1
|
Yan X, Cao T, Chen H, Wu J, Xu C, Song J, Zhong Y, Chen Y, Zhang G, Peng P. Formation and evolution of environmentally persistent free radicals in charcoal and soot generated from biomass materials. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137523. [PMID: 39923371 DOI: 10.1016/j.jhazmat.2025.137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants that are highly reactive and toxic, posing potential health risks. Biomass burning is a significant source of EPFRs, but there has been a notable gap in research regarding the EPFRs present in charcoal and soot produced from the same combustion process. Our study detected EPFRs in both charcoal and soot, but there were significant differences in their characteristics. The EPFR concentrations in charcoal were much higher than that in soot, by approximately 2-4 orders of magnitude, suggesting that charcoal may be more chemically reactive. Differences in the formation mechanisms between charcoal and soot were found to result in variations in the characteristics of EPFRs observed in each material. Furthermore, the ability of EPFRs to generate reactive oxygen species (ROS) differed considerably between charcoal and soot. Charcoal exhibited a strong ability to produce ROS, including 1O2 and ·OH radicals, and the abundances of 1O2 was further enhanced (∼1.2 -2.1 times) after illumination. In contrast, only the 1O2 radical was found in soot produced at 300 °C. These findings enhanced our understanding of the environmental impact and potential toxicity of EPFRs, offering valuable insights for evaluating the risks associated with wildfires and agricultural burning.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hao Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuncun Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China.
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
2
|
You J, Farghali M, Yoshida G, Yamamoto H, Iwasaki M, Shimizu K, Maseda H, Andriamanohiarisoamanana FJ, Ihara I. Biochar-Assisted Control of Antibiotic-Resistant Bacteria and Methane Yield Optimization in Two-Stage Anaerobic Digestion Under Organic Load and Antibiotic Stress. ENVIRONMENTAL RESEARCH 2025:121679. [PMID: 40287040 DOI: 10.1016/j.envres.2025.121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/13/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
This study explores the interactions between microbial communities, antibiotic resistance, and biogas production in anaerobic digestion systems, focusing on the acidogenic (AP) and methanogenic (MP) phases under varying organic loads, cefazolin (CEZ) exposure, and biochar supplementation. High organic loading (10 g/L glucose) significantly suppressed CEZ-resistant bacteria (CEZ-r) during the AP phase. However, their abundance markedly rebounded in MP, rising from 0.30% to 36.28% in control, indicating phase-specific dynamics. CEZ residues increased CEZ-r by 2.49% and 9.30% at 0 and 5 g/L glucose during AP. Although AP suppressed CEZ-r to 0.23% in the CEZ-added reactor at 10 g/L glucose, MP rebounded CEZ-r to 8.30%. In addition, CEZ exposure reduced methane yields by up to 28.14%, likely due to the suppression of Methanosaetaceae and impaired acetic acid conversion. In contrast, biochar addition effectively reduced CEZ-r abundance to below 1.00% at moderate to high organic loads and alleviated CEZ-induced inhibition on methane production. Biochar also enhanced Methanosaetaceae abundance (up to +6.55%) compared to the control and promoted more efficient substrate utilization, possibly by facilitating direct interspecies electron transfer. These findings emphasize the role of organic load and digestion phase in shaping antibiotic resistance and system performance. Furthermore, biochar addition effectively mitigates the negative impacts of antibiotic residues, stabilizes microbial communities, and enhances biogas production.
Collapse
Affiliation(s)
- Jingyi You
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501 Japan
| | - Mohamed Farghali
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501 Japan; Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Gen Yoshida
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501 Japan
| | - Hanari Yamamoto
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501 Japan
| | - Masahiro Iwasaki
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501 Japan
| | - Kazuya Shimizu
- Faculty of Life Sciences, Toyo University, Itakura-machi, Gunma, 374-0193, Japan
| | - Hideaki Maseda
- Institute of Advanced Industrial Science & Technology, Osaka 563-0026 Japan
| | - Fetra J Andriamanohiarisoamanana
- Division of Livestock Research, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Koshi 861-1192, Japan
| | - Ikko Ihara
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501 Japan.
