1
|
Ijaz S, Liu G, Rehman A, Haider MIS, Safeer R, Sattar B, Gulzar MZ, Nosheen S, Yousaf B. Organic matter and microplastics nexus: A comprehensive understanding of the synergistic impact on soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179420. [PMID: 40245505 DOI: 10.1016/j.scitotenv.2025.179420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The interactional nexus of microplastics (MPs) and organic matter (OM) can subtly disrupt the delicate balance of soil ecosystems, influencing nutrient dynamics, biodiversity, and overall soil health. To explore this complex interplay between MPs and OM concerning several perspectives, a comprehensive keyword search was conducted across key scientific databases, and the retrieved data was curated according to the PRISMA guidelines to reflect the objectives. Several studies have highlighted that organic-based inputs, such as manures, composts, and sewage sludge, widely used for soil amendment, are potential sources of MPs to soil contamination. These coinciding sources of MPs and OM raise potential concerns about their impact on overall soil health. MPs and OM have parallel characteristics and play a critical role in the soil organic carbon (SOC) and dissolved organic matter (DOM), critical for biogeochemical transformations and nutrient cycling. In light of this, the present review explores the multifaceted nexus between MPs and OM, explaining their interaction mechanisms and their effects on the biological and physicochemical properties of the soil. Despite significant implications on soil ecosystem, challenges remain in accurately quantifying the effects of MPs due to the complexities introduced by DOM. The intricate interaction between MPs and DOM can obscure analytical results, complicating efforts to separate and identify these pollutants effectively. Given these challenges, this review underscores the urgent need for innovative methods to characterize and quantify MPs in complex environmental matrices. Finally, we discuss emerging research directions aimed at advancing the detection and management of MPs in soil ecosystems.
Collapse
Affiliation(s)
- Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Abdul Rehman
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Bisma Sattar
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Muhammad Zeeshan Gulzar
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Sofia Nosheen
- Department of Environmental Sciences, Lahore College of Women University, Lahore, Pakistan
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
2
|
Wael H, Vanessa EB, Mantoura N, Antonios DE. Tiny pollutants, big consequences: investigating the influence of nano- and microplastics on soil properties and plant health with mitigation strategies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:860-877. [PMID: 40111751 DOI: 10.1039/d4em00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The impact of nanoplastics (NPs) and microplastics (MPs) on ecosystems and human health has recently emerged as a significant challenge within the United Nations Agenda 2030, drawing global attention. This paper provides a critical analysis of the influence of plastic particles on plants and soils, with the majority of data collected from recent studies, primarily over the past five years. The absorption and translocation mechanisms of NPs/MPs in plants are first described, followed by an explanation of their effects-especially particles like PE, PS, PVC, PLA, and PES, as well as those contaminated with heavy metals-on plant growth, physiology, germination, oxidative stress, and nutrient uptake. The study also links the characteristics of plastics (size, shape, concentration, type, degradability) to changes in the physical, chemical, and microbial properties of soils. Various mitigation strategies, including physical, chemical, and biological processes, are explored to understand how they address these changes. However, further research, including both laboratory and field investigations, is urgently needed to address knowledge gaps, particularly regarding the long-term effects of MPs, their underlying mechanisms, ecotoxicological impacts, and the complex interactions between MPs and soil properties. This research is crucial for advancing sustainability from various perspectives and should contribute significantly toward achieving sustainable development goals (SDGs).
Collapse
Affiliation(s)
- H Wael
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - E B Vanessa
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - N Mantoura
- FOE Dean's Office, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 100, Lebanon
| | - D Elie Antonios
- Laboratoire Chimie de la Matière Condensée de Paris LCMCP, Sorbonne Université, UPMC Paris 06, 4 Place Jussieu, 75005 Paris, France
- Solnil, 95 Rue de la République, Marseille 13002, France
| |
Collapse
|
3
|
Su M, Gan S, Gao R, Du C, Wei C, Shah AM, Ma J. Toxicity Mechanisms of Microplastic and Its Effects on Ruminant Production: A Review. Biomolecules 2025; 15:462. [PMID: 40305187 PMCID: PMC12024882 DOI: 10.3390/biom15040462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Plastic pollution has become one of the major environmental problems facing human beings in the world today. Plastic waste accumulated in the environment forms plastic particles of different sizes due to farming activities, climate change, ultraviolet light, microbial degradation, and animal chewing. The pollution caused by microplastics has become a major environmental problem in recent years, and it is also a research hotspot in the field of ecological environment. More and more studies have found that ruminants are exposed to microplastics for a long time, which seriously threaten their healthy growth. This paper introduces the current situation of plastic pollution; the properties of microplastics and their effects on the ecological environment, human beings, and animals; summarizes the types and toxicity mechanisms of microplastics; and concludes the main ways that microplastics enter ruminants and their harm to them. In addition, the shortcomings and future development of microplastics in ruminants research are summarized and prospected to provide theoretical reference for the related research on alleviating the influence of microplastics on ruminant production.
Collapse
Affiliation(s)
- Mengrong Su
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (M.S.); (R.G.); (C.D.)
