1
|
Zhang P, Yan J, Ji H, Ge L, Li Y. The influence mechanism of environmental factors on DGT adsorbing sulfonamides and the migration between water and sediment. J Environ Sci (China) 2025; 151:347-359. [PMID: 39481944 DOI: 10.1016/j.jes.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 11/03/2024]
Abstract
Obtaining the sulfonamides (SAs) concentrations in the water body and sediment bulk was a prerequisite to reveal their transport and partitioning behavior in sediment-water environments and accurately assess their ecological risk. In the present study, the influences of multifactor interactions on the performance of o-DGTs with XAD-18 binding gels were analyzed by central combination experiments and response surfaces analysis, in which the target compounds were 9 SAs. The results indicated that dissolved organic matter (DOM), pH, and suspended particulate matter (SS) had significant effects on the o-DGT sampling, whereas this o-DGT was independent of the ionic strength (IS). Concentning the composite influence of the four factors, the interaction between DOM and SS posed the most significant effect on all 9 SAs compounds. Subsequently, an o-DGT and DIFS model was applied to explore the SAs migration between the water-sediments interface. The difference between desorption rate (kb) and adsorption rates (kf) values suggested that the kinetics of SAs was dominated by adsorption. Moreover, the short-term sediment-water partitioning of SAs was clarified on the basis of distribution coefficient (Kdl) for the labile SAs, among which the sulfadiazine (SDZ) had the largest labile pool. The ability of sediments to release SAs to the liquid phase as a sink was determined by response time (Tc). Among the 9 SAs, the long-term release of soseulfamethoxypyridazine (SMP) from the solid phase of sediments would have a potential risk to the aquatic environment, to which more attention should be paid in the future.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jingfeng Yan
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hao Ji
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Linke Ge
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Yanying Li
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
2
|
Miao Q, Ji W, Dong H, Zhang Y. Occurrence of phthalate esters in the yellow and Yangtze rivers of china: Risk assessment and source apportionment. J Environ Sci (China) 2025; 149:628-637. [PMID: 39181673 DOI: 10.1016/j.jes.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 08/27/2024]
Abstract
Phthalate esters (PAEs), recognized as endocrine disruptors, are released into the environment during usage, thereby exerting adverse ecological effects. This study investigates the occurrence, sources, and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins. The total concentration of PAEs in the Yellow River spans from 124.5 to 836.5 ng/L, with Dimethyl phthalate (DMP) (75.4 ± 102.7 ng/L) and Diisobutyl phthalate (DiBP) (263.4 ± 103.1 ng/L) emerging as the predominant types. Concentrations exhibit a pattern of upstream (512.9 ± 202.1 ng/L) > midstream (344.5 ± 135.3 ng/L) > downstream (177.8 ± 46.7 ng/L). In the Yangtze River, the total concentration ranges from 81.9 to 441.6 ng/L, with DMP (46.1 ± 23.4 ng/L), Diethyl phthalate (DEP) (93.3 ± 45.2 ng/L), and DiBP (174.2 ± 67.6 ng/L) as the primary components. Concentration levels follow a midstream (324.8 ± 107.3 ng/L) > upstream (200.8 ± 51.8 ng/L) > downstream (165.8 ± 71.6 ng/L) pattern. Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH, and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate (DNOP). Conversely, in other regions, the associated risk with PAEs is either low or negligible. The main source of PAEs in Yellow River is attributed to the release of construction land, while in the Yangtze River Basin, it stems from the accumulation of pollutants in lakes and forests discharged into the river. These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers, providing valuable insights for global PAEs research in other major rivers.
