1
|
Li Q, Niu X, Cai Y, Li L, Xia Z. Exposure to submicroplastics promotes the progression of nonalcoholic fatty liver disease in ApoE-deficient mice. Toxicology 2025; 515:154137. [PMID: 40222581 DOI: 10.1016/j.tox.2025.154137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Microplastics (MPs) pose emerging threats to human health, with growing concerns about liver toxicity and other harmful effects from plastic particles. While aquatic species exhibit hepatic vulnerability to micro/nanoplastics, the role of submicroplastics (100 nm-1 μm) in mammalian non-alcoholic fatty liver disease (NAFLD) progression remains unclear. We investigated the effects of a 12-week exposure to 0.5 μm polystyrene MPs (submicroplastics) in drinking water, administering this to ApoE-deficient mice fed either a chow diet (CD) or a Western diet (WD). Submicroplastics accumulated predominantly in the liver and were excreted in the feces. Histologically, submicroplastics significantly increased NAFLD activity scores, hepatic steatosis (Oil Red O-positive area), and fibrosis (Masson-positive area), with maximal severity in the WD+MPs group. Also, the MPs exposure group had increases in positive areas for F4/80 and inflammatory markers TNF-α, IL-1β and IL-6 expression under both diets. Concurrently, submicroplastics inhibited antioxidant defenses by lowering levels of superoxide dismutase and glutathione, while also increasing the lipid peroxidation marker malondialdehyde. WD-fed mice exhibited pronounced MPs-induced lipid dysregulation, including elevated hepatic triglycerides, total cholesterol, and free fatty acids (FAs). Mechanistically, submicroplastics upregulated FA synthesis regulators (ACC, FASN, SREBP1) while downregulating FA oxidation mediators (CPT1A, ACOX1, PPARα) in the livers under a WD. Our findings demonstrate that chronic submicroplastics-exposure exacerbates the progression of NAFLD in ApoE-deficient mice by disturbing lipid metabolism, enhancing oxidative stress, and amplifying inflammatory responses. This study provides experimental evidence linking environmental plastic pollution to accelerated metabolic liver disease, thereby highlighting the urgent need for plastic exposure control strategies.
Collapse
Affiliation(s)
- Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Shamim MAH, Wang J, Hossain KB, Rayhan ABMS, Islam MM, Chen K, Ke H, Zheng X, Wang C, Chen D, Cai M. Integrated analysis of microplastics origins and impact on prominent aquaculture ecosystems in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179334. [PMID: 40220470 DOI: 10.1016/j.scitotenv.2025.179334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Microplastics (MPs) have become a pressing environmental challenge in aquaculture-farmed ponds, particularly in Bangladesh, where research on their prevalence and impact is sparse. This research systematically investigates the distribution, abundance, and features of MPs in water and fish from aquaculture ponds in the western region of Bangladesh. The study reveals that MPs were widespread in water samples, with quantities ranging from 0.095 to 0.36 items/L, predominantly fibers accounted for 60.86 % of the total, followed by 26.08 % fragments, 11.30 % lines, and 1.76 % pellets. Fish samples demonstrated an average MP concentration of 1.19 items/g (23.37 items/individual), in fish gill ranging from 1.05 to 5.04 items/g and in GIT 0.40 to 2.26 items/g across eleven species, predominantly fibers with a 100 % detection rate, showing variability in MP concentration based on tissue type, species, and feeding habits. Fourier transform infrared spectroscopy (FT-IR) was employed to analyze the polymer composition, revealing significant proportions of SSP (W-43.17 %, F-35.22 %), PE (W-5.06 %, F-23.14 %), PP (W-5.57 %, F-8.19 %), nylon (W-15.76 %, F-14.84 %), PVC (W-7.16 %, F-3.58 %), and acrylic (W-5.57 %, F-4.93 %). Strong correlations were found between fish size and MP abundance, indicating that pond environmental contamination is a significant factor in MP ingestion. Pollution risk assessment revealed high contamination MP levels in both water and fish. Among the probable sources, MPs contributions are from agricultural runoff, tires of vehicles (each 14.11 %), fishing nets, fish feed, household wastage, plastic-made feeding equipment, laundry wastage (each 11.76 %), and so on. The research underscores the need for further research on MP exposure to human health and sustainable aquaculture production practices.
Collapse
Affiliation(s)
- Md Ali Hossain Shamim
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China; Department of Fisheries, Ministry of Fisheries & Livestock, Dhaka 1217, Bangladesh
| | - Jun Wang
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Kazi Belayet Hossain
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, Chulalongkorn University, Bangkok 10400, Thailand
| | - A B M Sadique Rayhan
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Md Mazharul Islam
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Xuehong Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Chunhui Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Ding Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Prado CCA, Queiroz LG, de Paiva TCB, Pompêo M, Ando R, Rani-Borges B. Oxidative stress dynamics in Hyalella azteca under sub-chronic exposure to naturally aged polypropylene microplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107303. [PMID: 40023059 DOI: 10.1016/j.aquatox.2025.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Microplastics (MPs) pollution has revealed a serious environmental issue, demonstrating chronic consequences for the affected environments and organisms. Although these plastic particles, pristine and aged, can circulate in different environmental matrices, their actual impacts on aquatic ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the freshwater amphipod Hyalella azteca. The concentrations tested were 135, 1350, and 13,500 items/L. H. azteca was investigated for mortality and changes in enzyme markers after 7 and 14 days of exposure followed by a further 7 days of depuration. The results show that mortality was only significant at the highest concentration tested. The concentration of 13,500 items induced oxidative stress after 7 days of exposure only at the MDA levels and CAT activity, while the concentrations of 1350 and 13,500 items/L induced oxidative stress in all tested markers (SOD, CAT, GST and MDA after 14 days. After 7 days of depuration, the levels of biochemical damage were reduced, demonstrating the ability of the species to recover as they are isolated from this pollutant.
Collapse
Affiliation(s)
- Caio César Achiles Prado
- Sea Institute, Federal University of São Paulo, Unifesp, Dona Maria Máximo Street 168, Santos 11070-100, Brazil
| | - Lucas Gonçalves Queiroz
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil
| | - Teresa Cristina Brazil de Paiva
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University de Sao Paulo, Municipal do Campinho Road, Lorena 12602-810, Brazil
| | - Marcelo Pompêo
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil
| | - Rômulo Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Avenue 748, São Paulo 05508-000, Brazil
| | - Bárbara Rani-Borges
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil.
| |
Collapse
|
4
|
Xue W, Bhandari R, Tutor J, Siengpairou N, Tabucanon AS. Spatial and temporal variations of microplastics in the lower Chao Phraya River, Thailand: an investigation during the COVID-19 pandemic period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6970-6983. [PMID: 40021554 DOI: 10.1007/s11356-025-36161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study systematically investigated the abundance, characteristics, and spatial and temporal variations of microplastics (MPs) in the lower Chao Phraya River, Thailand, during the COVID-19 pandemic. The study revealed an average MP abundance of 8.3 ± 5.8 particles/m3, mainly composed of polyethylene (PE) and polypropylene (PP) with fibers and fragments being the predominant shapes. Spatially, MP concentrations exhibited a notable increase downstream, particularly in highly urbanized areas. Temporally, MP concentrations showed slight elevation during the wet season, with clear seasonal variations in MP size and shape distributions attributed to the influence of urban storm runoff. Despite expectations of heightened MP pollution due to the COVID-19 pandemic, the study suggests a potential reduction in MP abundance, likely attributed to decreased socio-economic activities. Nonetheless, the long-term effects remain uncertain, underscoring the imperative for continuous monitoring and effective environmental management strategies.
