollution and notifiable infectious diseases, as well as an in-depth evaluation of disparities across the disease spectrum.
Collapse
Affiliation(s)
- Yihan Lin
- Department of Histology and Embryology, College of Basic Medical, Hebei Medical University, Shijiazhuang, China
| | - Hao Meng
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yong He
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenzhuo Liang
- Department of Histology and Embryology, College of Basic Medical, Hebei Medical University, Shijiazhuang, China
| | - Yiran Niu
- Department of Histology and Embryology, College of Basic Medical, Hebei Medical University, Shijiazhuang, China
| | - Zhenliang Liu
- Department of Histology and Embryology, College of Basic Medical, Hebei Medical University, Shijiazhuang, China
| | - Ziying Wang
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yangyang Tian
- Department of Histology and Embryology, College of Basic Medical, Hebei Medical University, Shijiazhuang, China
| | - Shiyang Chang
- Department of Histology and Embryology, College of Basic Medical, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Limaheluw J, Dollmann S, Folpmers S, Beltrán Beut L, Lazarakou A, Vermeulen LC, de Roda Husman AM. Associations between meteorological factors and COVID-19: a global scoping review. Front Public Health 2024; 12:1183706. [PMID: 39091528 PMCID: PMC11291467 DOI: 10.3389/fpubh.2024.1183706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Background Many respiratory viruses and their associated diseases are sensitive to meteorological factors. For SARS-CoV-2 and COVID-19, evidence on this sensitivity is inconsistent. Understanding the influence of meteorological factors on SARS-CoV-2 transmission and COVID-19 epidemiology can help to improve pandemic preparedness. Objectives This review aimed to examine the recent evidence about the relation between meteorological factors and SARS-CoV-2/COVID-19. Methods We conducted a global scoping review of peer-reviewed studies published from January 2020 up to January 2023 about the associations between temperature, solar radiation, precipitation, humidity, wind speed, and atmospheric pressure and SARS-CoV-2/COVID-19. Results From 9,156 initial records, we included 474 relevant studies. Experimental studies on SARS-CoV-2 provided consistent evidence that higher temperatures and solar radiation negatively affect virus viability. Studies on COVID-19 (epidemiology) were mostly observational and provided less consistent evidence. Several studies considered interactions between meteorological factors or other variables such as demographics or air pollution. None of the publications included all determinants holistically. Discussion The association between short-term meteorological factors and SARS-CoV-2/COVID-19 dynamics is complex. Interactions between environmental and social components need further consideration. A more integrated research approach can provide valuable insights to predict the dynamics of respiratory viruses with pandemic potential.
Collapse
Affiliation(s)
- Jesse Limaheluw
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sophia Dollmann
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sofia Folpmers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Lola Beltrán Beut
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Afroditi Lazarakou
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lucie C. Vermeulen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Haryanto B, Trihandini I, Nugraha F, Kurniasari F. Indirect Effects of PM 2.5 Exposure on COVID-19 Mortality in Greater Jakarta, Indonesia: An Ecological Study. Ann Glob Health 2024; 90:34. [PMID: 38827538 PMCID: PMC11141510 DOI: 10.5334/aogh.4411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 06/04/2024] Open
Abstract
Background Air pollution, including PM2.5, was suggested as one of the primary contributors to COVID-19 fatalities worldwide. Jakarta, the capital city of Indonesia, was recognized as one of the ten most polluted cities globally. Additionally, the incidence of COVID-19 in Jakarta surpasses that of all other provinces in Indonesia. However, no study has investigated the correlation between PM2.5 concentration and COVID-19 fatality in Jakarta. Objective To investigate the correlation between short-term and long-term exposure to PM2.5 and COVID-19 mortality in Greater Jakarta area. Methods An ecological time-trend study was implemented. The data of PM2.5 ambient concentration obtained from Nafas Indonesia and the National Institute for Aeronautics and Space (LAPAN)/National Research and Innovation Agency (BRIN). The daily COVID-19 death data obtained from the City's Health Office. Findings Our study unveiled an intriguing pattern: while short-term exposure to PM2.5 showed a negative correlation with COVID-19 mortality, suggesting it might not be the sole factor in causing fatalities, long-term exposure demonstrated a positive correlation. This suggests that COVID-19 mortality is more strongly influenced by prolonged PM2.5 exposure rather than short-term exposure alone. Specifically, our regression analysis estimate that a 50 µg/m3 increase in long-term average PM2.5 could lead to an 11.9% rise in the COVID-19 mortality rate. Conclusion Our research, conducted in one of the most polluted areas worldwide, offers compelling evidence regarding the influence of PM2.5 exposure on COVID-19 mortality rates. It emphasizes the importance of recognizing air pollution as a critical risk factor for the severity of viral respiratory infections.