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (M.S.); (R.G.); (C.D.)
| | - Rui Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (M.S.); (R.G.); (C.D.)
| | - Chunmei Du
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (M.S.); (R.G.); (C.D.)
| | - Chen Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (M.S.); (R.G.); (C.D.)
| | - Ali Mujtaba Shah
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (M.S.); (R.G.); (C.D.)
| |
Collapse
|
4
|
Yan Q, Li Y, Wang T, Chen Y, Zhao J, Jiang J, Lu H, Jia H. Elucidating the impact of mulching film on organic carbon mineralization from the perspective of aggregate level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178198. [PMID: 39721541 DOI: 10.1016/j.scitotenv.2024.178198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Plastic films mulching, a management strategy designed to boost agricultural productivity, significantly impacts soil fertility and the turnover of soil organic carbon (SOC). Aggregates in the soil play a crucial role in this SOC cycling. Yet, the effect of mulching on the changes in organic carbon components and the mineralization at the aggregate scale is still not well understood. We conducted a three-year field experiment to examine the effects of various mulching types (CK: non-mulching, BPM: black polyethylene mulching, CPM: colorless polyethylene mulching, BDM: black degradable mulching, CDM: colorless degradable mulching) on the transformation and mineralization of organic carbon within soil aggregates. Generally, after three years of continuous mulching, compared to CK, soil aggregate stability significantly improved, the content of SOC and HFOC increased by 8-14 % and 12-24 % respectively, while the content of LFOC decreased by 3-51 %. The response mechanisms of organic carbon mineralization in different size aggregates to mulching are different. The change in carbon components is the main factor stimulating the mineralization of organic carbon in >0.25 mm aggregates; microbial diversity is the dominant factor inhibiting the mineralization of organic carbon in 0.053-0.25 mm aggregates; while <0.053 mm aggregates are not significantly affected by mulching. Our findings suggest that plastic mulching reduce the mineralization of SOC and enhances its sequestration by modulating the composition of organic carbon fractions, extracellular enzymes, and microorganisms within soil aggregates of different sizes. This study provides a valuable reference for gaining further insights into the turnover dynamics of soil organic carbon at the aggregate scale.
Collapse
Affiliation(s)
- Qing Yan
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yanpei Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Tongtong Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yi Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinze Zhao
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jiarui Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haodong Lu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
5
|
Li M, He J, Chen X, Dong X, Liu S, Anderson CWN, Zhou M, Gao X, Tang X, Zhao D, Lan T. Interactive effects of microplastics and cadmium on soil properties, microbial communities and bok choy growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176831. [PMID: 39395501 DOI: 10.1016/j.scitotenv.2024.176831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The simultaneous presence of microplastics (MPs) and cadmium (Cd) in soil environments has raised concerns regarding their potential interactive effects on soil-plant ecosystems. This study explores how polyethylene (PE) at concentrations of 0.5 % (w/w), 1 % (w/w), and 2 % (w/w), and Cd at concentrations of 3 mg kg-1 and 12 mg kg-1, either alone or combined, impact soil physicochemical properties, microbial community structures, and bok choy growth through a 40-day pot experiment. Our findings reveal that the addition of 2 % (w/w) PE significantly increased soil organic carbon (SOC). However, when 2 % PE coexisted with Cd, SOC levels decreased, potentially due to a reduction in enzyme activity (β-1,4-glucosidase). PE increased the proportion of 1-2 mm soil aggregates, while the coexistence of 2 % PE and Cd significantly increased the content of soil aggregates larger than 2 mm. The coexistence of PE and Cd increased available potassium (AK) in the soil by approximately 13 % to 41 %. Regarding bok choy growth, the aboveground biomass under 2 % PE was approximately 210 % of that under 0.5 % PE, possibly because of the enhancement in soil nutrients. The presence of Cd, however, reduced the chlorophyll content of bok choy by approximately 18 % to 34 %. Notably, the coexistence of high PE concentration (2 % w/w) and low Cd concentration (3 mg kg-1) resulted in the highest aboveground biomass among all coexistence treatments. Furthermore, the addition of PE and Cd significantly altered the structure of soil bacterial and fungal communities, with fungi showing a greater response. Bacteria were significantly associated with soil inorganic N content and plant growth. This study provides new insights into the interactions of microplastics and Cd within microbial-soil-plant systems.
Collapse
Affiliation(s)
- Mengxiao Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Jiaju He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Xiaofeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Xiaoman Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Shuang Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Christopher W N Anderson
- School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Minghua Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China
| | - Di Zhao
- General Station of Arable Soil Quality and Fertilizer of Sichuan Province, 610041 Chengdu, Sichuan, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 611130, Sichuan, China.
| |
Collapse
|
6
|
Guo W, Li J, Wu Z, Chi G, Lu C, Ma J, Hu Y, Zhu B, Yang M, Chen X, Liu H. Biodegradable and conventional mulches inhibit nitrogen fixation by peanut root nodules - potentially related to microplastics in the soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136423. [PMID: 39536342 DOI: 10.1016/j.jhazmat.2024.136423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Mulching has been demonstrated to improve the soil environment and promote plant growth. However, the effects of mulching and mulch-derived microplastics (MPs) on nitrogen fixation by root nodules remain unclear. In this study, we investigated the effects of polyethylene (PE) and polylactic acid-polybutylene adipate-co-terephthalate (PLA-PBAT) film mulching on nitrogen fixation by root nodules after 4 years of continuous mulching using 15N tracer technology. Additionally, we examined the relationship between nitrogen fixation and MPs. We found a reduction in the proportion of nitrogen fixation by nodules (54.3 %-58.7 %) due to mulching. This decrease may be attributed to reduced dinitrogenase activity and flavonoid content at the seedling stage caused by mulching, and mulching with PLA-PBAT films significantly decreased the abundance of Bradyrhizobium at maturity. Furthermore, combined analysis of nitrogen-fixing bacteria (nifH) and metabolomes indicated that N-lauroylethanolamine may act as a regulatory signal influencing the root nodule nitrogen fixation process and that mulching resulted in significant changes in its content. The mantel test and PLS-PM suggest that microplastic from mulching may harm root nodule nitrogen fixation. This study reveals the influence of mulching on plant nitrogen uptake and the potential threat of mulch-derived microplastics, with a special focus on root nodule nitrogen fixation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhi Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfeng Wu
- Shandong Peanut Research Institute, Qingdao266100, China
| | - Guangyu Chi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jian Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanyu Hu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Zhu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaoyin Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| |
Collapse
|
7
|
Ye Q, Wu Y, Liu X, Wu J, Wu P, Wu W. Microplastics abundance associated with farmland use types and the impact on soil microbial communities: A case study in Southern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136477. [PMID: 39549399 DOI: 10.1016/j.jhazmat.2024.136477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
To investigate the impact of various farmland use types on the spatial distribution of microplastics (MPs) and their correlation with microbial communities, 78 soil samples from distinct farmland use types (orchard, paddy field, and vegetable field) in Southern China were examined. Results revealed that the abundance of MPs ranged from 528 to 39,864 items/kg with a mean abundance of 10,562 items/kg, which were primarily 0-30 µm in size. A total of 32 polymer types were identified, with the main polymer being polyethylene terephthalate (PET, 28.8 %), followed by polyvinyl chloride (PVC, 13.5 %) and fluororubber (FKM, 9.5 %). The abundance of MPs was highest in orchard field (8896 ± 5745 items/kg), followed by paddy field (4176 ± 2976 items/kg) and lastly vegetable field (2967 ± 3698 items/kg). Results of 16 S rRNA gene amplicon sequencing showed that the presence of MPs affected the bacterial distribution patterns. Compared with soil bacterial communities, the spatial dispersion and dissimilarity of plasticsphere communities were less variable. Notably, the predicted sequences related to xenobiotics biodegradation and metabolism became more abundant, thereby affecting the ecological function of soil. Overall, this study provides important data for further research on MP ecosystem risks associated with farmland use types.