Collapse
Affiliation(s)
- Wenchao Xue
- Department of Water Resources and Environmental Engineering, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, 12120, Pathumthani, Thailand.
| | - Roshan Bhandari
- Department of Water Resources and Environmental Engineering, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, 12120, Pathumthani, Thailand
| | - Jasmin Tutor
- Department of Water Resources and Environmental Engineering, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, 12120, Pathumthani, Thailand
| | - Nitcharat Siengpairou
- Department of Water Resources and Environmental Engineering, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, 12120, Pathumthani, Thailand
| | | |
Collapse
|
5
|
Padha S, Kumar R, Sharma Y, Dhar A. Unravelling land-based discharge of microplastics in River Basantar of Jammu & Kashmir, India: Understanding sinking behaviors and risk assessments. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104490. [PMID: 39731907 DOI: 10.1016/j.jconhyd.2024.104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/09/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g-1, with a mean abundance of 3 ± 1.594 item g-1, whereas MPs in surface water ranged from 200 to 850 items L-1 with a mean abundance of 530 ± 218.4 items L-1 among 12 sites for sediments and 10 sites for surface water. Besides, the sinking behavior of MPs was analyzed through portioning coefficients (Kd) at sediments-surface water interface, which ranges from 0.71 to 2.50 L Kg-1 for River Basantar. The most common shapes identified were fragments, fibres, and films, followed by pellets, foams, and lines. ATR-FTIR polymeric characterization reported polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl chloride, and thus, polymeric risk assessment analysis was also evaluated and normally distributed in the River Basantar. Polymer Hazard Index was calculated across all the sites which observed to be polluted under risk categories "III" and "IV" for both the sediments and surface water samples. Pollution Load Index (PLI) calculated across all the sites was >1 depicting all the sites for both sediments and surface water sampling to be polluted. Pollution Risk Index was assessed and majority of surface water and sediment samples were observed to be under "Very high" risk category. The study, using principal component analysis and heatmap analysis, found that MPs are primarily a result of urbanization and anthropogenic actions, like industrial discharges, household wastes, and agricultural runoffs. This study highlights the significance of more investigation and coordinated efforts to solve the worldwide problem of plastic pollution in freshwater environments. Results data provide insight into the current state of MP contamination and will help government authorities implement strict rules and perform management interventions to reduce and monitor pollution levels in River Basantar. Future studies on the partitioning of MPs in sediments and surface water must be focused on aggregation, biofouling, plastic density & size, salinity, and flow behaviors to understand transport and deposition in rivers.
Collapse
Affiliation(s)
- Shaveta Padha
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Yogesh Sharma
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India
| | - Anjali Dhar
- Department of Zoology, Central University of Jammu, Jammu & Kashmir 181143, India.
| |
Collapse
|
6
|
Pratiwi HM, Takagi T, Rusni S, Inoue K. Osmoregulation affects elimination of microplastics in fish in freshwater and marine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178293. [PMID: 39818487 DOI: 10.1016/j.scitotenv.2024.178293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments. In this study, using Javanese medaka (Oryzias javanicus), a euryhaline fish that adapts readily to both SW and FW, we investigated elimination of MPs in fish in SW and FW environments. We exposed O. javanicus larvae (21 days post-hatching) to 0.25 mg/L of fluorescent polystyrene microspheres (1 μm) for 24 hours and then conducted an elimination test for up to 5 days. Results showed that the gut retention time of MPs is longer in FW than in SW, indicating that MP elimination occurs more quickly in SW than in FW. However, higher numbers of MPs tended to be retained longer in SW larvae than FW larvae. Subsequently, using a fluorescent marker, gastrointestinal fluid was found to move more rapidly in the SW group. This finding indicates that water drinking accelerates gastrointestinal fluid movement, which moves MPs through the gut in SW larvae. Beside the difference in physiological conditions, MP elimination was faster when food was available, suggesting that feeding also affects MP elimination in fish. Internal factors such as body size and intestine length were also examined, but indicated no significant difference. Therefore, osmoregulation and feeding both influence MP elimination in fish.
Collapse
Affiliation(s)
- Hilda Mardiana Pratiwi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan
| | - Suhaila Rusni
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan
| | - Koji Inoue
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan
| |
Collapse
|
7
|
Kim JE, Sonar NS, Thakuri LS, Park JW, Kim KT, Rhyu DY. Mixtures of polystyrene micro and nanoplastics affects fat and glucose metabolism in 3T3-L1 adipocytes and zebrafish larvae. NANOIMPACT 2025; 37:100549. [PMID: 39965748 DOI: 10.1016/j.impact.2025.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are pervasive pollutants that pose a hazard to human health. Although most previous studies have investigated the effects of MPs and NPs on digestion, oxidative stress, and inflammation in diverse models, the combined effect of plastic mixtures (PM) containing MPs and NPs on obesity and type 2 diabetes mellitus (T2DM) remains unknown. The hypothesis of our study is to verify the association between PM exposure and clinical features of metabolic diseases such as lipogenesis and insulin resistance. Therefore, we investigated the effects of PM on fat and glucose metabolism in 3T3-L1 cells and high-fat diet (HFD)-induced zebrafish larvae. PM exposure increased cell viability, differentiation, adipogenesis (PPARγ and C/EBPα), and lipogenesis (FAS and SREBP-1c), while it decreased glucose uptake and inhibited insulin signal (IRS1, PI3K, AKT, and GLUT4) expression 3T3-L1 cells. In zebrafish larvae, PM mainly bioaccumulated in the intestine and pancreatic tissue, reducing glucose uptake and increasing body weight and blood glucose compared to controls. Moreover, PM significantly increased adipogenic differentiation (PPARγ) and synthesis (FASN and FABP), proinflammatory cytokines (TNF-α and IL-6), and gluconeogenesis (PCK1 and G6Pase). Conversely, energy and fat metabolism (AMPKα and adiponectin), insulin production (INSα), signaling pathway (IRS1, AKT, and GLUT2), and anti-inflammatory cytokines (IL-10 and IL-4) were suppressed. Overall, this study sheds light on the mechanisms responsible for the detrimental effects of PM exposure on fat and glucose metabolism, providing insights into metabolic disorders, like type 2 diabetes, in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; ROK-Biotech, Hwasun-gun, Jeonnam 58112, Republic of Korea