Collapse
Affiliation(s)
- Qinkui Miao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiang Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ying Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Beijora SS, Vaz TAC, Santo DE, de Almeida EA, Junior OV, Parolin M, da Silva Gonzalez R, de Souza DC, Peron AP. Prospecting toxicity of the avobenzone sunscreen in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44308-44317. [PMID: 38951395 DOI: 10.1007/s11356-024-34125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Avobenzone (AVO) is a sunscreen with high global production and is constantly released into the environment. Incorporating sewage biosolids for fertilization purposes, the leaching from cultivated soils, and the use of wastewater for irrigation explain its presence in the soil. There is a lack of information about the impact of this sunscreen on plants. In the present study, the ecotoxicity of AVO was tested at concentrations 1, 10, 100, and 1,000 ng/L. All concentrations caused a reduction in root growth of Allium cepa, Cucumis sativus, and Lycopersicum esculentum seeds, as well as a mitodepressive effect, changes in the mitotic spindle and a reduction in root growth of A. cepa bulbs. The cell cycle was disturbed because AVO disarmed the enzymatic defense system of root meristems, leading to an accumulation of hydroxyl radicals and superoxides, besides lipid peroxidation in cells. Therefore, AVO shows a high potential to cause damage to plants and can negatively affect agricultural production and the growth of non-cultivated plants.
Collapse
Affiliation(s)
- Sara Splendor Beijora
- Chemical Engineering Course, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | | | - Diego Espirito Santo
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil
| | | | - Osvaldo Valarini Junior
- Academic Department of Food and Chemical Engineering, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Mauro Parolin
- Graduate Program in Geography, State University of Maringá, Maringá, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Graduate Program in Food Technology, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Débora Cristina de Souza
- Graduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Paraná, Brazil
| | - Ana Paula Peron
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil.
- Graduate Program in Technological Innovations, Federal Technological University of Paraná Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná, Zip Code 87.301-899, Brazil.
| |
Collapse
|
4
|
Okon C, Rocha MB, de Souza Ratuchinski L, Santo DE, Duarte CCS, de Lima Feitoza L, Junior OV, Ferreira PMP, de Almeida EA, Halmemam MCO, Dade SilvaOliveira DC, da Silva Gonzalez R, de Souza DC, Peron AP. Toxicity of the emerging pollutants propylparaben and dichloropropylparaben to terrestrial plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45834-45846. [PMID: 38972946 DOI: 10.1007/s11356-024-34178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Propylparaben (PrP) and dichloropropylparaben (diClPrP) are found in soil worldwide, mainly due to the incorporation of urban sludge in crop soils and the use of non-raw wastewater for irrigation. Studies on the adverse effects of PrP on plants are incipient and not found for diClPrP. PrP and diClPrP were evaluated at concentrations 4, 40, and 400 µg/L for their phytotoxic potential to seeds of Allium cepa (onion), Cucumis sativus (cucumber), Lycopersicum sculentum (tomato), and Lactuca sativa (lettuce), and cytotoxic, genotoxic potential, and for generating oxygen-reactive substances in root meristems of A. cepa bulbs. PrP and diClPrP caused a significant reduction in seed root elongation in all four species. In A. cepa bulb roots, PrP and diClPrP resulted in a high prophase index; in addition, PrP at 400 µg/L and diClPrP at the three concentrations significantly decreased cell proliferation and caused alterations in a significant number of cells. Furthermore, diClPrP concentrations induced the development of hooked roots in onion bulbs. The two chemical compounds caused significant changes in the modulation of catalase, ascorbate peroxidase, and guaiacol peroxidase, disarming the root meristems against hydroxyl radicals and superoxides. Therefore, PrP and diClPrP were phytotoxic and cytogenotoxic to the species tested, proving dangerous to plants.
Collapse
Affiliation(s)
- Caio Okon
- Chemical Enginnering Course, Federal Technological, University of Paraná, Campo Mourão, Paraná, Brazil
| | - Mylena Bathke Rocha
- Chemical Enginnering Course, Federal Technological, University of Paraná, Campo Mourão, Paraná, Brazil
| | | | - Diego Espirito Santo
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil
| | - Charla Chaionara Schults Duarte
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil
| | - Lidiane de Lima Feitoza
- Academic Department of Biological Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Osvaldo Valarini Junior
- Academic Department of Food and Chemical Engineering, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Academic Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | | | - Regiane da Silva Gonzalez
- Academic Department of Chemistry, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
- Graduate Program in Food Technology, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Débora Cristina de Souza
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
- Graduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Paraná, Brazil
| | - Ana Paula Peron
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil.
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil.