Collapse
Affiliation(s)
- Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China
| | - Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China
| | - Xucheng Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China.
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China.
| |
Collapse
|
8
|
Omidoyin KC, Jho EH. Environmental occurrence and ecotoxicological risks of plastic leachates in aquatic and terrestrial environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176728. [PMID: 39383966 DOI: 10.1016/j.scitotenv.2024.176728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Plastic pollution poses a significant threat to environmental and human health, with microplastics widely distributed across various ecosystems. Although current ecotoxicological studies have primarily focused on the inherent toxicity of plastics in natural environments, the role of chemical additives leaching from plastics into the environment remains underexplored despite their significant contribution to the overall toxic potential of plastics. Existing systematic studies on plastic leachates have often examined isolated additive compounds, neglecting the ecotoxicological effects of multiple compounds present in plastic leachates. Additionally, most previous research has focused on aquatic environments, overlooking the leaching mechanisms and ecological risks to diverse species with various ecological roles in aquatic and terrestrial ecosystems. This oversight hinders comprehensive ecological risk assessments. This study addresses these research gaps by reviewing the environmental occurrence of plastic leachates and their ecotoxicological impacts on aquatic and terrestrial ecosystems. Key findings reveal the pervasive presence of plastic leachates in various environments, identifying common additives such as phthalates, polybrominated diphenyl ethers (PBDEs), bisphenol A (BPA), and nonylphenols (NPs). Ecotoxicologically, chemical additives leaching from plastics under specific environmental conditions can influence their bioavailability and subsequent uptake by organisms. This review proposes a novel ecotoxicity risk assessment framework that integrates chemical analysis, ecotoxicological testing, and exposure assessment, offering a comprehensive approach to evaluating the risks of plastic leachates. This underscores the importance of interdisciplinary research that combines advanced analytical techniques with ecotoxicological studies across diverse species and environmental conditions to enhance the understanding of the complex impacts of plastic leachates and inform future research and regulatory policies.
Collapse
Affiliation(s)
- Kehinde Caleb Omidoyin
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interest of Society), 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
9
|
Xiao L, Peng H, Song Z, Liu H, Dong Y, Lin Z, Gao M. Impacts of root exudates on the toxic response of Chrysanthemum coronarium L. to the co-pollution of nanoplastic particles and tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124916. [PMID: 39251125 DOI: 10.1016/j.envpol.2024.124916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Nano polystyrene (PS) particles and antibiotics universally co-exist, posing a threat to crop plants and hence human health, nevertheless, there is limited research on their combined toxic effects along with major influential factors, especially root exudates, on crop plants. This study aimed to investigate the response of Chrysanthemum coronarium L. to the co-pollution of nanoplastics and tetracycline (TC), as well as the effect of root exudates on this response. Based on a hydroponic experiment, the biochemical and physiological indices of Chrysanthemum coronarium L. were measured after 7 days of exposure. Results revealed that the co-pollution of TC and PS caused significant oxidative damage to the plants, resulting in reduced biomass. Amongst the two contaminants, TC played a more prominent role. PS could enter the root tissue, and the uptake of TC and PS by plant roots was synergetic. Malic acid, oxalic acid, and formic acid could explain 65.1% of the variation in biochemical parameters and biomass of the roots. These compounds affected the photosynthesis and biomass of Chrysanthemum coronarium L. by gradually lowering root reactive oxygen species (ROS) and leaf ROS. In contrast, the impact of rhizobacteria on the toxic response of the plants was relatively minor. These findings suggested that root exudates could alleviate the toxic response of plants to the co-pollution of TC and PS. This study enhances our understanding of the role of root exudates, providing insights for agricultural management and ensuring food safety.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Hongchang Peng
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Hanxuan Liu
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Youming Dong
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Zitian Lin
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Minling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
10
|
Bian J, Peng N, Zhou Z, Yang J, Wang X. A critical review of co-pollution of microplastics and heavy metals in agricultural soil environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117248. [PMID: 39467422 DOI: 10.1016/j.ecoenv.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
The soil environment is a primary destination for contaminants such as microplastics (MPs) and heavy metals (HMs), which are frequently detected simultaneously. The long-term coexistence of MPs and HMs in the soil necessitates unavoidable interactions, affecting their environmental chemical behavior and bioavailability. These co-contaminants pose potential threats to soil organism growth and reproduction, crop productivity, food security, and may jeopardize human health via the food chain. This paper summarizes the sources and trends of MPs in the soil environment, along with the mechanisms and current research status of MP adsorption or desorption of HMs. Additionally, this paper reviews factors affecting HM adsorption on MPs, including MP properties, HM chemical properties, and other environmental factors. Lastly, the effects of MPs and HMs on soil ecology and human health are summarized. The interaction mechanisms and potential biological effects of their co-contamination require further exploration. Future research should delve deeper into the ecotoxic effects of MP-HM co-contamination at cellular and molecular levels, to provide a comprehensive reference for understanding the environmental behavior of their co-contamination in soil.