| | - Narayan Sah Sonar
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Sen Thakuri
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Dong Young Rhyu
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
8
|
Sajad S, Allam BK, Debnath A, Bangotra P, Banerjee S. Pollution status of microplastics in the sediments of warm monomictic Dal lake, India: Abundance, composition, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125247. [PMID: 39505103 DOI: 10.1016/j.envpol.2024.125247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
This report presents the first investigation of microplastic (MP) contamination in the shoreline sediments of Dal Lake, Jammu and Kashmir, India. The MP concentrations ranged from 503 to 3154 MP/kg, with a notable seasonal variation. The highest concentrations of microplastics occurred in the Spring, ranging from 467 to 3445 MP/kg. Microplastics were identified using optical microscopy, Fourier Transform Infrared spectroscopy, and thermogravimetric analysis. Polymer analysis revealed that the Gagribal basin was contaminated with polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyamide (PA), and polyethylene terephthalate (PET). In contrast, the Nigeen basin mainly comprises PE, PP, and PS. The significantly elevated Polymer Hazard Index (PHI) values, exceeding 1000 in the Gagribal basin, were attributed to the presence of PVC. Sediment quality was assessed using Pollution Load Index (PLI), Potential Ecological Risk Index (PERI), and PHI. Health risk metrics, such as estimated daily intake (EDI) and microplastic carcinogenic risks (MPCR), were also evaluated. There is a positive correlation between microplastic abundance and total organic carbon (TOC), total phosphorus (TP), and total nitrogen (TN). The Nigeen basin, characterized by a higher proportion of less hazardous polymers like PP, exhibited greater TOC levels due to enhanced microbial degradation of microplastics. Conversely, the Gagribal basin, with its higher presence of toxic polymers like PVC, had lower TOC levels, likely due to these compounds' inhibition of microbial activity. This study provides crucial insight into the spatial distribution and ecological impact of MPs in Dal Lake, setting the stage for future research on their effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Samreen Sajad
- Department of Environmental Sciences, Sharda University, Greater Noida, India
| | - Bharat Kumar Allam
- Department of Chemistry, Rajiv Gandhi University (A Central University), Rono Hills, Doimukh, Arunachal Pradesh, India
| | - Abhijit Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Pargin Bangotra
- Department of Physics, Netaji Subhas University of Technology, New Delhi, India
| | - Sushmita Banerjee
- Department of Environmental Sciences, Sharda University, Greater Noida, India.
| |
Collapse
|
9
|
Li Y, Liao H, Zeng M, Gao D, Kong C, Liu W, Zheng Y, Zheng Q, Wang J. Exposure to polystyrene nanoplastics causes immune damage, oxidative stress and intestinal flora disruption in salamander (Andrias davidianus) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175169. [PMID: 39094663 DOI: 10.1016/j.scitotenv.2024.175169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The toxic effects of nanoparticles have been increasingly investigated, but there has been limited research on amphibians, especially those of conservation value. This study examined the effects of different concentrations (0, 0.04, 0.2, 1, 5 mg/L) of polystyrene nanoplastics (PS-NPs, 80 nm) on the short-term exposure (7 d) of Andrias davidianus. Results demonstrated the concentration-dependent enrichment of PS-NPs in the intestine. Histological lesions displayed increased hepatic macrophages with cellular rupture, broken intestinal villi, decreased cuprocytes and crypt depression. Antioxidant- and inflammation-related enzyme activities were analysed, and it was found that hepatic and intestinal MDA content and CAT activity were highest in the N-1 group and SOD activity was highest in the N-0.2 group (p < 0.05). AKP activity continued to decline, and iNOS activity was highest in the N-0.2 group (p < 0.05). il-10, tgf-β, bcl-w and txnl1 were significantly downregulated in the N-0.2 group, while il-6 and il-8 were markedly upregulated in the N-0.2 group (p < 0.05). Exposing to PS-NPs decreased probiotic bacteria (Cetobacterium, Akkermansia) and increased pathogenic bacteria (Lachnoclostridium). Our results suggest that NPs exposure can have deleterious effects on salamanders, which predicts that NPs contamination may lead to continued amphibian declines. Therefore, we strongly recommend that attention be paid to amphibians, especially endangered species, in the field of NPs.
Collapse
Affiliation(s)
- Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Min Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yufeng Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
10
|
Huang H, Lei P, Yu H, Du J, Wu B, Wang H, Yang Q, Cheng Y, Sun D, Wan L. Micro/nano plastics in the urinary system: Pathways, mechanisms, and health risks. ENVIRONMENT INTERNATIONAL 2024; 193:109109. [PMID: 39500122 DOI: 10.1016/j.envint.2024.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Micro/Nano plastics (MNPs) pollutants are widespread in the environment, raising significant concerns about their biosafety. Emerging studies indicate that the urinary system is a primary accumulation site for MNPs, leading to severe tissue and functional damage. This review aims to summarize recent research on the potential hazards that MNPs may pose to the urinary system, highlighting the mechanisms of toxicity and the current state of knowledge. Studies have shown that MNPs enter the human body through drinking water, the food chain, inhalation, and skin contact. They may penetrate the bloodstream via the digestive, respiratory, and skin systems, subsequently dispersing to various organs, including the urinary system. The potential accumulation of MNPs in the urinary system might induce cellular oxidative stress, inflammation, apoptosis, autophagy, the "intestine-kidney axis", and other possible toxic mechanisms. These processes could disrupt kidney metabolic functions and promote tissue fibrosis, thereby potentially increasing the risk of urinary system diseases. Despite ongoing research, the understanding of MNPs' impact on the urinary system remains limited. Therefore, this review provides a comprehensive overview of MNPs' potential toxicity mechanisms in the urinary system, highlights key challenges, and outlines future research directions. It offers a theoretical basis for the development of effective protective measures and policies.