- Graduate Program in Technological Innovations, Federal Technological University of Paraná, Via Rosalina Maria Dos Santos, Campo Mourão, Paraná, 1233, Brazil.
| |
Collapse
|
5
|
Yi J, Huang X, Hou J, Xiong J, Qian Z, Liu S, Zhang J, Yin D, Li J, Su Q, Qi S, Chen W. Occurrence and distribution of PPCPs in water from two largest urban lakes of China: First perspective from DGT in-situ measurement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166656. [PMID: 37647953 DOI: 10.1016/j.scitotenv.2023.166656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are an important group of emerging contaminants that may threaten organisms at trace concentrations. However, research on the occurrence of PPCPs in urban lakes in China is still scarce. In this study, 15 PPCPs in the Tangxun Lake and the Donghu Lake were collected using the diffusive gradients in thin-films (DGT) technique and analyzed by high performance liquid chromatography tandem-mass spectrometry (HPLC-MS/MS). Thirteen of the 15 targeted PPCPs were detected in the Tangxun Lake, and all PPCPs were detected in the Donghu Lake, with total concentrations ranging from 160 to 730 ng/L (average: 401 ng/L) and 187 to 1933 ng/L (average: 653 ng/L), respectively. Bisphenol A (BPA) was the dominant PPCP, followed by disinfectants in both lakes. The total concentrations of PPCPs in the Donghu Lake were higher than those in the Tangxun Lake. The spatial distribution characteristics of PPCPs in the two lakes were different, with higher total concentrations in the eastern part than in the western part of the Tangxun Lake spatially and higher in the north-western part than in the south-eastern part of the Donghu Lake. The results of the risk assessment showed that BPA and estrone posed high risks to the aquatic environment (RQ ≥ 1), while triclosan and estriol presented a medium risk (0.1 ≤ RQ < 1) in some sites. This study was the first attempt to apply DGT for providing vital data on the evaluation of the ecological risk of PPCPs in the two largest lakes in China, and attention should be paid to the long-term ecological effects caused by the occurrence of PPCPs in lakes.
Collapse
Affiliation(s)
- Jiapei Yi
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Xi Huang
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Jie Hou
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Junwu Xiong
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Zhe Qian
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Shan Liu
- School of Environmental Science and Engineering, and Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, and Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Dacong Yin
- Hubei Key Laboratory of Water Resources & Eco-Environmental Sciences, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Junyi Li
- China NUS (Suzhou) Research Institute, Suzhou 215128, China
| | - Qiuke Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shihua Qi
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Wei Chen
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; School of Environmental Science and Engineering, and Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China.
| |
Collapse
|
6
|
da Cunha Barros DG, Dos Santos Gonçalves do Nascimento GC, Okon C, Rocha MB, Santo DE, de Lima Feitoza L, Junior OV, da Silva Gonzalez R, de Souza DC, Peron AP. Benzophenone-3 sunscreen causes phytotoxicity and cytogenotoxicity in higher plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112788-112798. [PMID: 37840079 DOI: 10.1007/s11356-023-30365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The benzophenone-3 (BP-3) sunscreen is recurrently released into the environment from different sources, however, evaluations of its adverse effects on plants do not exist in the literature. In this study, BP-3 was evaluated, at concentrations 2; 20, and 200 µg/L, regarding phytotoxicity, based on germination and root elongation in seeds, in Lactuca sativa L., Cucumis sativus L. and Allium cepa L., and phytotoxicity, cytogenotoxicity and oxidative stress in A. cepa bulb roots. The BP-3 concentrations, except for the 200 µg/L concentration in L. sativa, caused no significant reduction in seed germination. All concentrations tested significantly reduced the elongation of roots from seeds and roots from bulbs. The 20 and 200 µg/L concentrations caused oxidation in cells, disturbances in the cell cycle, and alterations in prophase and metaphase, as well as the induction of micronuclei, in A. cepa root meristems. Furthermore, the three concentrations induced a high number of prophases in root tips. Such disorders were caused by excess H2O2 and superoxide produced in cells due to exposure to BP-3, which triggered significant phytotoxicity, cytotoxicity, and genotoxicity in root meristems. Thus, the recurrent contamination of agricultural and non-agricultural soils with BP-3, even at a concentration of 2 µg/L, represents an environmental risk for plants. These results point to the impending need to set limits for the disposal of this sunscreen into the environment since BP-3 has been used in industry for several decades.