Collapse
Affiliation(s)
- Budi Haryanto
- Department of Environmental Health, Faculty of Public Health, Universitas Indonesia, ID
- Research Center for Climate Change, I-SER, Universitas Indonesia, ID
| | - Indang Trihandini
- Department of Biostatistics and Population Studies, Faculty of Public Health, Universitas Indonesia, ID
| | - Fajar Nugraha
- Department of Biostatistics and Population Studies, Faculty of Public Health, Universitas Indonesia, ID
| | - Fitri Kurniasari
- Department of Environmental Health, Faculty of Public Health, Universitas Indonesia, ID
| |
Collapse
|
4
|
da Costa G, Pauliquevis T, Heise EFJ, Potgieter-Vermaak S, Godoi AFL, Yamamoto CI, Dos Santos-Silva JC, Godoi RHM. Spatialized PM 2.5 during COVID-19 pandemic in Brazil's most populous southern city: implications for post-pandemic era. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:29. [PMID: 38225482 DOI: 10.1007/s10653-023-01809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
Brazil has experienced one of the highest COVID-19 fatality rates globally. While numerous studies have explored the potential connection between air pollution, specifically fine particulate matter (PM2.5), and the exacerbation of SARS-CoV-2 infection, the majority of this research has been conducted in foreign regions-Europe, the United States, and China-correlating generalized pollution levels with health-related scopes. In this study, our objective is to investigate the localized connection between exposure to air pollution exposure and its health implications within a specific Brazilian municipality, focusing on COVID-19 susceptibility. Our investigation involves assessing pollution levels through spatial interpolation of in situ PM2.5 measurements. A network of affordable sensors collected data across 9 regions in Curitiba, as well as its metropolitan counterpart, Araucaria. Our findings distinctly reveal a significant positive correlation (with r-values reaching up to 0.36, p-value < 0.01) between regions characterized by higher levels of pollution, particularly during the winter months (with r-values peaking at 0.40, p-value < 0.05), with both COVID-19 mortality and incidence rates. This correlation gains added significance due to the intricate interplay between urban atmospheric pollution and regional human development indices. Notably, heightened pollution aligns with industrial hubs and intensified vehicular activity. The spatial analysis performed in this study assumes a pivotal role by identifying priority regions that require targeted action post-COVID. By comprehending the localized dynamics between air pollution and its health repercussions, tailored strategies can be implemented to alleviate these effects and ensure the well-being of the public.