| |
Collapse
|
3
|
Li K, Rahman SU, Rehman A, Li H, Hui N, Khalid M. Shaping rhizocompartments and phyllosphere microbiomes and antibiotic resistance genes: The influence of different fertilizer regimes and biochar application. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137148. [PMID: 39799673 DOI: 10.1016/j.jhazmat.2025.137148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups. The presence of ARGs varied significantly across groups, with manure-treated samples exhibiting the greatest diversity and abundance, raising concerns about ARGs dissemination. Soil enzyme activities responded differently to treatments; manure significantly enhanced catalase, acid phosphatase, and urease activities, whereas saccharase was most responsive to chemical fertilizer. These differences are possibly responsible for the distinct microbiome structure associated with the plant's root system. The analysis of bacterial diversity and richness across rhizocompartments and the phyllosphere highlighted that manure-treated rhizospheres and phyllospheres displayed the highest species richness and diversity. Notably, Proteobacteria dominated across most treatments, with distinct shifts in bacterial phyla and genera influenced by manure and biochar applications. The LEfSe analysis identified key indicator genera specific to each group, indicating that both fertilizer type and biochar application significantly shape microbial community composition. Co-occurrence network analysis further demonstrated that manure and biochar treatments created unique microbial networks in the rhizosphere, rhizoplane, phyllosphere, and endosphere, highlighting the role of these amendments in modulating microbial interactions in plant-associated environments. These findings suggest that manure, while enhancing microbial diversity and soil enzyme activities, also increases ARGs, whereas biochar may not contribute to the spread of ARGs and fosters distinct microbial communities, offering valuable insights for sustainable agricultural practices.
Collapse
Affiliation(s)
- Kedi Li
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Saeed Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoxiang Li
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Khalid
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Sun Z, Hong W, Xue C, Dong N. A comprehensive review of antibiotic resistance gene contamination in agriculture: Challenges and AI-driven solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175971. [PMID: 39236811 DOI: 10.1016/j.scitotenv.2024.175971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Since their discovery, the prolonged and widespread use of antibiotics in veterinary and agricultural production has led to numerous problems, particularly the emergence and spread of antibiotic-resistant bacteria (ARB). In addition, other anthropogenic factors accelerate the horizontal transfer of antibiotic resistance genes (ARGs) and amplify their impact. In agricultural environments, animals, manure, and wastewater are the vectors of ARGs that facilitate their spread to the environment and humans via animal products, water, and other environmental pathways. Therefore, this review comprehensively analyzed the current status, removal methods, and future directions of ARGs on farms. This article 1) investigates the origins of ARGs on farms, the pathways and mechanisms of their spread to surrounding environments, and various strategies to mitigate their spread; 2) determines the multiple factors influencing the abundance of ARGs on farms, the pathways through which ARGs spread from farms to the environment, and the effects and mechanisms of non-antibiotic factors on the spread of ARGs; 3) explores methods for controlling ARGs in farm wastes; and 4) provides a comprehensive summary and integration of research across various fields, proposing that in modern smart farms, emerging technologies can be integrated through artificial intelligence to control or even eliminate ARGs. Moreover, challenges and future research directions for controlling ARGs on farms are suggested.
Collapse
Affiliation(s)
- Zhendong Sun
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
5
|
Zhou Z, Cui E, Abid AA, Zhu L, Xu J, Chen H. Evaluating the impact of biochar amendment on antibiotic resistance genes and microbiome dynamics in soil, rhizosphere, and endosphere at field scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135440. [PMID: 39111179 DOI: 10.1016/j.jhazmat.2024.135440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Biochar amendment is a promising strategy for mitigating antibiotic resistance genes (ARGs) in soil and plants, but its effects on ARGs at field scale are not fully understood. Here, field trials were executed utilizing two plant varieties, Brassica juncea and Lolium multiflorum, with four types of biochar to investigate changes in ARGs and microbiome in soil, rhizosphere, root endophytes, and leaf endophytes. Results showed that biochar altered ARG distribution in soil and plant, and restrained their transmission from soil and rhizosphere to endophytes. A reduction of 1.2-2.2 orders of magnitude in the quantity of ARGs was observed in root and leaf endophytes following biochar addition, while no significant changes were observed in soil and rhizosphere samples. Procrustes and network analyses revealed significant correlations between microbial communities and mobile genetic elements with ARGs (P < 0.05). Besides, redundancy and variation partitioning analysis indicated that bacterial communities may play a dominant role in shaping the ARGs profile, contributing to 43 % of the variation observed in ARGs. These field results suggest that biochar amendment alone may not fully alleviate ARGs in soil, but it has a significant beneficial impact on food safety and human health by effectively reducing ARGs in plant endophytes.