Collapse
Affiliation(s)
- Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, Wenzhou 325035, Zhejiang, China; Institute of Urology, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pengyu Lei
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Baihui Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yongwei Cheng
- MedTech (Wenzhou) Health Innovation Achievement Transformation Institute, Wenzhou Institue of Industry & Science, Wenzhou 325000, China
| | - Da Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Lijun Wan
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
11
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
12
|
Deng C, Zhu J, Fang Z, Yang Y, Zhao Q, Zhang Z, Jin Z, Jiang H. Identification and analysis of microplastics in para-tumor and tumor of human prostate. EBioMedicine 2024; 108:105360. [PMID: 39341155 PMCID: PMC11481604 DOI: 10.1016/j.ebiom.2024.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND While microplastics are widely found in various human organs and tissues, the relationship between microplastics and human health, especially prostate health, remains unclear. This study aims to identify and quantify the properties, types, and abundance of microplastics in paired para-tumor and tumor tissues of human prostate. Additionally, the potential correlation between microplastics abundance and prostate cancer are investigated. METHODS Paired para-tumor and tumor samples of the prostate were collected from 22 patients who underwent robot-assisted radical prostatectomy. A combination of laser direct infrared spectroscopy, scanning electron microscopy and pyrolysis-gas chromatography-mass spectrometry was utilized to analyse the properties, type and abundance of microplastics. Correlations between microplastics abundance, demographic characteristics and clinical features of patients were also examined. FINDINGS Laser direct infrared analysis revealed the presence of microplastics, including polyamide, polyethylene terephthalate, and polyvinyl chloride, in both para-tumor and tumor tissues of human prostate. However, polystyrene was exclusively detected in tumor tissues. The particle size distribution in the prostate tissue mainly ranged from 20 to 100 μm. Approximately 31.58% of para-tumor samples exhibited sizes between 20 and 30 μm, while 35.21% of tumor samples displayed sizes between 50 and 100 μm. The shapes of these microplastics varied considerably with irregular forms being predominant. Additionally, microplastics were detected by pyrolysis-gas chromatography-mass spectrometry in 20 paired prostate tissues. The mean abundance of microplastics was found to be 181.0 μg/g and 290.3 μg/g in para-tumor and tumor of human prostate samples, respectively. Among the 11 target types microplastics polymers, only polystyrene, polypropylene, polyethylene, and polyvinyl chloride were detected. Notably, polystyrene, polyethylene, and polyvinyl chloride, except for polypropylene, demonstrated significantly higher abundance in tumor tissues compared to their respective paired para-tumor. Furthermore, a positive correlation was observed between polystyrene abundance in the tumor samples of human prostate and frequency of take-out food consumption. INTERPRETATION This research provides both qualitative and quantitative evidence of the microplastics presence as well as their properties, types, and abundance in paired para-tumor and tumor samples of human prostate. Correlations between microplastics abundance, demographics, and clinical characteristics of patients need to be further validated in future studies with a larger sample size. FUNDING This work was supported by the National Key Research and Development Program of China (2022YFC2702600) and the National Natural Science Foundation of China (Grant No. 82071698, No. 82101676, and No. 82271630).
Collapse
Affiliation(s)
- Chenyao Deng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China
| | - Jun Zhu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China
| | - Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China
| | - Yuzhuo Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, 100034, China
| | - Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Zirun Jin
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China; The Institution of Urology, Peking University, Beijing, 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China; National Urological Cancer Center, Beijing, 100034, China.
| |
Collapse
|
13
|
Han X, Gao Y, Yang L, Wei J, Li X, Wang L, Zhang X. Are recyclable plastics eco-friendly? Recycled PVC microplastics show higher toxicity than pristine PVC on Vallisneria natans, regardless of Cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107024. [PMID: 39003955 DOI: 10.1016/j.aquatox.2024.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
As environmental awareness increases, the use of recyclable plastics has risen. However, it is currently unclear whether recycled microplastics (MPs) pose a lesser or greater environmental risk than pristine MPs. Cadmium (Cd), known for its toxicity to most organisms, can bind with MPs and accumulate in sediments. Few studies have explored the environmental risks posed by the coexistence of recycled MPs and pristine MPs with Cd to rooted macrophytes. We investigated the effects of recycled PVC MPs (R-PVC-MPs) and pristine PVC MPs (PVC-MPs) on Vallisneria natans in the presence and absence of Cd. Results showed that at moderate and high Cd levels, R-PVC-MPs reduced plant Cd enrichment. Despite this, the fresh weight of V. natans exposed to R-PVC-MPs was significantly lower than those exposed to PVC-MPs. Furthermore, R-PVC-MPs had more negative impacts on the physiological traits of V. natans than PVC-MPs, as chlorophyll was significantly reduced across all Cd levels. At high Cd levels, both R-PVC-MPs and PVC-MPs caused significantly high oxidative stress, with no significant differences observed. The PCoA plot showed that different MPs cause noticeable variations within the same Cd concentration. The trait network diagrams illustrated strong interactions among traits, with R-PVC-MPs showing the highest complexity. Lower average degree and decreased edge density indicate that traits of plants with R-PVC-MPs addition are more independent of each other. Our findings suggest that recycled PVC MPs pose a greater environmental risk than pristine PVC MPs, offering reference for assessing the risks of recycled plastics in freshwater ecosystems.
Collapse
Affiliation(s)
- Xiaohui Han
- Center of Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Gao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Junxin Wei
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Xi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China.
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, China
| |
Collapse
|
14
|
Riaz S, Sahar R, Qader I, Burhan ZUN, Alvi SK, Rasool SG, Siddiqui PJA, Shafique S. Preliminary assessment of microplastic in rhizosphere and non-rhizosphere region of mangrove at four locations along Karachi coast, Pakistan. MARINE POLLUTION BULLETIN 2024; 205:116608. [PMID: 38917495 DOI: 10.1016/j.marpolbul.2024.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Mangrove ecosystem faces significant threats from the various pollutants including microplastic (MPs). The aim of this study was to assess variations in MP distribution in mangrove sediments of rhizosphere (R) and non-rhizosphere (NR) regions. A total of 14,960 MP particles were identified from Sandspit backwater (SS-1 & SS-2) and Creek areas (PQ & KC). Notably, the NR showed higher MP counts (7848) compared to the R region (7112). Analysis revealed variations in MP types, with beads being predominant in both R and NR, followed by film, fiber, and fragments. KC exhibited highest MP contamination, followed by PQ, SS-2, and SS-1. Fourier-transform infrared (FTIR) analysis confirmed the presence of polyethylene terephthalate and polyethylene in sediments samples. This first detailed report on MP in mangrove sediments and other limited studies from Pakistan establishes the widespread distribution of MPs in the coastal area and provide a baseline for further elaboration in future.
Collapse
Affiliation(s)
- Shagufta Riaz
- Department of Zoology, University of Karachi, Pakistan
| | - Rafia Sahar
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Irfana Qader
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Zaib-Un-Nisa Burhan
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Sofia Khalique Alvi
- PCSIR Laboratories Complex, Applied Chemistry Research Centre, Karachi, Pakistan
| | | | - Pirzada J A Siddiqui
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Seema Shafique
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
15
|
Maw MM, Boontanon N, Aung HKZZ, Jindal R, Fujii S, Visvanathan C, Boontanon SK. Microplastics in wastewater and sludge from centralized and decentralized wastewater treatment plants: Effects of treatment systems and microplastic characteristics. CHEMOSPHERE 2024; 361:142536. [PMID: 38844106 DOI: 10.1016/j.chemosphere.2024.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Domestic wastewater treatment plants (WWTPs) play a vital role in limiting the release of microplastics (MP) into the environment. This study examined MP removal efficiency from five centralized and four decentralized domestic WWTPs in Bangkok, Thailand. MP concentrations in wastewater and sludge were comparable between centralized and decentralized WWTPs, despite these decentralized WWTPs serving smaller populations and having limited treatment capacity. The elimination of MPs ranged from 50 to 96.8% in centralized WWTPs and 14.2-53.6% in decentralized WWTPs. It is noted that the retained MPs concentrations in sludge ranged from 20,000 to 228,100 MP/kg dry weight. The prevalence of synthetic fibers and fragments could be attributed to their pathways from laundry or car tires, and the accidental release of a variety of plastic wastes ended up in investigated domestic WWTPs. Removal of MPs between the centralized and decentralized WWTPs was influenced by several impact factors including initial MP concentrations, longer retention times, MP fragmentation, and variations of MP concentrations in sludge leading to different activated sludge process configurations. Sewage sludge has become a primary location for the accumulation of incoming microplastics in WWTPs. The MPs entering and leaving each unit process were varied due to the unique characteristics of MPs, and their different treatment efficiencies. While the extended hydraulic retention period in decentralized WWTPs decreased the MP removal efficacy, the centralized WWTP with the two-stage activated sludge process achieved the highest MP removal efficiency.