Collapse
Affiliation(s)
- Jianlin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Nian Peng
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China.
| | - Ziyi Zhou
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Junxing Yang
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| |
Collapse
|
11
|
Gao M, Peng H, Bai L, Ye B, Qiu W, Song Z. Response of wheat (Triticum aestivum L. cv.) to the coexistence of micro-/nanoplastics and phthalate esters alters its growth environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174484. [PMID: 38969134 DOI: 10.1016/j.scitotenv.2024.174484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Micro- and nano-plastics (MPs/NPs) have emerged as a global pollutant, yet their impact on the root environment of plants remains scarcely explored. Given the widespread pollution of phthalate esters (PAEs) in the environment due to the application of plastic products, the co-occurrence of MPs/NPs and PAEs could potentially threaten the growth medium of plants. This study examined the combined effects of polystyrene (PS) MPs/NPs and PAEs, specifically dibutyl phthalate and di-(2-ethylhexyl) phthalate, on the chemical properties and microbial communities in a wheat growth medium. It was observed that the co-pollution with MPs/NPs and PAEs significantly increased the levels of oxalic acid, formic acid, and total organic carbon (TOC), enhanced microbial activity, and promoted the indigenous input and humification of dissolved organic matter, while slightly reducing the pH of the medium solution. Although changes in chemical indices were primarily attributed to the addition of PAEs, no interaction between PS MPs/NPs and PAEs was detected. High-throughput sequencing revealed no significant change in microbial diversity within the media containing both PS MPs/NPs and PAEs compared to the media with PS MPs/NPs alone. However, alterations in energy and carbohydrate metabolism were noted. Proteobacteria dominated the bacterial communities in the medium solution across all treatment groups, followed by Bacteroidetes and Verrucomicrobia. The composition and structure of these microbial communities varied with the particle size of the PS in both single and combined treatments. Moreover, variations in TOC, oxalic acid, and formic acid significantly influenced the bacterial community composition in the medium, suggesting they could modulate the abundance of dominant bacteria to counteract the stress from exogenous pollutants. This research provides new insights into the combined effects of different sizes of PS particles and another abiotic stressor in the wheat root environment, providing a critical foundation for understanding plant adaptation in complex environmental conditions.
Collapse
Affiliation(s)
- Mingling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Hongchang Peng
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Linsen Bai
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Biting Ye
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
12
|
Senko O, Maslova O, Stepanov N, Aslanli A, Lyagin I, Efremenko E. Role of Humic Substances in the (Bio)Degradation of Synthetic Polymers under Environmental Conditions. Microorganisms 2024; 12:2024. [PMID: 39458333 PMCID: PMC11509615 DOI: 10.3390/microorganisms12102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between the main participants in the processes of (bio)degradation of SPs in various ecosystems (reservoirs with fresh and sea water, soils, etc.), namely the polymers themselves, the cells of microorganisms (MOs) participating in their degradation, and humic substances (HSs). HSs constitute a macrocomponent of natural non-living organic matter of aquatic and soil ecosystems, formed and transformed in the processes of mineralization of bio-organic substances in environmental conditions. Analysis of the main mechanisms of their influence on each other and the effects produced that accelerate or inhibit polymer degradation can create the basis for scientifically based approaches to the most effective solution to the problem of degradation of SPs, including in the form of microplastics. This review is aimed at comparing various aspects of interactions of SPs, MOs, and HSs in laboratory experiments (in vitro) and environmental investigations (in situ) aimed at the biodegradation of polymers, as well as pollutants (antibiotics and pesticides) that they absorb. Comparative calculations of the degradation velocity of different SPs in different environments are presented. A special place in the analysis is given to the elemental chemical composition of HSs, which are most successfully involved in the biodegradation of SPs. In addition, the role of photo-oxidation and photoaging of polymers under the influence of the ultraviolet spectrum of solar radiation under environmental conditions on the (bio)degradation of SPs in the presence of HSs is discussed.
Collapse
Affiliation(s)
- Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119334, Russia
| |
Collapse
|
13
|
Zhao S, Rillig MC, Bing H, Cui Q, Qiu T, Cui Y, Penuelas J, Liu B, Bian S, Monikh FA, Chen J, Fang L. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17415. [PMID: 39005227 DOI: 10.1111/gcb.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Collapse
Affiliation(s)
- Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC- UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Caalonia, Spain
| | - Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padua, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, Liberec, Czech Republic
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
14
|
Vermeire ML, Thiour-Mauprivez C, De Clerck C. Agroecological transition: towards a better understanding of the impact of ecology-based farming practices on soil microbial ecotoxicology. FEMS Microbiol Ecol 2024; 100:fiae031. [PMID: 38479782 PMCID: PMC10994205 DOI: 10.1093/femsec/fiae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Alternative farming systems have developed since the beginning of industrial agriculture. Organic, biodynamic, conservation farming, agroecology and permaculture, all share a grounding in ecological concepts and a belief that farmers should work with nature rather than damage it. As ecology-based agricultures rely greatly on soil organisms to perform the functions necessary for agricultural production, it is thus important to evaluate the performance of these systems through the lens of soil organisms, especially soil microbes. They provide numerous services to plants, including growth promotion, nutrient supply, tolerance to environmental stresses and protection against pathogens. An overwhelming majority of studies confirm that ecology-based agricultures are beneficial for soil microorganisms. However, three practices were identified as posing potential ecotoxicological risks: the recycling of organic waste products, plastic mulching, and pest and disease management with biopesticides. The first two because they can be a source of contaminants; the third because of potential impacts on non-target microorganisms. Consequently, developing strategies to allow a safe recycling of the increasingly growing organic matter stocks produced in cities and factories, and the assessment of the ecotoxicological impact of biopesticides on non-target soil microorganisms, represent two challenges that ecology-based agricultural systems will have to face in the future.