Collapse
Affiliation(s)
- Gabriela da Costa
- Department of Environmental Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Theotonio Pauliquevis
- Department of Environmental Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | - Sanja Potgieter-Vermaak
- Ecology & Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Carlos Itsuo Yamamoto
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | |
Collapse
|
5
|
Zoran M, Savastru R, Savastru D, Tautan M, Tenciu D. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Microorganisms 2023; 11:2531. [PMID: 37894189 PMCID: PMC10609195 DOI: 10.3390/microorganisms11102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The long-distance spreading and transport of airborne particulate matter (PM) of biogenic or chemical compounds, which are thought to be possible carriers of SARS-CoV-2 virions, can have a negative impact on the incidence and severity of COVID-19 viral disease. Considering the total Aerosol Optical Depth at 550 nm (AOD) as an atmospheric aerosol loading variable, inhalable fine PM with a diameter ≤2.5 µm (PM2.5) or coarse PM with a diameter ≤10 µm (PM10) during 26 February 2020-31 March 2022, and COVID-19's five waves in Romania, the current study investigates the impact of outdoor PM on the COVID-19 pandemic in Bucharest city. Through descriptive statistics analysis applied to average daily time series in situ and satellite data of PM2.5, PM10, and climate parameters, this study found decreased trends of PM2.5 and PM10 concentrations of 24.58% and 18.9%, respectively compared to the pre-pandemic period (2015-2019). Exposure to high levels of PM2.5 and PM10 particles was positively correlated with COVID-19 incidence and mortality. The derived average PM2.5/PM10 ratios during the entire pandemic period are relatively low (<0.44), indicating a dominance of coarse traffic-related particles' fraction. Significant reductions of the averaged AOD levels over Bucharest were recorded during the first and third waves of COVID-19 pandemic and their associated lockdowns (~28.2% and ~16.4%, respectively) compared to pre-pandemic period (2015-2019) average AOD levels. The findings of this research are important for decision-makers implementing COVID-19 safety controls and health measures during viral infections.
Collapse
Affiliation(s)
- Maria Zoran
- C Department, National Institute of R&D for Optoelectronics, 409 Atomistilor Street, MG5, 077125 Magurele, Romania; (R.S.); (D.S.); (M.T.); (D.T.)
| | | | | | | | | |
Collapse
|
6
|
Abrescia N, Maddaloni A, D'Abbraccio M, De Marco M. High incidence of SARS-CoV-2 severe pneumonia in urban metropolitan areas: a suggestive pathogenetic hypothesis. Wien Klin Wochenschr 2023; 135:505-506. [PMID: 37721587 DOI: 10.1007/s00508-023-02279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Affiliation(s)
- Nicola Abrescia
- Hospital for Infectious Diseases "D. Cotugno", AORN Dei Colli, Via Quagliariello, 54, 80131, Naples, Italy.
| | - Adelaide Maddaloni
- Hospital for Infectious Diseases "D. Cotugno", AORN Dei Colli, Via Quagliariello, 54, 80131, Naples, Italy
| | - Maurizio D'Abbraccio
- Hospital for Infectious Diseases "D. Cotugno", AORN Dei Colli, Via Quagliariello, 54, 80131, Naples, Italy
| | - Mario De Marco
- Hospital for Infectious Diseases "D. Cotugno", AORN Dei Colli, Via Quagliariello, 54, 80131, Naples, Italy
| |
Collapse
|
7
|
Jenkins GS, Freire SM, Ogunro T, Niang D, Andrade M, Drame MS, Huvi JB, Pires EES, Toure EN, Camara M. COVID-19 New Cases and Environmental Factors During Wet and Dry Seasons in West and Southern Africa. GEOHEALTH 2023; 7:e2022GH000765. [PMID: 37519911 PMCID: PMC10383768 DOI: 10.1029/2022gh000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Sub-Saharan Africa has been the last continent to experience a significant number of cases in the novel Coronavirus (COVID-19). Studies suggest that air pollution is related to COVID-19 mortality; poor air quality has been linked to cardiovascular, cerebrovascular, and respiratory diseases, which are considered co-morbidities linked to COVID-19 deaths. We examine potential connections between country-wide COVID-19 cases and environmental conditions in Senegal, Cabo Verde, Nigeria, Cote D'Ivorie, and Angola. We analyze PM2.5 concentrations, temperatures from cost-effective in situ measurements, aerosol optical depth (AOD), and fire count and NO2 column values from space-borne platforms from 1 January 2020 through 31 March 2021. Our results show that the first COVID-19 wave in West Africa began during the wet season of 2020, followed by a second during the dry season of 2020. In Angola, the first wave starts during the biomass burning season but does not peak until November of 2020. Overall PM2.5 concentrations are the highest in Ibadan, Nigeria, and coincided with the second wave of COVID-19 in late 2021 and early 2022. The COVID-19 waves in Cabo Verde are not in phase with those in Senegal, Nigeria, and Cote, lagging by several months in general. Overall, the highest correlations occurred between weekly new COVID-19 cases meteorological and air quality variables occurred in the dry season.