Collapse
Affiliation(s)
- Me Me Maw
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Narin Boontanon
- Research Center and Technology, Development for Environmental Innovation, Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Humm Kham Zan Zan Aung
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Ranjna Jindal
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Chettiyappan Visvanathan
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Suwanna Kitpati Boontanon
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand; Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
16
|
Omotola EO, Supriyanto G. Occurrence, detection and ecotoxicity of microplastics in selected environments-a systematic appraisal. Heliyon 2024; 10:e32095. [PMID: 39114069 PMCID: PMC11305261 DOI: 10.1016/j.heliyon.2024.e32095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
Microplastics (MPs) are being released into the environment in large quantities, especially in less developed parts of the world. This group of pollutants is mostly leached into the environment through heavy plastic dumpsites, pharmaceutical and personal care product containers, hospital wastes, plastic package accessories, and litter from food packaging. Consequently, these compounds are found in different compartments of the ecosystem, such as soils, sediments, biota, and, surprisingly, drinking water. The present study systematically appraised recent studies on MP pollution in the Asian and African environments. It also summarized the trends in the methods for the environmental monitoring of MPs and the removal strategies that have been employed. From the data gathered, the two key instrumentations involved are the microscopes for visualization and the Fourier transform-infra-red (FT-IR) spectrometer to classify or characterize the MPs. Based on the surveyed works of literature, China and South Africa have relatively more information on MP contamination of diverse matrices within their countries. Meanwhile, studies on the status of MP contamination should be conducted across all countries. Hence, this study becomes an eye-opener regarding the commencement of research works on the MP contamination of the environment, especially in other Asian and African countries with little or no information. Furthermore, the literature on ecotoxicity studies of MPs was investigated to ascertain the toxic nature of these compounds. This aspect of research is vital because it serves as a prerequisite for the remediation of these compounds. Microplastics have been declared lethal to biotic components, so all hands must be on deck to continuously remove them from the environment.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode, PMB 2118, Nigeria
- Department of Chemistry, Airlangga University Surabaya Indonesia, Indonesia
| | - Ganden Supriyanto
- Department of Chemistry, Airlangga University Surabaya Indonesia, Indonesia
| |
Collapse
|
17
|
Li H, Liu H, Bi L, Liu Y, Jin L, Peng R. Immunotoxicity of microplastics in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109619. [PMID: 38735599 DOI: 10.1016/j.fsi.2024.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.
Collapse
Affiliation(s)
- Huiqi Li
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
18
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N. Microplastics pollution in the Asian water tower: Source, environmental distribution and proposed mitigation strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124247. [PMID: 38838812 DOI: 10.1016/j.envpol.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Microplastics generated from fragmentation of leftover plastics and industrial waste has reached in the remotely located Asian water tower (AWT) region, the 3rd pole of earth and origin site of several freshwater rivers. The accumulation of microplastics in AWT ecosystem has potential to alter the climatic condition contributing in global warming and disturbing the biodiversity structural dynamics. The present paper provides a comprehensive critical discussion over quantitative assessment of microplastics in different ecosystems (i.e. river, lakes, sediment and snow or glacier) of AWT. The hydrodynamic fate and transport of microplastics and their ecological impact on hydromorphology and biodiversity of AWT has been exemplified. Furthermore, key challenges, perspectives and research directions are identified to mitigate microplastics associated problems. During survey, the coloured polyethylene and polyurethane fibers are the predominant microplastics found in most areas of AWT. These bio-accumulated MPs alter the rhizospheric community structure and deteriorate nitrogen fixation process in plants. Significance in climate change, MPs pollution is enhancing the emissions of greenhouse gases (NH3 by ∼34% and CH4 by ∼9%), contributing in global warming. Considering the seriousness of MPs pollution, this review study can enlighten the pathways to investigate the effect of MPs and to develop monitoring tools and sustainable remediation technologies with feasible regulatory strategies maintaining the natural significance of AWT region.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- University School of Chemical Technology, Guru Govind Singh Indraprastha University, Sector 16c Dwarka, New Delhi, 110078, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| |
Collapse
|
19
|
Nyaga MP, Shabaka S, Oh S, Osman DM, Yuan W, Zhang W, Yang Y. Microplastics in aquatic ecosystems of Africa: A comprehensive review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 248:118307. [PMID: 38307187 DOI: 10.1016/j.envres.2024.118307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Microplastic pollution is a global issue of great public concern. Africa is flagged to host some of the most polluted water bodies globally, but there is no enough information on the extent of microplastic contamination and the potential risks of microplastic pollution in African aquatic ecosystems. This meta-analysis has integrated data from published articles about microplastic pollution in African aquatic ecosystems. The data on the microplastic distribution and morphological characteristics in water, sediments and biota from African rivers, lakes, oceans and seas were extracted from 75 selected studies. Multivariate statistics were used to critically analyze the effects of sampling and detection methods, ecological risks, spatial distribution and similarity of microplastics in relation to the geographical distance between sampling sites. This study found that sampling methods have significant effect on abundance and morphological characteristics of microplastics and that African aquatic ecosystems are highly contaminated with microplastics compared to global data. The most prevalent colors were white, transparent and black, the most prevalent shapes were fibres and fragments, and the most available polymers were polypropylene (PP), polystyrene (PS) and polyethene terephthalate (PET). Microplastic polymers similarity decreased with an increase in geographical distance between sites. Risk levels of microplastics in African aquatic ecosystems were comparatively high, and more than 40 % of water and sediments showed highest level of ecological risk. This review provides recent information on the prevalence, distribution and risks of microplastics in African aquatic ecosystems.