Collapse
Affiliation(s)
| | | | - Caio Okon
- Chemical Engineering Course, Federal Technological University of Paraná, Campo Mourão, Curitiba, Paraná, Brazil
| | - Mylena Bathke Rocha
- Chemical Engineering Course, Federal Technological University of Paraná, Campo Mourão, Curitiba, Paraná, Brazil
| | - Diego Espirito Santo
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Curitiba, Paraná, Brazil
| | | | - Osvaldo Valarini Junior
- Academic Department of Food and Chemical Engineering, Federal Technological University of Paraná, Campo Mourão, Curitiba, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Academic Department of Chemistry, Federal Technological University of Paraná, Campo Mourão, Curitiba, Paraná, Brazil
| | - Débora Cristina de Souza
- Graduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ana Paula Peron
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Curitiba, Paraná, Brazil.
- Graduate Program in Technological Innovations, Federal Technological University of Paraná, Via Rosalina Maria Dos Santos, 1233. Campo Mourão, Curitiba, Paraná, Zip Code 87.301-899, Brazil.
| |
Collapse
|
7
|
Wang C, Wang J, Gao W, Ning X, Xu S, Wang X, Chu J, Ma S, Bai Z, Yue G, Wang D, Shao Z, Zhuang X. The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162201. [PMID: 36805063 DOI: 10.1016/j.scitotenv.2023.162201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Phthalates (PAEs) are gaining attention and being researched as an endocrine disruptor as global plastic use surge. There is an urgent need to explore the key factors affecting the removal of PAEs from wastewater and the impact of wastewater effluent on receiving water. Here we investigated the levels and distribution patterns of 16 typical PAEs in surface water and five wastewater treatment plants (WWTPs) along the Dongyang River from Yiwu, China, collecting 42 surface water and 31 wastewater samples. We found that influent PAEs concentration and treatment process were the key factors affecting the degradation efficiency of PAEs in primary and secondary treatment, respectively. In primary treatment, long-chain PAEs were more easily removed (and sometimes less likely to accumulate) than short-chain PAEs, regardless of the influent PAEs concentration (a key factor in primary treatment), while in secondary treatment, short-chain PAEs were easily removed regardless of the treatment process (a factor in secondary treatment). This was not the case for long-chain PAEs, which were only more readily removed in the A/A/O process. In addition, by comparing the significant differences between wastewater and surface water, we found that the total PAEs in the treated effluent were significantly lower than in surface water upstream and in built-up urban areas, indicating that wastewater discharges in the study area did not increase PAEs in the receiving water. Finally, river in the city center and artificial treatment facilities in the study area were identified as requiring priority attention. The results of this study can serve as a model for controlling PAEs in other similar developing cities in China and provide valuable information on the fate of endocrine disruptor from wastewater treatment in China and their impact on surface water.
Collapse
Affiliation(s)
- Cong Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Wei Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Shengjun Xu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwen Chu
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gecheng Yue
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Zhiping Shao
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Wang W, Man Y, Xie J, Zhang Z, Wang P, Liu X. Occurrence and risk assessment of three chloroamide herbicides in water and soil environment in northeastern, eastern and southern China. ENVIRONMENTAL RESEARCH 2023; 219:115104. [PMID: 36565672 DOI: 10.1016/j.envres.2022.115104] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chloroamide herbicides can cause adverse effects on nontarget organisms, but there is limited information about their occurrence in the environment of major cropland growing regions. In this study, a total of 1012 soil samples, 617 surface water samples and 737 groundwater samples were collected from 2020 to 2021 in three regions of China to evaluate the occurrence and risk of three important chloroamide herbicides alachlor, acetochlor and butachlor using the improved QuEChERS extraction method and high performance liquid chromatography-mass spectrometry. The results showed that residues of the three chloroamide compounds in surface water and groundwater ranged from 0.1 to 176.0 μg L-1, of which acetochlor was frequently detected from surface water (17.5%). As for the soil, mass fraction was varied between 1.0 and 1540.3 μg kg-1, similarly acetochlor had the highest detection frequency (49.6%). Timewise, the median mass fraction of selected chloroamide herbicides in soil in 2021 (7.8 μg kg-1) was significantly lower than that in 2020 (10.9 μg kg-1). Spatially, there were regional differences in the content of environmental residues, and the overall level of residues in the northeast was relatively high. The environmental risk assessment based on the improved Risk Quotient (RQ) method indicated that the selected herbicides were currently within an acceptable range for human health risks in the soil and water environment in various regions, but acetochlor and butachlor had contributed to the RQ values of fish and earthworms (0.01<RQ<0.1) in recent years, respectively, which might pose a certain risk of oral exposure to aquatic and terrestrial organisms. This study provides valuable data and ideas for the rational application, pollution control and environmental safety evaluation of chloroamide herbicides in China.