Collapse
Affiliation(s)
- Marie-Liesse Vermeire
- CIRAD, UPR Recyclage et Risque, Dakar 18524, Sénégal
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier 34398, France
| | - Clémence Thiour-Mauprivez
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, Dijon 21000, France
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, 2 Passage des Déportés, 5030 Gembloux, Belgium
| |
Collapse
|
15
|
Hu M, Huang Y, Liu L, Ren L, Li C, Yang R, Zhang Y. The effects of Micro/Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133279. [PMID: 38141304 DOI: 10.1016/j.jhazmat.2023.133279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.
Collapse
Affiliation(s)
- Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
16
|
Yan Y, Wang C, Wan R, Li S, Yang Y, Lv C, Li Y, Yang G. Influence of weeding methods on rhizosphere soil and root endophytic microbial communities in tea plants. Front Microbiol 2024; 15:1334711. [PMID: 38384271 PMCID: PMC10879617 DOI: 10.3389/fmicb.2024.1334711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Polyethylene mulch is a kind of inorganic mulch widely used in agriculture. The effects of plastic mulch debris on the structure of plant soil and root growth have been fully studied, but their effects on endophytic microbial communities have not been explored to a large extent. Methods In this study, High-throughput sequencing of bacterial 16S rRNA genes and fungal ITS region sequences were used to analyze microbial community structure and composition in rhizosphere soil and root endophytic of tea plant under three different weeding methods: polyethylene mulching, hand weeding and no weeding (CK). Results The results showed that the weeding methods had no significant effect on the rhizosphere and root endophytic microbial abundance, but the rhizosphere bacterial structure covered by polyethylene mulch was significantly different than hand weeding and CK. The rhizosphere fungal diversity was also significantly higher than the other two analyzed treatments. The community abundance of rhizosphere microorganisms Acidobacteria, Candidatus Rokubacteria and Aspergillus covered by polyethylene mulch decreased significantly, whereas Bradyrhizobium, Solirubrobacterales and Alphaproteobacteria increased significantly. The abundance of bacteria Ktedonobacter, Reticulibacter, Ktedonosporobacter and Dictyobacter communities covered by polyethylene mulch was significantly changed, and the abundance of Fusarium and Nitrobacteraceae was significantly increased. Rhizosphere dominant bacteria were negatively correlated with soil available nitrogen content, while dominant fungi were significantly correlated with soil pH, total nitrogen and total potassium. Discussion Polyethylene mulch forms an independent micro-ecological environment. At the same time, the soil nutrient environment was enriched by affecting the nitrogen cycle, and the composition of microbial community was affected. This study elucidated the effects of polyethylene mulch on soil microbial community in tea garden and provided a new theoretical understanding for weed management.
Collapse
Affiliation(s)
- Yuxiao Yan
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Conglian Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Renyuan Wan
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuang Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanfen Yang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Caiyou Lv
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guangrong Yang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Liu Y, Li J, Parakhonskiy BV, Hoogenboom R, Skirtach A, De Neve S. Labelling of micro- and nanoplastics for environmental studies: state-of-the-art and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132785. [PMID: 37856963 DOI: 10.1016/j.jhazmat.2023.132785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Studying microplastics and nanoplastics (MNP) in environmental matrices is extremely challenging, and recent developments in labelling techniques may hold much promise to further our knowledge in this field. Here, we reviewed MNP labelling techniques and applications to provide the first systematic and in-depth insight into MNP labelling. We classified all labelling techniques for MNP into four main types (fluorescent, metal, stable isotope and radioisotope) and discussed per type the synthesis methods, detection methods, influencing factors, and the current and future applications and challenges. Direct labelling of environmental MNP with fluorescent dyes and metals enables simple visualisation and selective detection of MNP to improve detection efficiency. However, it is still an open question how to avoid co-labelling of non-plastic (i.e. non-target, matrix) materials. Labelling of MNP that are intentionally added in the environment may allow semi-automatic detection of MNP particles with high accuracy and sensitivity during studies on e.g. transport and degradation. The detection limit of labelled MNP largely depends on particle size and the type of matrix. Fluorescent labelling allows efficient detection of microplastics, whereas metal labelling is preferred for nanoplastics research due to a potentially higher sensitivity. A major challenge for fluorescent and metal labelling is to develop techniques that do not alter the inherent MNP properties or only do so minimally, in particular the surface properties. Stable and radioactive isotope labelling (13C and 14C, but also 15N, 2H) of the polymer itself allows to preserve inherent MNP properties, but have been largely ignored. Overall, labelling of MNP holds great promise for advancing our fundamental understanding of the behaviour of plastics, notably the smallest fractions, in the environment.