Collapse
Affiliation(s)
- G. S. Jenkins
- Alliance for Education, Science, Engineering and Design with Africa (AESEDA)Pennsylvania State UniversityUniversity ParkPAUSA
| | | | | | - D. Niang
- Cheikh Anta Diop UniversityDakarSenegal
| | | | | | - J. B. Huvi
- Instituto Superior de Ciências da Educação de Benguela ‐ AngolaBenguelaAngola
| | - E. E. S. Pires
- Centro de Estudos e Pesquisa do TundavalaEngineering DepartmentISPTundavalaLubangoAngola
| | - E. N. Toure
- University Felix Houphouet BiognyAbidjanCote D'Ivorie
| | - M. Camara
- University of Assane SeckZiguinchorSenegal
| |
Collapse
|
8
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Peculiar weather patterns effects on air pollution and COVID-19 spread in Tokyo metropolis. ENVIRONMENTAL RESEARCH 2023; 228:115907. [PMID: 37080275 PMCID: PMC10111861 DOI: 10.1016/j.envres.2023.115907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As a pandemic hotspot in Japan, between March 1, 2020-October 1, 2022, Tokyo metropolis experienced seven COVID-19 waves. Motivated by the high rate of COVID-19 incidence and mortality during the seventh wave, and environmental/health challenges we conducted a time-series analysis to investigate the long-term interaction of air quality and climate variability with viral pandemic in Tokyo. Through daily time series geospatial and observational air pollution/climate data, and COVID-19 incidence and death cases, this study compared the environmental conditions during COVID-19 multiwaves. In spite of five State of Emergency (SOEs) restrictions associated with COVID-19 pandemic, during (2020-2022) period air quality recorded low improvements relative to (2015-2019) average annual values, namely: Aerosol Optical Depth increased by 9.13% in 2020 year, and declined by 6.64% in 2021, and 12.03% in 2022; particulate matter PM2.5 and PM10 decreased during 2020, 2021, and 2022 years by 10.22%, 62.26%, 0.39%, and respectively by 4.42%, 3.95%, 5.76%. For (2021-2022) period the average ratio of PM2.5/PM10 was (0.319 ± 0.1640), showing a higher contribution to aerosol loading of traffic-related coarse particles in comparison with fine particles. The highest rates of the daily recorded COVID-19 incidence and death cases in Tokyo during the seventh COVID-19 wave (1 July 2022-1 October 2022) may be attributed to accumulation near the ground of high levels of air pollutants and viral pathogens due to: 1) peculiar persistent atmospheric anticyclonic circulation with strong positive anomalies of geopotential height at 500 hPa; 2) lower levels of Planetary Boundary Layer (PBL) heights; 3) high daily maximum air temperature and land surface temperature due to the prolonged heat waves (HWs) in summer 2022; 4) no imposed restrictions. Such findings can guide public decision-makers to design proper strategies to curb pandemics under persistent stable anticyclonic weather conditions and summer HWs in large metropolitan areas.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
9
|
Ghobakhloo S, Khoshakhlagh AH, Mostafaii GR, Chuang KJ, Gruszecka-Kosowska A, Hosseinnia P. Critical air pollutant assessments and health effects attributed to PM 2.5 during and after COVID-19 lockdowns in Iran: application of AirQ + models. Front Public Health 2023; 11:1120694. [PMID: 37304093 PMCID: PMC10249069 DOI: 10.3389/fpubh.2023.1120694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives The aim of this study was to evaluate changes in air quality index (AQI) values before, during, and after lockdown, as well as to evaluate the number of hospitalizations due to respiratory and cardiovascular diseases attributed to atmospheric PM2.5 pollution in Semnan, Iran in the period from 2019 to 2021 during the