Collapse
Affiliation(s)
- Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Erping Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Abbas Ali Abid
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
7
|
Singh A, Singh E, Khan N, Shukla S, Bhargava PC. Effect of biochar on the fate of antibiotic resistant genes and integrons in compost amended agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23535-23548. [PMID: 38421542 DOI: 10.1007/s11356-024-32600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
The persistence and transmission of emerging pollutants such as antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) have caused concern to scientific community. Composting practises are often adapted for the reduction of organic waste or to enhance fertility in agriculture soil but its continuous usage has posed a potential risk of increased abundance of ARGs in soil. Thus, the present study scrutinises the emerging risk of ARGs and MGEs in agriculture soil and its potential mitigation using biochar owing to its proven environmental sustainability and performance. After 30 days incubation, ARG distribution of SulI, SulII, dfrA1, dfrA12, tetA, flor, and ErmA was 50, 37.5, 37.5, 62.5, 42.11, 62.5, and 52.63% in control samples whereas it was 5, 15.78, 21.05, 15.79, 10.53, 21.05, and 31.58%, respectively, for biochar amended samples. Similarly, IntI1 and IntI2 in control and biochar amended samples were 18.75 and 6.25% and 10.53 and 5.26%, respectively. Principal component analysis (PCA) factor suggests that biochar amendment samples showed enhanced value for pH, organic matter, and organic carbon over control samples. Furthermore, Pearson's correlation analysis performed between detected ARGs and MGEs demonstrated the positive and significant correlation at p < 0.05 for both control and biochar amended samples.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Saurabh Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
8
|
Alfei S, Pandoli OG. Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario. TOXICS 2024; 12:245. [PMID: 38668468 PMCID: PMC11054495 DOI: 10.3390/toxics12040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Biochar (BC) is a carbonaceous material obtained by pyrolysis at 200-1000 °C in the limited presence of O2 from different vegetable and animal biomass feedstocks. BC has demonstrated great potential, mainly in environmental applications, due to its high sorption ability and persistent free radicals (PFRs) content. These characteristics enable BC to carry out the direct and PFRs-mediated removal/degradation of environmental organic and inorganic contaminants. The types of PFRs that are possibly present in BC depend mainly on the pyrolysis temperature and the kind of pristine biomass. Since they can also cause ecological and human damage, a systematic evaluation of the environmental behavior, risks, or management techniques of BC-derived PFRs is urgent. PFRs generally consist of a mixture of carbon- and oxygen-centered radicals and of oxygenated carbon-centered radicals, depending on the pyrolytic conditions. Here, to promote the more productive and beneficial use of BC and the related PFRs and to stimulate further studies to make them environmentally safer and less hazardous to humans, we have first reviewed the most common methods used to produce BC, its main environmental applications, and the primary mechanisms by which BC remove xenobiotics, as well as the reported mechanisms for PFR formation in BC. Secondly, we have discussed the environmental migration and transformation of PFRs; we have reported the main PFR-mediated application of BC to degrade inorganic and organic pollutants, the potential correlated environmental risks, and the possible strategies to limit them.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Omar Ginoble Pandoli
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- Department of Chemistry, Pontifical Catholic University, Rua Marquês de São Vincente 225, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
9
|
Shi L, Zhang D, Yang M, Li F, Zhao J, He Z, Bai Y. New discovery of extremely high adsorption of environmental DNA on cuttlefish bone pyrolysis derivative via large pore structure and carbon film. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:286-293. [PMID: 38237404 DOI: 10.1016/j.wasman.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Environmental DNA (eDNA) carrying antibiotic resistance gene (ARG) has attracted a great deal of attention because of its threat to the ecology and human health. Traditional porous adsorbents, such as microporous biochar and natural mineral, are low-effective in removing eDNA from sewage. This study used cuttlefish-bone (CB), a fishery waste, as an anticipated material to adsorb a model compound of eDNA from herring sperm (hsDNA). An interesting result was firstly observed that extremely high DNA adsorption on cuttlefish-bone pyrolysis derivative (CCB) was up to 88.7 mg/g, 3-10 folds higher than that of most other adsorbents in the existing literatures, which was attributed to the carbon film and large pores. To achieve an adsorption rate of 75 %, hsDNA adsorption took 96 h on CB but only 24 h on CCB, which was attributed to the fluent channel of CCB. The ligand exchange, Ca2+ bridge and π-π interaction were identified as dominated adsorption mechanisms, based on FTIR and phosphate competition experiments. This study exploited a high-efficient, environmentally friendly, and low-cost adsorbent for treating ARG-contaminated soil and water.