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Xie
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Zhi Zhang
- Beijing Plant Protection Station, Beijing, 100029, China
| | - Pingping Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
9
|
Anagnostopoulpou K, Nannou C, Aschonitis VG, Lambropoulou DA. Screening of pesticides and emerging contaminants in eighteen Greek lakes by using target and non-target HRMS approaches: Occurrence and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157887. [PMID: 35952888 DOI: 10.1016/j.scitotenv.2022.157887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Lakes, albeit ecosystems of vital importance, are insufficiently investigated with respect to the degradation of water quality due to the organic micropollutants load. As regards Greece, screening of lake waters is scarce and concerns a limited number of contaminants. However, understanding the occurrence of contaminants of emerging concern (CECs) and other micropollutants in lakes is essential to appraise their potential ecotoxicological effects. The aim of this study was to deploy a multiresidue screening approach based on liquid chromatography-high-resolution mass spectrometry (HRMS) to get a first snapshot for >470 target CECs, including pesticides, pharmaceuticals, personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), as well as organophosphate flame retardants (OPFRs) in eighteen Greek lakes in Central, Northern and West Northern Greece. The omnipresent compounds were DEET (N,N-diethyl-meta-toluamide), caffeine and TCPP (tris (1-chloro-2-propyl) phosphate). Maximum concentrations varied among the different classes. DEET was detected at a maximum average concentration of >1000 ng/L in Lake Orestiada, while its mean concentration was estimated at 233 ng/L. The maximum total concentrations for pesticides, PPCPs, PFASs, and OPFRs were 5807, 2669, 33.1, and 1214 ng/L, respectively, indicating that Greek lakes are still threatened by the intense agricultural activity. Besides, HRMS enabled a non-target screening by exploiting the rich content of the full-scan raw data, allowing the 'discovery' of tentative candidates, such as surfactants, pharmaceuticals, and preservatives among others, without reference standards. The potential ecotoxicity was assessed by both the risk quotient method and ECOSAR (Ecological Structure Activity Relationships) revealing low risk for most of the compounds.
Collapse
Affiliation(s)
- Kyriaki Anagnostopoulpou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Christina Nannou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Vassilis G Aschonitis
- Soil and Water Resources Institute, Hellenic Agricultural Organization - DIMITRA, Thermi, Thessaloniki 57001, Greece
| | - Dimitra A Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
10
|
Zhang X, Zhang J, She Y, Li Y, Cheng H, Ji R, Bian Y, Han J, Jiang X, Song Y, Xue J. Comparison of the performance of hydrochar, raw biomass, and pyrochar as precursors to prepare porous biochar for the efficient sorption of phthalate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157511. [PMID: 35872190 DOI: 10.1016/j.scitotenv.2022.157511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this study, three high-performance porous biochars were synthesized by the cocarbonization of Pistia stratiotes-derived precursors (raw biomass, hydrochar and pyrochar) with potassium hydroxide and utilized for the sorption of diethyl phthalate from aqueous solution. The developed pore structure, surface functional groups, high hydrophobicity characteristic and graphene structure of porous biochars contributed to the excellent sorption quantity of up to 813 mg g-1 (Ce, 25 mg L-1). Among the three precursors, hydrochar-derived porous biochar showed better properties in terms of its specific surface area and hydrophobicity, and it displayed the highest sorption capacity. The sorption kinetics and isotherm experiments confirmed that pore filling and partitioning dominated the sorption capacity while the mass transfer, hydrogen bonding and π-π stacking in the hydrochar limited the sorption rate. This finding helped to propose a feasible method for the efficient utilization of invasive aquatic plants and provided novel insight into the selection of precursors for preparing porous biochars.