COVID-19 pandemic. Methods Daily air quality records were obtained from the global air quality index project and the US Environmental Protection Administration (EPA). In this research, the AirQ+ model was used to quantify health consequences attributed to particulate matter with an aerodynamic diameter of <2.5 μm (PM2.5). Results The results of this study showed positive correlations between air pollution levels and reductions in pollutant levels during and after the lockdown. PM2.5 was the critical pollutant for most days of the year, as its AQI was the highest among the four investigated pollutants on most days. Mortality rates from chronic obstructive pulmonary disease (COPD) attributed to PM2.5 in 2019-2021 were 25.18% in 2019, 22.55% in 2020, and 22.12% in 2021. Mortality rates and hospital admissions due to cardiovascular and respiratory diseases decreased during the lockdown. The results showed a significant decrease in the percentage of days with unhealthy air quality in short-term lockdowns in Semnan, Iran with moderate air pollution. Natural mortality (due to all-natural causes) and other mortalities related to COPD, ischemic heart disease (IHD), lung cancer (LC), and stroke attributed to PM2.5 in 2019-2021 decreased. Conclusion Our results support the general finding that anthropogenic activities cause significant health threats, which were paradoxically revealed during a global health crisis/challenge.
Collapse
Affiliation(s)
- Safiye Ghobakhloo
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholam Reza Mostafaii
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Agnieszka Gruszecka-Kosowska
- Faculty of Geology, Geophysics, and Environmental Protection, Department of Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Pariya Hosseinnia
- Department of Public Health, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| |
Collapse
|
10
|
Huang J, Kwan MP. Associations between COVID-19 risk, multiple environmental exposures, and housing conditions: A study using individual-level GPS-based real-time sensing data. APPLIED GEOGRAPHY (SEVENOAKS, ENGLAND) 2023; 153:102904. [PMID: 36816398 PMCID: PMC9928735 DOI: 10.1016/j.apgeog.2023.102904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Few studies have used individual-level data to explore the association between COVID-19 risk with multiple environmental exposures and housing conditions. Using individual-level data collected with GPS-tracking smartphones, mobile air-pollutant and noise sensors, an activity-travel diary, and a questionnaire from two typical neighborhoods in a dense and well-developed city (i.e., Hong Kong), this study seeks to examine 1) the associations between multiple environmental exposures (i.e., different types of greenspace, PM2.5, and noise) and housing conditions (i.e., housing types, ownership, and overcrowding) with individuals' COVID-19 risk both in residential neighborhoods and along daily mobility trajectories; 2) which social groups are disadvantaged in COVID-19 risk through the perspective of the neighborhood effect averaging problem (NEAP). Using separate multiple linear regression and logistical regression models, we found a significant negative association between COVID-19 risk with greenspace (i.e., NDVI) both in residential areas and along people's daily mobility trajectories. Meanwhile, we also found that high open space and recreational land exposure and poor housing conditions were positively associated with COVID-19 risk in high-risk neighborhoods, and noise exposure was positively associated with COVID-19 risk in low-risk neighborhoods. Further, people with work places in high-risk areas and poor housing conditions were disadvantaged in COVID-19 risk.