Collapse
Affiliation(s)
- Yin Liu
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Jie Li
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent Belgium
| | - Andre Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Stefaan De Neve
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Kama R, Liu Y, Zhao S, Hamani AKM, Song J, Cui B, Aidara M, Liu C, Li Z. Combination of intercropping maize and soybean with root exudate additions reduces metal mobility in soil-plant system under wastewater irrigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115549. [PMID: 37813077 DOI: 10.1016/j.ecoenv.2023.115549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
The effects of root exudates and irrigation with treated wastewater on heavy metal mobility and soil bacterial composition under intercropping remain poorly understood. We conducted a pot experiment with maize and soybean grown in monocultures or intercultures, irrigated with either groundwater or treated wastewater. In addition, the pre-collected root exudates from hydroponic culture with mono- or inter-cropped maize and soybean were applied to the soil at four levels (0 %, 16 %, 32 % and 64 %). The results showed that application of root exudates increased plant growth and soil nutrient content. The analysis of "Technique for Order of Preference by Similarity to Ideal Solution" for higher plant biomass and lower soil Cd and Pb concentrations indicated that the best performance of soybean under treated wastewater irrigation was recorded under intercropping applied with 64 % of exudates, with a performance score of 0.926 and 0.953 for Cd and Pb, respectively. The second-best performance of maize under treated wastewater irrigation was also observed under intercropping applied with 64 % of exudates. Root exudate application reduced heavy metals migration in the soil-plant system, with a greater impact in intercropping than in monocropping. In addition, certain soil microorganisms were also increased with root exudate application, regardless of irrigation water. This study suggests that appropriate application of root exudates could potentially improve plant growth and soil health, and reduce toxic heavy metal concentrations in soils and plants irrigated with treated wastewater.
Collapse
Affiliation(s)
- Rakhwe Kama
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Yuan Liu
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China.
| | - Shouqiang Zhao
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Abdoul Kader Mounkaila Hamani
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Jibin Song
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Bingjian Cui
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Maimouna Aidara
- Laboratory of botanical-biodiversity, faculty of sciences and technology, Cheikh Anta University of Dakar, 50005, Senegal
| | - Chuncheng Liu
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Zhongyang Li
- Agricultural Water and Soil Environmental Field Science Observation Research Station, Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China; National Research and Observation Station of Shangqiu Agro-ecology System, Shangqiu 476000, China.
| |
Collapse
|
19
|
Wang J, Zhang X, Li X, Wang Z. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132269. [PMID: 37607458 DOI: 10.1016/j.jhazmat.2023.132269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Micro/nanoplastics (MPs/NPs) pollution may adversely impact agricultural ecosystems, threatening the sustainability and security of agricultural production. This drives an urgent need to comprehensively understand the environmental behavior and effects of MPs/NPs in soil and atmosphere in agricultural regions, and to seek relevant pollution prevention strategies. The rhizosphere and phyllosphere are the interfaces where crops are exposed to MPs/NPs. The environmental behavior of MPs/NPs in soil and atmosphere, especially in the rhizosphere and phyllosphere, determines their plant accessibility, bioavailability and ecotoxicity. This article comprehensively reviews the transformation and migration of MPs/NPs in soil, transportation and deposition in the atmosphere, environmental behavior and effects in the rhizosphere and phyllosphere, and plant uptake and transportation pathways. The article also summarizes the key factors controlling MPs/NPs environmental processes, including their properties, biotic and abiotic factors. Based on the sources, environmental processes and intake risks of MPs/NPs in agroecosystems, the article offers several feasible pollution prevention and risk management options. Finally, the review highlights the need for further research on MPs/NPs in agro-systems, including developing quantitative detection methods, exploring transformation and migration patterns in-situ soil, monitoring long-term field experiments, and establishing pollution prevention and control systems. This review can assist in improving our understanding of the biogeochemistry behavior of MPs/NPs in the soil-plant-atmosphere system and provide a roadmap for future research.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
20
|
Qiang L, Hu H, Li G, Xu J, Cheng J, Wang J, Zhang R. Plastic mulching, and occurrence, incorporation, degradation, and impacts of polyethylene microplastics in agroecosystems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115274. [PMID: 37499389 DOI: 10.1016/j.ecoenv.2023.115274] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Polyethylene microplastics have been detected in farmland soil, irrigation water, and soil organisms in agroecosystems, while plastic mulching is suggested as a crucial source of microplastic pollution in the agroecosystem. Plastic mulch can be broken down from plastic mulch debris to microplastics through environmental aging and degradation process in farmlands, and the colonization of polyethylene-degrading microorganisms on polyethylene microplastics can eventually enzymatically depolymerize the polyethylene molecular chains with CO2 release through the tricarboxylic acid cycle. The selective colonization of microplastics by soil microorganisms can cause changes in soil microbial community composition, and it can consequently elicit changes in enzyme activities and nutrient element content in the soil. The biological uptake of polyethylene microplastics and the associated disturbance of energy investment are the main mechanisms impacting soil-dwelling animal development and behavior. As polyethylene microplastics are highly hydrophobic, their presence among soil particles can contribute to soil water repellency and influence soil water availability. Polyethylene microplastics have been shown to cause impacts on crop plant growth, as manifested by the effects of polyethylene microplastics on soil properties and soil biota in the agroecosystems. This review reveals the degradation process, biological impacts, and associated mechanisms of polyethylene microplastics in agroecosystems and could be a critical reference for their risk assessment and management.