Collapse
Affiliation(s)
- Lin Shi
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China.
| | - Di Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Mingyi Yang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Fangfang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jinfeng Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China.
| | - Zhaohui He
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yangwei Bai
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
10
|
Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, Sun Y, Zhu J, Guo L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168822. [PMID: 38043821 DOI: 10.1016/j.scitotenv.2023.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.
Collapse
Affiliation(s)
- Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Li H, Tan L, Xu Y, Zheng X. Metagenomics insights into the performance and mechanism of soil infiltration systems on removing antibiotic resistance genes in rural sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118981. [PMID: 37742563 DOI: 10.1016/j.jenvman.2023.118981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
The removal of antibiotic resistance genes (ARGs) in sewage is of great concern, but advanced sewage treatment technologies are not suitable for rural areas, so the multi-layer soil infiltration system (MSL) has been developed for rural sewage treatment. However, little is known about the performance and function of MSL in the treatment of ARGs in rural sewage. Here, we optimized the matrix composition and structure of MSL and explored the efficacy and mechanism of MSL systems for ARG removal under different hydraulic conditions. The ARGs removal rate of MSL ranged from 41.51% to 99.67%, in which MSL with the middle hydraulic load, high pollution load, and continuous inflowing conditions showed the best removal performance. In addition, this system can operate stably and resist the temperature fluctuation, which showed an equivalent removal rate of ARGs in warm and cold seasons, amounting to 69.0%. The structural equation model revealed that microorganisms in sewage could significantly affect ARG removal (path coefficient = 0.91), probably owing to their interspecies competition. As for the internal system, the reduction of ARGs was mainly driven by microorganisms in the system matrix (path coefficient = 0.685), especially soil-mixture-block (SMB) microorganisms. The physicochemical factors of the matrix indirectly reduce ARGs by affecting the microorganisms that adhere to the matrices. Note that the pairwise alignment of nucleotide analysis demonstrated that the system matrix, especially biochar in the SMB, adsorbed ARGs and their hosts from the sewage, and in turn eliminated them by inhibiting the spread and colonization of hosts, thereby reducing the abundance of ARGs. Collectively, this study provides a deeper insight into the removal of ARGs from rural sewage by MSL, which can help improve sewage treatment technologies.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China.
| |
Collapse
|
12
|
Gao X, Meng Q, Fang J, Shan S, Lin D, Wang D. Effects of particle size and pyrolytic temperature of biochar on the transformation behavior of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162923. [PMID: 36933735 DOI: 10.1016/j.scitotenv.2023.162923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Rampant use of antibiotics has caused a rapid dissemination of antibiotic resistance genes (ARGs) in environment, posing great threats to ecosystems and human health. Applying biochar (BC) in natural systems to combat the spread of ARGs arises as an attention-grabbing solution. Unfortunately, the effectiveness of BC is still unmanageable due to the incomprehensive knowledge over correlations between BC properties and extracellular ARGs transformation. To pinpoint the crucial factors, we primarily explored transformation behaviors of plasmid-mediated ARGs exposed to BC (in suspensions or extraction solutions), adsorption capacities of ARGs on BC, and growth inhibition of E. coli imposed by BC. Specifically, the effects of BC properties including particle size (large-particulate 150 μm and colloidal 0.45-2 μm) and pyrolytic temperature (300, 400, 500, 600, and 700 °C) on the ARGs transformation were emphasized. Results showed that both large-particulate BC and colloidal BC, irrespective of their pyrolytic temperature, would induce significant inhibitory effects on the ARGs transformation, while the BC extraction solutions showed little effect except BC pyrolyzed at 300 °C. Correlation analysis uncovered that the inhibition effect of BC on ARGs transformation was tightly correlated with its adsorption capacity towards plasmid. Accordingly, greater inhibitory effects from those BCs with higher pyrolytic temperatures and smaller particle sizes mainly originated from their greater adsorption capacities. Intriguingly, E. coli was unable to ingest the plasmid adsorbed on BC, which led to ARGs blocked outside the cell membrane, although this inhibitory effect was partially affected by survival inhibition of BC on E. coli. Particularly, significant plasmid aggregation could occur in the extraction solution of large-particulate BC pyrolyzed at 300 °C, leading to a significant inhibition of ARGs transformation. Overall, our findings complete the insufficient understanding over the effects of BC on ARGs transformation behavior, and potentially provide new insights to scientific communities in mitigating ARGs spreading.