Collapse
Affiliation(s)
- Jianwei Huang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mei-Po Kwan
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
11
|
Podury S, Kwon S, Javed U, Farooqi MS, Li Y, Liu M, Grunig G, Nolan A. Severe Acute Respiratory Syndrome and Particulate Matter Exposure: A Systematic Review. Life (Basel) 2023; 13:538. [PMID: 36836898 PMCID: PMC9962044 DOI: 10.3390/life13020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Particulate matter (PM) exposure is responsible for seven million deaths annually and has been implicated in the pathogenesis of respiratory infections such as severe acute respiratory syndrome (SARS). Understanding modifiable risk factors of high mortality, resource burdensome C19 and exposure risks such as PM is key to mitigating their devastating effects. This systematic review focuses on the literature available, identifying the spatial and temporal variation in the role of quantified PM exposure in SARS disease outcome and planning our future experimental studies. METHODS The systematic review utilized keywords adhered to the PRISMA guidelines. We included original human research studies in English. RESULTS Initial search yielded N = 906, application of eligibility criteria yielded N = 46. Upon analysis of risk of bias N = 41 demonstrated high risk. Studies found a positive association between elevated PM2.5, PM10 and SARS-related outcomes. A geographic and temporal variation in both PM and C19's role was observed. CONCLUSION C19 is a high mortality and resource intensive disease which devastated the globe. PM exposure is also a global health crisis. Our systematic review focuses on the intersection of this impactful disease-exposure dyad and understanding the role of PM is important in the development of interventions to prevent future spread of viral infections.
Collapse
Affiliation(s)
- Sanjiti Podury
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
| | - Urooj Javed
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
| | - Muhammad S. Farooqi
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
| | - Yiwei Li
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (Y.L.); (M.L.)
| | - Mengling Liu
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (Y.L.); (M.L.)
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| | - Gabriele Grunig
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| |
Collapse
|
12
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Cumulative effects of air pollution and climate drivers on COVID-19 multiwaves in Bucharest, Romania. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 166:368-383. [PMID: 36034108 PMCID: PMC9391082 DOI: 10.1016/j.psep.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.
Collapse
Key Words
- 222Rn
- 222Rn, Radon
- AOD, Total Aerosol Optical Depth at 550 nm
- Aerosol Optical Depth (AOD)
- CAMS, Copernicus Atmosphere Monitoring Service
- CO, Carbon monoxide
- COVID, 19 Coronavirus Disease 2019
- COVID-19 disease
- Climate variables
- DNC, Daily New COVID-19 positive cases
- DND, Daily New COVID-19 Deaths
- MERS, CoV Middle East respiratory syndrome coronavirus
- NO2, Nitrogen dioxide
- NOAA, National Oceanic and Atmospheric Administration U.S.A.
- O3, Ozone
- Outdoor air pollutants
- PBL, Planetary Boundary Layer height
- PM, Particulate Matter: PM1(1 µm), PM2.5 (2.5 µm) and PM10(10.0 µm) diameter
- RH, Air relative humidity
- SARS, CoV Severe Outdoor Respiratory Syndrome Coronavirus
- SARS, CoV-2 Severe Outdoor Respiratory Syndrome Coronavirus 2
- SI, Surface solar global irradiance
- SO2, Sulfur dioxide
- Synoptic meteorological circulation
- T, Air temperature at 2 m height
- p, Air pressure
- w, Wind speed intensity
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| |
Collapse
|
13
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study. ENVIRONMENTAL RESEARCH 2022; 212:113437. [PMID: 35594963 PMCID: PMC9113773 DOI: 10.1016/j.envres.2022.113437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.