Collapse
Affiliation(s)
- Xinrui Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Jiapeng Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yutong She
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yang Li
- Jiangsu Institute of Geological Survey, Nanjing 210018, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
11
|
Ren W, Zhang C, Wang X, Wang J. Investigating associations between urinary phthalate metabolite concentrations and chronic diarrhea: findings from the National Health and Nutrition Examination Survey, 2005-2010. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77625-77634. [PMID: 35680746 DOI: 10.1007/s11356-022-21123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to explore the relationship between chronic diarrhea and urinary phthalate metabolite concentrations in US adults from the 2005-2010 NHANES study. After adjusting for potential confounding factors, logistic regression was used to explore the relationship between phthalates (PAEs) concentrations and chronic diarrhea, Bayesian kernel machine regression (BKMR), and quantile g calculation (quantile-based g calculation, qgcomp) which was used to study the combined and independent effects of PAEs on gastrointestinal infections. In the current study, 4260 adult participants over the age of 20 from the NHANES study were included, of whom 542 (12.72%) were assessed as having chronic diarrhea. In multivariate logistic regression analysis, after adjusting for all relevant covariates, the results showed that urinary phthalate metabolite concentrations were significantly associated with the risk of chronic diarrhea (P<0.001). Various PAEs were risk factors for chronic diarrhea, among which MiBP (OR=1.419, 95% CI: 1.416-1.423) and MCPP (OR=1.237, 95% CI: 1.235-1.239) were more significant. The BKME results showed a significant increase in the risk of chronic diarrhea with increasing total levels of the PAEs mixture. Mixed exposure to PAEs can promote the occurrence of chronic diarrhea, and the effect was more pronounced in obese people. Notably, most PAEs showed some degree of protection in overweight people. The risk effect of PAEs was more significant in the middle-aged and older population than in the younger population.
Collapse
Affiliation(s)
- Weirui Ren
- Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chuang Zhang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaoya Wang
- Undergraduate of Jitang College, The North China University of Science and Technology, Tangshan, China
| | - Junmin Wang
- Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
12
|
Xia E, Yang T, Zhu X, Jia Q, Liu J, Huang W, Ni J, Tang H. Facile and Selective Determination of Total Phthalic Acid Esters Level in Soft Drinks by Molecular Fluorescence Based on Petroleum Ether Microextraction and Selective Derivation by H2SO4. Molecules 2022; 27:molecules27134157. [PMID: 35807403 PMCID: PMC9268297 DOI: 10.3390/molecules27134157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Determining the level of phthalic acid esters (PAEs) in packaged carbonated beverages is a current need to ensure food safety. High-selectivity and -accuracy identification of individual PAEs can be achieved by chromatographic and mass spectrometric (MS) techniques. However, these methods are slow; involve complicated, expensive instruments in professional laboratories; and consume a large amount of organic solvents. As such, a food analysis method is needed to conveniently and rapidly evaluate multiple contaminants on site. In this study, with the assistance of ultrasound, we quickly determined the total PAEs in soft drinks using 1.5 mL of petroleum ether in one step. Then, we determined the characteristic molecular fluorescence spectrum of all PAEs in samples (excitation (Ex)/emission (Em) at 218/351 nm) using selectively concentrated sulfuric acid derivatization. The relative standard deviations of the fluorescent intensities of mixed solutions with five different PAEs were lower than 7.1% at three concentration levels. The limit of detection of the proposed method is 0.10 μmol L−1, which matches that of some of the chromatographic methods, but the proposed method uses less organic solvent and cheaper instruments. These microextraction devices and the fluorescence spectrometer are portable and provide an instant result, which shows promise for the evaluation of the total level of PAEs in beverages on site. The proposed method successfully detected the total level of PAEs in 38 kinds of soft drink samples from local supermarkets, indicating its potential for applications in the packaged beverage industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jindong Ni
- Correspondence: (H.T.); (J.N.); Tel.: +86-769-22896569 (H.T.); +86-769-22896572 (J.N.)
| | - Huanwen Tang
- Correspondence: (H.T.); (J.N.); Tel.: +86-769-22896569 (H.T.); +86-769-22896572 (J.N.)
| |
Collapse
|