Collapse
Affiliation(s)
- Muthii Patrick Nyaga
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Soha Shabaka
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Donia M Osman
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
20
|
Li JH, Liu XH, Liang GR, Gao HT, Guo SH, Zhou XY, Xing D, Zhao T, Li CX. Microplastics affect mosquito from aquatic to terrestrial lifestyles and are transferred to mammals through mosquito bites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170547. [PMID: 38296097 DOI: 10.1016/j.scitotenv.2024.170547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Microplastics (MPs) transfer from the environment to living organisms is a nonignorable global problem. As a complete metamorphosis insect, the larvae and adult Culex quinquefasciatus mosquito live in aquatic and terrestrial environments, respectively, where they easily access MPs. However, little is known about mosquitoes' potential role in MPs accumulation throughout ecosystems. Therefore, we conducted a study with different MPs particle sizes (0.1/1/10 μm) and concentrations (0.5/5/50 μg/mL) on Cx. quinquefasciatus to address this issue. Once exposed at the young larval stage, MPs could accompany the mosquitoes their entire life. The fluorescence signals of MPs in the larvae were mainly located in the intestines. Its intensity increased (from 3.72 × 106 AU to 5.45 × 107 AU) as the concentrations of MPs increases. The fluorescence signals of MPs were also detected in the blood and skin tissues of mice bitten by adult mosquitoes with MPs containing in their bodies. Mosquitos exposed to MPs showed longer larval pupation and eclosion time as well as lower adult body weight. In addition, MPs significantly reduced the lethal effect of pyrethroid insecticides (97.77 % vs. 48.88 %, p < 0.05) with 15.1 % removal of the deltamethrin concentration. After MPs exposure, the relative abundance of the Cx. quinquefasciatus gut microbiome, such as Wolbachia spp., Elizabethkingia spp., and Asaia spp., changed as the MPs size and concentration changes. Mosquitoes provide a new pathway for MPs accumulation and transfer to higher-level living organisms. Moreover, MPs significantly reduce the control effect of deltamethrin, providing new guidelines for mosquito insecticide application in MPs contamination circumstances.
Collapse
Affiliation(s)
- Jian-Hang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Hui Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guo-Rui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - He-Ting Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Si-Han Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xin-Yu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Chun-Xiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
21
|
Dimante-Deimantovica I, Saarni S, Barone M, Buhhalko N, Stivrins N, Suhareva N, Tylmann W, Vianello A, Vollertsen J. Downward migrating microplastics in lake sediments are a tricky indicator for the onset of the Anthropocene. SCIENCE ADVANCES 2024; 10:eadi8136. [PMID: 38381821 PMCID: PMC10881056 DOI: 10.1126/sciadv.adi8136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Plastics are a recent particulate material in Earth's history. Because of plastics persistence and wide-range presence, it has a great potential of being a global age marker and correlation tool between sedimentary profiles. In this research, we query whether microplastics can be considered among the array of proxies to delimit the Anthropocene Epoch (starting from the year 1950 and above). We present a study of microplastics deposition history inferred from sediment profiles of lakes in northeastern Europe. The sediments were dated with independent proxies from the present back to the first half of the 18th century. Regardless of the sediment layer age, microplastic particles were found throughout the cores in all sites. Depending on particles' aspect ratio, less elongated particles were found deeper, while more elongated particles and fibers have reduced mobility. We conclude that interpretation of microplastics distribution in the studied sediment profiles is ambiguous and does not strictly indicate the beginning of the Anthropocene Epoch.
Collapse
Affiliation(s)
| | - Saija Saarni
- University of Turku, Department of Geography and Geology, Turku 20014, Finland
| | - Marta Barone
- Latvian Institute of Aquatic Ecology, Riga LV-1007, Latvia
- Daugavpils University, The Faculty of Natural Sciences and Mathematics, Daugavpils LV-5401, Latvia
| | - Natalja Buhhalko
- Tallinn University of Technology, Department of Marine Systems, Tallinn 12618, Estonia
| | - Normunds Stivrins
- University of Latvia, Department of Geography, Riga LV-1004, Latvia
- Tallinn University of Technology, Department of Geology, Tallinn 19086, Estonia
| | | | - Wojciech Tylmann
- University of Gdańsk, Faculty of Oceanography and Geography, Gdańsk PL-80309, Poland
| | - Alvise Vianello
- Aalborg University, Department of the Built Environment, Aalborg 9220, Denmark
| | - Jes Vollertsen
- Aalborg University, Department of the Built Environment, Aalborg 9220, Denmark
| |
Collapse
|
22
|
Huang JN, Xu L, Wen B, Gao JZ, Chen ZZ. Characteristics and risks of microplastic contamination in aquaculture ponds near the Yangtze Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123288. [PMID: 38176640 DOI: 10.1016/j.envpol.2024.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Microplastic pollution has been frequently reported in natural water environments, but studies on the occurrence and characteristics of microplastic in aquaculture environments especially in pond production system are relatively scarce. Herein, we investigated the abundance and characteristics of microplastic pollution in aquaculture ponds that farm different species (fish, prawn and crab) near the Yangtze Estuary, China. The average abundance of microplastic in pond water and sediment was 36.25 ± 6.79 items/L and 271.65 ± 164.83 items/kg, respectively. Compared to fish ponds (208.43 ± 57.82 items/kg), microplastic abundance was significantly higher in sediment of crab and prawn ponds (312.02 ± 38.76 and 248.87 ± 36.51 items/kg respectively). Across all ponds, transparent, white and black microplastic were the common colors. Fiber was the most common type, accounting for 40.9% and 58.6% in pond water and sediment, respectively. The size of microplastic was mainly distributed between 300 and 1000 μm. For microplastic polymer composition, polyethylene (PE) was predominant in pond water, accounting for 55%, followed by polyamide with 15%. The predominant polymer in sediment was PE with 34%, followed by polypropylene with 18%. As for the ecological risk assessment of microplastic, the pollution load index was 7.6 (risk level I) and 8.9 (risk level I) for pond water and sediment, respectively. The polymer hazard index was 85.3 (risk level II) and 12.1 (risk level II) for pond water and sediment, respectively. Taken together, the pollution risk index was rated as high and very high for pond sediment and water, respectively. These results provide a basis for the comprehensive evaluation and developing practical approaches to deal with microplastic in aquaculture pond, which is of great significance to the healthy development of pond aquaculture.