Collapse
Affiliation(s)
- Maria A Zoran
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania.
| | - Roxana S Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Dan M Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Marina N Tautan
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| |
Collapse
|
14
|
Hoskovec L, Martenies S, Burket TL, Magzamen S, Wilson A. Association between air pollution and COVID-19 disease severity via Bayesian multinomial logistic regression with partially missing outcomes. ENVIRONMETRICS 2022; 33:e2751. [PMID: 35945947 PMCID: PMC9353392 DOI: 10.1002/env.2751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 05/14/2023]
Abstract
Recent ecological analyses suggest air pollution exposure may increase susceptibility to and severity of coronavirus disease 2019 (COVID-19). Individual-level studies are needed to clarify the relationship between air pollution exposure and COVID-19 outcomes. We conduct an individual-level analysis of long-term exposure to air pollution and weather on peak COVID-19 severity. We develop a Bayesian multinomial logistic regression model with a multiple imputation approach to impute partially missing health outcomes. Our approach is based on the stick-breaking representation of the multinomial distribution, which offers computational advantages, but presents challenges in interpreting regression coefficients. We propose a novel inferential approach to address these challenges. In a simulation study, we demonstrate our method's ability to impute missing outcome data and improve estimation of regression coefficients compared to a complete case analysis. In our analysis of 55,273 COVID-19 cases in Denver, Colorado, increased annual exposure to fine particulate matter in the year prior to the pandemic was associated with increased risk of severe COVID-19 outcomes. We also found COVID-19 disease severity to be associated with interactions between exposures. Our individual-level analysis fills a gap in the literature and helps to elucidate the association between long-term exposure to air pollution and COVID-19 outcomes.
Collapse
Affiliation(s)
- Lauren Hoskovec
- Department of StatisticsColorado State UniversityFort CollinsColoradoUSA
| | - Sheena Martenies
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbana‐ChampaignIllinoisUSA
| | - Tori L. Burket
- Denver Department of Public Health and EnvironmentDenverColoradoUSA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Ander Wilson
- Department of StatisticsColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
15
|
Xiong J, Li J, Wu X, Wolfson JM, Lawrence J, Stern RA, Koutrakis P, Wei J, Huang S. The association between daily-diagnosed COVID-19 morbidity and short-term exposure to PM 1 is larger than associations with PM 2.5 and PM 10. ENVIRONMENTAL RESEARCH 2022; 210:113016. [PMID: 35218713 PMCID: PMC8865934 DOI: 10.1016/j.envres.2022.113016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/11/2023]
Abstract
Exposure to particulate matter (PM) could increase both susceptibility to SARS-CoV-2 infection and severity of COVID-19 disease. Prior studies investigating associations between PM and COVID-19 morbidity have only considered PM2.5 or PM10, rather than PM1. We investigated the associations between daily-diagnosed COVID-19 morbidity and average exposures to ambient PM1 starting at 0 through 21 days before the day of diagnosis in 12 cities in China using a two-step analysis: a time-series quasi-Poisson analysis to analyze the associations in each city; and then a meta-analysis to estimate the overall association. Diagnosed morbidities and PM1 data were obtained from National Health Commission in China and China Meteorological Administration, respectively. We found association between short-term exposures to ambient PM1 with COVID-19 morbidity was significantly positive, and larger than the associations with PM2.5 and PM10. Percent increases in daily-diagnosed COVID-19 morbidity per IQR/10 PM1 for different moving averages ranged from 1.50% (-1.20%, 4.30%) to 241% (95%CI: 80.7%, 545%), with largest values for exposure windows starting at 17 days before diagnosis. Our results indicate that smaller particles are more highly associated with COVID-19 morbidity, and most of the effects from PM2.5 and PM10 on COVID-19 may be primarily due to the PM1. This study will be helpful for implementing measures and policies to control the spread of COVID-19.