Collapse
Affiliation(s)
- Liyuan Qiang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China
| | - Huibing Hu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China
| | - Guoqiang Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China
| | - Jianlong Xu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China
| | - Jinping Cheng
- Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China; The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Jiaping Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruoyu Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China.
| |
Collapse
|
21
|
Menicagli V, Balestri E, Giommoni F, Vannini C, Lardicci C. Plastic litter changes the rhizosphere bacterial community of coastal dune plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163293. [PMID: 37030390 DOI: 10.1016/j.scitotenv.2023.163293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
The presence of plastic litter in coastal environments like beach-dune systems has been well documented, and recent studies have shown that this pollutant can influence sand properties as well as dune vegetation. However, the effects of plastics on rhizosphere bacterial communities of dune plants have largely been neglected. This is an ecologically relevant issue since these communities may play an important role in improving plant growth and resilience of dune systems. Here, we explored the impact of plastic litter made of either non-biodegradable polymers (NBP) or biodegradable/compostable polymers (BP) on the structure and composition of rhizosphere bacterial communities associated with two widespread species along coastal European dunes, Thinopyrum junceum and Sporobolus pumilus, by using a one-year field experiment combined with metabarcoding techniques. Both plastics did not affect neither the survival nor the biomass of T. junceum plants, but they significantly increased alpha-diversity of rhizosphere bacterial communities. They also changed rhizosphere composition by increasing the abundance of the phyla Acidobacteria, Chlamydiae, and Nitrospirae, and of the family Pirellulaceae, and reducing the abundance of the family Rhizobiaceae. NBP reduced drastically the survival of S. pumilus while BP increased its root biomass compared to controls. BP also increased the abundance of the phylum Patescibacteria of the rhizosphere bacterial communities. Our findings provide the first evidence that NBP and BP can change rhizosphere bacterial communities associated with dune plants and highlight the importance of investigating how these changes can affect the resilience of coastal dunes to climate change.
Collapse
Affiliation(s)
| | | | | | - Claudia Vannini
- Department of Biology, University of Pisa, Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Pisa, Italy
| | - Claudio Lardicci
- Department of Earth Sciences, University of Pisa, Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Yu Y, Chen Y, Wang Y, Xue S, Liu M, Tang DWS, Yang X, Geissen V. Response of soybean and maize roots and soil enzyme activities to biodegradable microplastics contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115129. [PMID: 37315365 DOI: 10.1016/j.ecoenv.2023.115129] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Although biodegradable plastic film is a promising alternative product for reducing polyethylene plastic pollution in agricultural soils, the effects of its residues on plant growth and soil properties remain unclear. In this study, we conducted an experiment to investigate root properties and soil enzyme activities in Poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) contaminated soil (0 % (CK), 0.1 %, 0.2 %, 0.5 % and 1 % of dry soil weight) with soybean (Glycine max (Linn.) Merr.) and maize (Zea mays L.). The results show that PBAT-MP accumulation in soil negatively affects root growth, and alter soil enzyme activities, which may then constrain C/N cycling and potential yields. For soybean, the total root length, total root surface area and root biomass decreased by 34 %- 58 %, 34 %- 54 % and 25 %- 40 % at the harvesting stage compared to CK, respectively. The negative effects of PBAT-MPs on maize roots were greater than on soybean roots. The total root length, root surface area and root biomass of maize decreased by 37 %- 71 %, 33 %- 71 % and 24 %- 64 % at the tasseling and harvesting stage, respectively (p < 0.05). Furthermore, a statistical analysis of the data indicates that the inhibition of soybean and maize root growth by PBAT-MP accumulation was mediated by the significantly different impacts of PBAT-MP addition on C-enzyme (β-xylosidase, cellobiohydrolase, β-glucosidase) and N-enzyme activities (leucine-aminopeptidase, N-acetyl-β-glucosaminidase, alanine aminotransferase) in rhizosphere and non-rhizosphere soil, possibly due to interactions with plant-specific root exudates and microbial communities. These findings show the potential risks posed by biodegradable microplastics on the plant-soil system, and suggest that biodegradable plastic film should be applied with caution.
Collapse
Affiliation(s)
- Yao Yu
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yan Wang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Sha Xue
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Mengjuan Liu
- College of Agronomy, Northwest A&F University, 712100 Yangling, China
| | - Darrell W S Tang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands.
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
23
|
Khan MA, Huang Q, Khan S, Wang Q, Huang J, Fahad S, Sajjad M, Liu Y, Mašek O, Li X, Wang J, Song X. Abundance, spatial distribution, and characteristics of microplastics in agricultural soils and their relationship with contributing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:117006. [PMID: 36521215 DOI: 10.1016/j.jenvman.2022.117006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Agro-ecosystem contamination with microplastics (MPs) is of great concern. However, limited research has been conducted on the agricultural soil of tropical regions. This paper investigated MPs in the agro-ecosystem of Hainan Island, China, as well as their relationships with plastic mulching, farming practices, and social and environmental factors. The concentration of MPs in the study area ranged from 2800 to 82500 particles/kg with a mean concentration of 15461.52 particles/kg. MPs with sizes between 20 and 200 μm had the highest abundance of 57.57%, fragment (58.16%) was the most predominant shape, while black (77.76%) was the most abundant MP colour. Polyethylene (PE) (71.04%) and polypropylene (PP) (19.83%) were the main types of polymers. The mean abundance of MPs was significantly positively correlated (p < 0.01) with all sizes, temperature, and shapes except fibre, while weakly positively correlated with the population (p = 0.21), GDP (p = 0.33), and annual precipitation (p = 0.66). In conclusion, plastic mulching contributed to significant contamination of soil MPs in the study area, while environmental and social factors promoted soil MPs fragmentation. The current study results indicate serious contamination with MPs, which poses a concern regarding ecological and environmental safety.
Collapse
Affiliation(s)
- Muhammad Amjad Khan
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China; Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, 25120, Pakistan
| | - Qing Huang
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China.