Collapse
Affiliation(s)
- Jun-Nan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
23
|
Sadia MR, Hasan M, Islam ARMT, Jion MMMF, Masud MAA, Rahman MN, Peu SD, Das A, Bari ABMM, Islam MS, Pal SC, Rakib MRJ, Senapathi V, Idris AM, Malafaia G. A review of microplastic threat mitigation in Asian lentic environments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104284. [PMID: 38101231 DOI: 10.1016/j.jconhyd.2023.104284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Microplastic (MP) pollution has evolved into a significant worldwide environmental concern due to its widespread sources, enduring presence, and adverse effects on lentic ecosystems and human well-being. The growing awareness of the hidden threat posed by MPs in lentic ecosystems has emphasized the need for more in-depth research. Unlike marine environments, there remain unanswered questions about MP hotspots, ecotoxic effects, transport mechanisms, and fragmentation in lentic ecosystems. The introduction of MPs represents a novel threat to long-term environmental health, posing unresolved challenges for sustainable management. While MP pollution in lentic ecosystems has garnered global attention due to its ecotoxicity, our understanding of MP hotspots in lakes from an Asian perspective remains limited. Hence, the aim of this review is to provide a comprehensive analysis of MP hotspots, morphological attributes, ecotoxic impacts, sustainable solutions, and future challenges across Asia. The review summarizes the methods employed in previous studies and the techniques for sampling and analyzing microplastics in lake water and sediment. Notably, most studies concerning lake microplastics tend to follow the order of China > India > Pakistan > Nepal > Turkey > Bangladesh. Additionally, this review critically addresses the analysis of microplastics in lake water and sediment, shedding light on the prevalent net-based sampling methods. Ultimately, this study emphasizes the existing research gaps and suggests new research directions, taking into account recent advancements in the study of microplastics in lentic environments. In conclusion, the review advocates for sustainable interventions to mitigate MP pollution in the future, highlighting the presence of MPs in Asian lakes, water, and sediment, and their potential ecotoxicological repercussions on both the environment and human health.
Collapse
Affiliation(s)
- Moriom Rahman Sadia
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | | | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Naimur Rahman
- Center for Archaeological Studies, University of Liberal Arts, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, 6 Rajshahi, 6204, Bangladesh
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
24
|
Duong TT, Nguyen-Thuy D, Phuong NN, Ngo HM, Doan TO, Le TPQ, Bui HM, Nguyen-Van H, Nguyen-Dinh T, Nguyen TAN, Cao TTN, Pham TMH, Hoang THT, Gasperi J, Strady E. Microplastics in sediments from urban and suburban rivers: Influence of sediment properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166330. [PMID: 37591389 DOI: 10.1016/j.scitotenv.2023.166330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Although sediments are considered to be a major sink for microplastics (MP), there is still a relative lack of knowledge on the factors that influence the occurrence and abundance of MP in riverine sediments. The present study investigated the occurrence and distribution of MP in riverine sediments collected at twelve sites representative of different populated and urbanized rivers (To Lich, Nhue and Day Rivers) located in the Red River Delta (RRD, Vietnam, during dry and rainy seasons. MP concentrations ranged from 1600 items kg-1 dw to 94,300 items kg-1dw. Fiber shape dominated and MP were made of polypropylene (PP) and polyethylene (PE) predominantly. An absence of seasonal effect was observed for both fragments and fibers for each rivers. Decreasing MP concentrations trend was evidenced from the To Lich River, to the Nhue River and to the Day River, coupled with a decreasing fiber length and an increasing fragment area in the surface sediment from upstream to downstream. Content of organic matter was correlated to MP concentrations suggesting that, high levels of organic matter could be MP hotspots in urban rivers. Also, high population density as well as in highly residential areas are related to higher MP concentrations in sediments. Finally, a MP high ecological risk (RI: 866 to 4711) was calculated in the RDD.
Collapse
Affiliation(s)
- Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Duong Nguyen-Thuy
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Ngoc Nam Phuong
- PhuTho College of Medicine and Pharmacy, 2201 Hung Vuong Boulevard, Viet Tri City, Phu Tho Province, Viet Nam; GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
| | - Ha My Ngo
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thi Oanh Doan
- Faculty of Environment, Hanoi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Hanoi, Viet Nam
| | - Thi Phuong Quynh Le
- Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, 273 An Duong Vuong St., District 5, Ho Chi Minh City, Viet Nam
| | - Huong Nguyen-Van
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Thai Nguyen-Dinh
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Viet Nam
| | - Thi Anh Nguyet Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Thanh Nga Cao
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Institute of Human Geography - Vietnam Academy of Social Sciences, 1 Lieu Giai Street Ba Dinh District, Hanoi, Viet Nam
| | - Thi Minh Hanh Pham
- Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Ba Dinh, Hanoi, Viet Nam
| | - Thu-Huong Thi Hoang
- Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam; School of Chemistry and Life Science, Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam
| | - Johnny Gasperi
- GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
| | - Emilie Strady
- Aix-Marseille Univ., Toulon University, CNRS, IRD, MIO, UM 110, Marseille, France
| |
Collapse
|
25
|
Napper IE, Baroth A, Barrett AC, Bhola S, Chowdhury GW, Davies BFR, Duncan EM, Kumar S, Nelms SE, Niloy MNH, Nishat B, Maddalene T, Smith N, Thompson RC, Koldewey H. The distribution and characterisation of microplastics in air, surface water and sediment within a major river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166640. [PMID: 37647965 DOI: 10.1016/j.scitotenv.2023.166640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Rivers are key pathways for the transfer of microplastics (MP) to marine environments. However, there are considerable uncertainties about the amount of microplastics transported by rivers to the ocean; this results in inaccuracies in our understanding of microplastic quantity and transport by freshwater systems. Additionally, it has been suggested that rivers may represent long-term sinks, with microplastics accumulating in sediment due to their high density or other biological, chemical, and physical factors. The atmosphere is also an important pathway by which airborne microplastics may enter aquatic habitats. Here, we compare for first time microplastics type and concentration in these key environmental mediums (air, water and sediment) along a major river (Ganges), from sea to source to understand 1) the abundance, 2) the spatial distribution, and 3) characteristics. Mean microplastic abundance settling from the atmosphere was 41.12 MP m2 day-1; while concentrations in sediment were 57.00 MP kg-1 and in water were 0.05 MP L-1. Across all sites and environmental mediums, rayon (synthetically altered cellulose) was the dominant polymer (54-82 %), followed by acrylic (6-23 %) and polyester (9-17 %). Fibres were the dominant shape (95-99 %) and blue was the most common colour (48-79 %). Across water and sediment environmental mediums, the number of microplastics per sample increased from the source of the Ganges to the sea. Additionally, higher population densities correlated with increased microplastic abundance for air and water samples. We suggest that clothing is likely to be the prominent source of microplastics to the river system, influenced by atmospheric deposition, wastewater and direct input (e.g. handwashing of clothes in the Ganges), especially in high density population areas. However, we suggest that subsequent microplastic release to the marine environment is strongly influenced by polymer type and shape, with a large proportion of denser microplastics settling in sediment prior to the river discharging to the ocean.