Collapse
Affiliation(s)
- Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiao Wu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Jack M Wolfson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joy Lawrence
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rebecca A Stern
- Harvard John A. Paulson School of Engineering & Applied Sciences, Cambridge, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Shaodan Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
16
|
Shen F, Hegglin MI, Luo Y, Yuan Y, Wang B, Flemming J, Wang J, Zhang Y, Chen M, Yang Q, Ge X. Disentangling drivers of air pollutant and health risk changes during the COVID-19 lockdown in China. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2022; 5:54. [PMID: 35789740 PMCID: PMC9244310 DOI: 10.1038/s41612-022-00276-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/06/2022] [Indexed: 05/07/2023]
Abstract
The COVID-19 restrictions in 2020 have led to distinct variations in NO2 and O3 concentrations in China. Here, the different drivers of anthropogenic emission changes, including the effects of the Chinese New Year (CNY), China's 2018-2020 Clean Air Plan (CAP), and the COVID-19 lockdown and their impact on NO2 and O3 are isolated by using a combined model-measurement approach. In addition, the contribution of prevailing meteorological conditions to the concentration changes was evaluated by applying a machine-learning method. The resulting impact on the multi-pollutant Health-based Air Quality Index (HAQI) is quantified. The results show that the CNY reduces NO2 concentrations on average by 26.7% each year, while the COVID-lockdown measures have led to an additional 11.6% reduction in 2020, and the CAP over 2018-2020 to a reduction in NO2 by 15.7%. On the other hand, meteorological conditions from 23 January to March 7, 2020 led to increase in NO2 of 7.8%. Neglecting the CAP and meteorological drivers thus leads to an overestimate and underestimate of the effect of the COVID-lockdown on NO2 reductions, respectively. For O3 the opposite behavior is found, with changes of +23.3%, +21.0%, +4.9%, and -0.9% for CNY, COVID-lockdown, CAP, and meteorology effects, respectively. The total effects of these drivers show a drastic reduction in multi-air pollutant-related health risk across China, with meteorology affecting particularly the Northeast of China adversely. Importantly, the CAP's contribution highlights the effectiveness of the Chinese government's air-quality regulations on NO2 reduction.
Collapse
Affiliation(s)
- Fuzhen Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 210044 Nanjing, China
- Department of Meteorology, University of Reading, Reading, RG6 6BX UK
- Institute of Energy and Climate Research, IEK-7: Stratosphere, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Michaela I. Hegglin
- Department of Meteorology, University of Reading, Reading, RG6 6BX UK
- Institute of Energy and Climate Research, IEK-7: Stratosphere, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | - Yue Yuan
- Jining Meteorological Bureau, 272000 Shandong, China
| | - Bing Wang
- Henley Business School, University of Reading, Reading, RG6 6UD UK
| | | | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 210044 Nanjing, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Yunjiang Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 210044 Nanjing, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 210044 Nanjing, China
| | - Qiang Yang
- Hongkong University of Science and Technology, 999007 Hong Kong, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 210044 Nanjing, China
| |
Collapse
|
17
|
Geochemical and Morphological Evaluations of Organic and Mineral Aerosols in Coal Mining Areas: A Case Study of Santa Catarina, Brazil. SUSTAINABILITY 2022. [DOI: 10.3390/su14073847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Numerous researchers have described the correlation between the short-term contact of nano-particulate (NP) matter in diverse coal phases and amplified death or hospitalizations for breathing disorders in humans. However, few reports have examined the short-term consequences of source-specific nanoparticles (NPs) on coal mining areas. Advanced microscopic techniques can detect the ultra-fine particles (UFPs) and nanoparticles that contain potential hazardous elements (PHEs) generated in coal mining areas. Secondary aerosols that cause multiple and complex groups of particulate matter (PM10, PM2.5, PM1) can be collected on dry deposition. In this study, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) were employed to detect and define the magnitude of particulate matters on restaurants walls at coal mines due to weathering interactions. The low cost self-made passive sampler (SMPS) documented several minerals and amorphous phases. The results showed that most of the detected coal minerals exist in combined form as numerous complexes comprising significant elements (e.g., Al, C, Fe, K, Mg, S, and Ti), whereas others exist as amorphous or organic compounds. Based on the analytical approach, the study findings present a comprehensive understanding of existing potential hazardous elements in the nanoparticles and ultrafine particles from coal mining areas in Brazil.
Collapse
|