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, 25120, Pakistan
| | - Qingqing Wang
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Jingjing Huang
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Muhammad Sajjad
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Yin Liu
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, Crew Building, The King's Buildings, University of Edinburgh, EH9 3FF, Edinburgh, United Kingdom
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou, 570100, China
| | - Junfeng Wang
- College of Ecology and Environment, Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, 570228, China
| | - Xiaomao Song
- Pujin Environmental Engineering (Hainan) Co., Ltd. Haikou, 570125, China
| |
Collapse
|
24
|
Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Zhang Y, Cai C, Gu Y, Shi Y, Gao X. Microplastics in plant-soil ecosystems: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119718. [PMID: 35809716 DOI: 10.1016/j.envpol.2022.119718] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO2 flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N2O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
Collapse
Affiliation(s)
- Yanyan Zhang
- Sichuan Agricultural University, College of Resources, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| | - Chen Cai
- Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Shanghai, 200092, China
| | - Yunfu Gu
- Sichuan Agricultural University, College of Resources, Chengdu, 611130, China
| | - Yuanshuai Shi
- Sichuan Institute of Geological Engineering, Chengdu, 610072, China
| | - Xuesong Gao
- Sichuan Agricultural University, College of Resources, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China
| |
Collapse
|
26
|
Wang Q, Huang Q, Liu Y, Khan MA, Guo G, Lu W, Li X, Hu S, Wang J. Temporal variation of the coupling relationship between methanogens and biogeochemical process in soil-microbes-rice system. CHEMOSPHERE 2022; 303:135099. [PMID: 35618072 DOI: 10.1016/j.chemosphere.2022.135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Microbial community were most resilient option for methane associated mitigation strategies. Biogas slurry provides plant nutrition and affects microbial community. However, little is known about the changes of the functional guilds (methanogen and methanotroph) in the geochemical context after addition biogas slurry. For this purpose, a pot experiment was conducted. Six treatment groups were included in this study, four with biogas slurry: water ratio (1:4, T02; 2:3, T04; 3:2, T06; 4:1, T08), one with a chemical fertilizer (F), and a control (CK). The effective tiller and biomass significantly increased by 1.9 times and 2.1 times in T02 relative to CK. The relative abundance of Bacteroidetes in the biogas slurry treatments was 31.5%, while that in CK was 11.4%. The dominant methanogens in CK, F and treatments were different at heading and mature stages. CK and F were hydrogenotrophs with relative abundance of 0.09% and 0.06%, and the treatment group was acetotrophs with mean value of 1.21% at heading stage. Compared with CK, the number of methanotrophs in the treatments at heading stage increased by 4.1 times, while that at mature increased by 10.3 times. The methanogenic community in the treatments may be shaped by the amount of biogas slurry applied rather than by biogeochemical processes at heading stage. Nevertheless, there may be existed synergistic interaction in the soil-microbes-rice system at mature stage. These findings may provide a better understanding of regulating soil respiration in agricultural land.
Collapse
Affiliation(s)
- Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yin Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Muhammad Amjad Khan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Genmao Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Wenkang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou, Hainan, 570100, China
| | - Shan Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Junfeng Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| |
Collapse
|
27
|
Liu S, Junaid M, Liao H, Liu X, Wu Y, Wang J. Eco-corona formation and associated ecotoxicological impacts of nanoplastics in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155703. [PMID: 35523339 DOI: 10.1016/j.scitotenv.2022.155703] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs, diameter < 100 nm), are ubiquitously found in the environment including water, atmosphere, and soil because of their widespread applications and degradation resistant nature. Similarly, large quantities of natural organic matter (NOM) are present in the environment, in the form of extracellular polymeric substances (DNA, proteins, carbohydrates, etc.) and humic substances (humic acid, fulvic acid, humin, etc.), respectively released by organisms and degradation products of organic matter. These biomolecules interact with NPs and encapsulate to form a unique layered structure termed as eco-corona, which can alter the physicochemical characteristics, interaction, fate, and effects of plastic particles in the environment. The current study collated and reviewed recent findings emphasizing the progress of ecological (eco)-corona formation on NPs and affiliated toxicological effects in freshwater, marine water, and terrestrial ecosystems. The eco-corona layer formed around NPs may vary in sizes and biochemical composition, attributed mainly to the abundance, properties and physicochemical nature of both biomolecules and plastic particles, as well as medium properties and source of NOM in the ecosystem. Besides, most of the reviewed literature showed that eco-corona can reduces the toxicity of NPs with few exceptions, which demonstrates that eco-corona may enhance the NPs toxicity through the Trojan horse effect and longer retention time in biological system. Overall, this review also highlights future research perspectives for a better understanding of NPs toxicity modified by eco-corona, which is crucial to realizing the complex nature of interactions among plastic particles and NOM in a natural ecosystem.
Collapse
Affiliation(s)
- Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liu
- Guangzhou Dublin International College of Life Sciences and Technology, College of International Education, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wu
- Guangzhou Environmental Monitoring Centre, Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
28
|
Zhang Y, Hui K, Li Y, Yuan Y, Tan W. Electron transfer capacity of humic acid in soil micro and macro aggregates in response to mulching years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154927. [PMID: 35367553 DOI: 10.1016/j.scitotenv.2022.154927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Plastic film mulching can help farmers meet food production requirements and even increase output. Although the environmental impact of this mulch has received attention, uncertainty remains about certain soil components and the course of its long-term effects. In particular, it is not clear whether the long-term use of mulching film will affect the electron transfer capacity (ETC) of natural organic matter in the soil. This study evaluated the electron-accepting capacity (EAC) and electron-donating capacity (EDC) of soil humic acid (HA) in different-size aggregates in response to different film mulching years (0-6 years). The EAC of HA in the soil showed a downward trend as mulching years increased, while the EDC fluctuated. EAC decline in microaggregates (MIA) was more significant than that of macroaggregates (MAA). Film mulching changes the physical and chemical properties of soil and the activity of enzymes, changes the chemical structure of HA, and ultimately affects HA electron transfer. In addition, compared with that in MAA, the chemical structure of soil HA in MIA has a stronger correlation with enzyme activity and ETC and thus is more significantly affected by mulching. These results provide an in-depth understanding of the role of HA in soil aggregates of different sizes in processes related to the agricultural soil environment under mulching conditions.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|