Collapse
Affiliation(s)
- Xuan Gao
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, Hangzhou 310023, China; School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Qingkang Meng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Fang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, Hangzhou 310023, China; School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, Hangzhou 310023, China; School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Science, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
He Y, Zhao X, Zhu S, Yuan L, Li X, Feng Z, Yang X, Luo L, Xiao Y, Liu Y, Wang L, Deng O. Conversion of swine manure into biochar for soil amendment: Efficacy and underlying mechanism of dissipating antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162046. [PMID: 36758702 DOI: 10.1016/j.scitotenv.2023.162046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Livestock manure amendment, a common fertilization method for agricultural practice, can exacerbate antibiotic resistance gene (ARG) pollution, thus threatening food safety and human health. On the other hand, manure can also be produced as biochar to improve soil quality, which may reduce ARGs inside manure. However, it is unclear how and why shifting manure to biochar for soil amendment reduces ARG pollution. Thus, this study investigated the variations of ARGs and microbial communities in soil amended with swine manure (2 % and 5 %) and its biochar (2 % and 5 %) and then explored how shifting swine manure to biochar reduced ARG contamination. After 28 d incubation, ARG number in soil without amendment, manure-amended soils, and biochar-amended soils were 47, 112-136, and 43-52, respectively. ARG abundance in soil without amendment, manure-amended soils, and biochar-amended soils were 7.66 × 107, 4.32 × 109 - 1.42 × 1011, and 8.44 × 107-9.67 × 107 copies g-1 dry soil, respectively. Compared to manure-amended soils, its biochar amendments reduced ARG abundance by 2-4 orders of magnitude and ARG number by 70-93 in soil. Besides, manure amendment altered while biochar did not alter bacterial diversity and composition. The changed soil properties and mobile genetic elements (MGEs) could explain the changes in ARGs. Relative to manure amendments, its biochar amendments reduced mobile genetic elements (MGEs), Proteobacteria and Bacteroidetes in soil, which explained the reduced abundance and diversity of ARGs; however, the multidrug-resistance genes harbored in Proteobacteria and Bacteroidetes were still abundant in biochar-amended soil. This study suggests that converting manure to biochar as a soil amendment can help control the spread of manure ARGs.
Collapse
Affiliation(s)
- Yan He
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China; College of Environmental & Resource Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Siman Zhu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Long Yuan
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xinyi Li
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Zhihan Feng
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Xuan Yang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China.
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, PR China
| |
Collapse
|
14
|
Du L, Ahmad S, Liu L, Wang L, Tang J. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159815. [PMID: 36328262 DOI: 10.1016/j.scitotenv.2022.159815] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been used in massive quantities for human and animal medical treatment, and antibiotic resistance genes (ARGs) are of great concern worldwide. Antibiotics and ARGs are exposed to the natural environment through the discharge of medical wastewater, causing great harm to the environment and human health. Biochar has been widely used as a green and efficient adsorbent to remove pollutants. However, pristine and unmodified biochars are not considered sufficient and efficient to cope with the current serious water pollution. Therefore, researchers have chosen to improve the adsorption capacity of biochar through different modification methods. To have a better understanding of the application of modified biochar, this review summarizes the biochar modification methods and their performance, particularly, molecular imprinting and biochar aging are outlined as new modification methods, influencing factors of biochar and modified biochar in adsorption of antibiotics and ARGs and adsorption mechanisms, wherein adsorption mechanism of ARGs on biochar is found to be different than that of antibiotics. After that, the directions of biochar and modified biochar worthy of research and the issues that need attention are proposed. It can be noted that under the current dual carbon policy, biochar may have wider application prospects in future.
Collapse
Affiliation(s)
- Linqing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
15
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
16
|
Nunes IDS, Schnorr C, Perondi D, Godinho M, Diel JC, Machado LMM, Dalla Nora FB, Silva LFO, Dotto GL. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H 2 Generation and Use of the Biochars for CO 2 Capture. Molecules 2022; 27:7515. [PMID: 36364342 PMCID: PMC9658530 DOI: 10.3390/molecules27217515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/12/2023] Open
Abstract
This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g-1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g-1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2.
Collapse
Affiliation(s)
- Isaac dos S. Nunes
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Carlos Schnorr
- Department of Natural and Exact Sciences, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Daniele Perondi
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul—UCS, Caxias do Sul 95070-560, Brazil
| | - Marcelo Godinho
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul—UCS, Caxias do Sul 95070-560, Brazil
| | - Julia C. Diel
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Lauren M. M. Machado
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Fabíola B. Dalla Nora
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Luis F. O. Silva
- Department of Natural and Exact Sciences, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| |
Collapse
|
17
|
Li H, Wang X, Tan L, Li Q, Zhang C, Wei X, Wang Q, Zheng X, Xu Y. Coconut shell and its biochar as fertilizer amendment applied with organic fertilizer: Efficacy and course of actions on eliminating antibiotic resistance genes in agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129322. [PMID: 35728320 DOI: 10.1016/j.jhazmat.2022.129322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Biomass amendments have numerous benefits in reducing antibiotic resistance genes (ARGs) in the soil environment. However, there are debatable outcomes regarding the effect of raw biomass and its pyrolytic biochar on ARGs, and the exploration of the influence mechanism is still in infancy. Herein, we investigated the changes in soil ARGs under the organic fertilizer application with coconut shell and its biochar. The results showed that the coconut shell biochar could effectively diminish ARGs, with 61.54% reduction in target ARGs, which was higher than that adding raw coconut shells (p < 0.05). Structural equation modeling indicated that ARGs were significantly affected by changes in environmental factors, mainly by modulating bacterial communities. Neutral community model and network analysis demonstrated that the coconut shell biochar can restrict the species dispersal, thereby mitigating the spread of ARGs. Also, coconut shell biochar exhibited strong adsorption, with a large specific surface area (476.66 m2/g) and pores (pore diameter approximately 1.207 nm, total pore volume: 0.2451 m3/g), which markedly enhanced soil heterogeneity that created a barrier to limit the resistant bacteria proliferation and ARGs propagation. The outcome gives an approach to control the development of ARGs after organic fertilizer application into soil.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
18
|
Wang Y, Gu X, Huang Y, Ding Z, Chen Y, Hu X. Insight into biomass feedstock on formation of biochar-bound environmentally persistent free radicals under different pyrolysis temperatures. RSC Adv 2022; 12:19318-19326. [PMID: 35865560 PMCID: PMC9251640 DOI: 10.1039/d2ra03052g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
Environmentally persistent free radicals (EPFRs) in biochars have the ability of catalytic formation of reactive oxygen species, which may pose potential oxidative stresses to eco-environment and human health. Therefore, comprehending the formation and characteristics of EPFRs in biochars is important for their further applications. In this study, the woody lignocellulosic biomass (wood chips, pine needle and barks), non-woody lignocellulosic biomass (rice husk, corn stover, and duckweed), and non-lignocellulosic biomass (anaerobically digested sludge) were selected as biomass feedstock to prepare biochars under different pyrolysis temperatures (200–700 °C). The impact of biomass feedstock on formation of biochar-bound EPFRs was systematically compared. Elemental compositions and atomic ratios of H/C and O/C varied greatly among different biomass feedstocks and the subsequently resulting biochars. EPFRs in biochars derived from the studied lignocellulosic biomass have similar levels of spin concentrations (1018–1019 spins per g) except for lower EPFRs in biochars under 200 and 700 °C; however, sludge-based biochars, a typical non-lignocellulosic-biomass-based biochar, have much lower EPFRs (1016 spins per g) than lignocellulosic-biomass-based biochars under all the studied pyrolysis temperatures. Values of g factors ranged from 2.0025 to 2.0042 and line width was in the range of 2.15–11.3 for EPFRs in the resulting biochars. Spin concentrations of biochar-bound EPFRs increased with the increasing pyrolysis temperatures from 200 to 500 °C, and then decreased rapidly from 500 to 700 °C and oxygen-centered radicals shifted to carbon-centered radicals with the increasing pyrolysis temperatures from 200 to 700 °C for all the studied biomass feedstock. 300–500 °C was the appropriate pyrolysis temperature range for higher levels of spin concentrations of biochar-bound EPFRs. Moreover, EPFRs' concentrations had significantly positive correlation with C contents and weak or none correlation with contents of transition metals. Overall, different types of biomass feedstock have significant impact on the formation of EPFRs in the resulting biochars. Environmentally persistent free radicals (EPFRs) in biochars have the ability of catalytic formation of reactive oxygen species, which may pose potential oxidative stresses to eco-environment and human health.![]()
Collapse
Affiliation(s)
- Yu Wang
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Xinfeng Gu
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Yue Huang
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Yijun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University 22 Hankou Road Nanjing 210023 PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University 22 Hankou Road Nanjing 210023 PR China
| |
Collapse
|