Collapse
Affiliation(s)
- Imogen E Napper
- International Marine Litter Research Unit, University of Plymouth, UK; School of Biological and Marine Sciences, University of Plymouth, UK.
| | - Anju Baroth
- Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Aaron C Barrett
- School of Biological and Marine Sciences, University of Plymouth, UK
| | - Sunanda Bhola
- Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Gawsia W Chowdhury
- Department of Zoology, University of Dhaka, Dhaka 1000, Bangladesh; WildTeam, 69/1 New Circular Road, Malibagh, Dhaka 1217, Bangladesh
| | - Bede F R Davies
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR2160, Nantes, F-44000, France
| | - Emily M Duncan
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, UK
| | - Sumit Kumar
- Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Sarah E Nelms
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, UK
| | - Md Nazmul Hasan Niloy
- Department of Zoology, University of Dhaka, Dhaka 1000, Bangladesh; WildTeam, 69/1 New Circular Road, Malibagh, Dhaka 1217, Bangladesh
| | | | - Taylor Maddalene
- National Geographic Society, Washington, DC, USA; University of Georgia, Athens, GA, USA
| | - Natalie Smith
- International Marine Litter Research Unit, University of Plymouth, UK; Plymouth Marine Laboratory, UK
| | - Richard C Thompson
- International Marine Litter Research Unit, University of Plymouth, UK; School of Biological and Marine Sciences, University of Plymouth, UK
| | - Heather Koldewey
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, UK; Zoological Society of London, London, UK
| |
Collapse
|
26
|
Doan TO, Duong TT, Pham LA, Nguyen TM, Pham PT, Hoang TQ, Phuong NN, Nguyen TL, Pham TTH, Ngo TDM, Le NA, Vo VC, Do VM, Le TPQ. Microplastic accumulation in bivalves collected from different coastal areas of Vietnam and an assessment of potential risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1511. [PMID: 37989961 DOI: 10.1007/s10661-023-12087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Microplastic (MP) pollution is an emerging problem in many areas around the world and in coastal areas of Vietnam, requiring more studies dedicated to the accumulation of this pollutant in the food chain as well as its potential risk to human health. This study investigated MP levels in tissues of five common bivalve species collected from aquaculture areas along the coast of Vietnam. MPs were found in all bivalve samples, with average values of 10.84 ± 2.61 items/individual or 2.40 ± 1.34 items/g wet weight. Impacts of feeding habits of bivalves showed influences on MP abundance in the samples. Fibers were the dominant shape of MPs recorded, most of which accumulated in the gills and digestive glands of all bivalve samples, with the majority falling within the size range of 300-2000 µm. MPs found in all studied species had relatively similar chemical compositions, mainly composed of polypropylene (PP) and polyethylene (PE). In this study, a diverse diet consisting of different bivalve species and detailed data on the consumption rate of these species were used to assess the human health risk of MPs dedicated to the coastal communities of Vietnam. The results suggested a significant part of MP uptake by human could be via bivalve consumption, in which removing viscera and proper depuration should be applied prior to eating, thereby reducing the risk.
Collapse
Affiliation(s)
- Thi Oanh Doan
- Faculty of Environment, Hanoi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Hanoi, Vietnam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
| | - Le Anh Pham
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
| | - Thi My Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Phuong Thao Pham
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Quynh Hoang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Ngoc Nam Phuong
- GERS-LEE Université Gustave Eiffel, IFSTTAR, 44344, Bouguenais, France
| | - Thuy Lien Nguyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan, Hanoi, Vietnam
| | - Thi Thu Ha Pham
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan, Hanoi, Vietnam
| | - Thi Diem My Ngo
- Dak Lak Pedagogy College, 349 Le Duan Street, Buon Ma Thuot City, Dak Lak, Vietnam
| | - Nam Anh Le
- Faculty of Environment, Hanoi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Hanoi, Vietnam
| | - Van Chi Vo
- Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City, Binh Dinh, Vietnam
| | - Van Manh Do
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
27
|
Pellegrini C, Saliu F, Bosman A, Sammartino I, Raguso C, Mercorella A, Galvez DS, Petrizzo A, Madricardo F, Lasagni M, Clemenza M, Trincardi F, Rovere M. Hotspots of microplastic accumulation at the land-sea transition and their spatial heterogeneity: The Po River prodelta (Adriatic Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164908. [PMID: 37385497 DOI: 10.1016/j.scitotenv.2023.164908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Deltas are the locus of river-borne sediment accumulation, however, their role in sequestering plastic pollutants is still overlooked. By combining geomorphological, sedimentological, and geochemical analyses, which include time-lapse multibeam bathymetry, sediment provenance, and μFT-IR analyses, we investigate the fate of plastic particles after a river flood event providing an unprecedented documentation of the spatial distribution of sediment as well as of microplastics (MPs), including particles fibers, and phthalates (PAEs) abundances in the subaqueous delta. Overall sediments are characterized by an average of 139.7 ± 80 MPs/kg d.w., but display spatial heterogeneity of sediment and MPs accumulation: MPs are absent within the active sandy delta lobe, reflecting dilution by clastic sediment (ca. 1.3 Mm3) and sediment bypass. The highest MP concentration (625 MPs/kg d.w.) occurs in the distal reaches of the active lobe where flow energy dissipates. In addition to MPs, cellulosic fibers are relevant (of up to 3800 fibers/kg d.w.) in all the analyzed sediment samples, and dominate (94 %) with respect to synthetic polymers. Statistically significant differences in the relative concentration of fiber fragments ≤0.5 mm in size were highlighted between the active delta lobe and the migrating bedforms in the prodelta. Fibers were found to slightly follow a power law size distribution coherent with a one-dimensional fragmentation model and thus indicating the absence of a size dependent selection mechanism during burial. Multivariate statistical analysis suggests traveling distance and bottom-transport regime as the most relevant factors controlling particle distribution. Our findings suggest that subaqueous prodelta should be considered hot spots for the accumulation of MPs and associated pollutants, albeit the strong lateral heterogeneity in their abundances reflects changes in the relative influence of fluvial and marine processes.
Collapse
Affiliation(s)
- C Pellegrini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy.
| | - F Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - A Bosman
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Geologia Ambientale e Geoingegneria (IGAG), Italy
| | - I Sammartino
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - C Raguso
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - A Mercorella
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - D S Galvez
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - A Petrizzo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - F Madricardo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - M Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - M Clemenza
- INFN Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - F Trincardi
- Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Scienze del Sistema Terra e Tecnologie per l'Ambiente (DSSTTA), Rome, Italy
| | - M Rovere
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| |
Collapse
|
28
|
Wei H, Wang J, Pan S, Liu J, Ding H, Smith K, Yang Z, Liu P, Guo X, Gao S. Are wastewater treatment plants as the source of microplastics in surface water and soil? JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132154. [PMID: 37517239 DOI: 10.1016/j.jhazmat.2023.132154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Microplastics (MPs) are widely detected in wastewater treatment plants (WWTPs) and natural environment, while the relationship of MPs pollution in both media is not fully understood. In this study, the occurrence of MPs in WWTPs and in surface water and soil was investigated, and their relationship was critically formulated. Results showed although wastewater treatment could effectively remove MPs (58.2%), the effluent was still the important source of MPs in the river, while sludge was not as important as the effluent of MPs in the soil. Specifically, the dominant size ranges of MPs were 0-200 µm, with main type of PE in all wastewater, sludge, river and soil. The dominant shape of MPs in wastewater and river was film. However, the shapes were different between sludge (52.1% of fibers) and soil (40.6% of fragment). Overall, WWTP input and surface runoff were the main source of MPs pollution in surface water, and the abrasion of agricultural films accounted for the MPs pollution in soil. The findings revealed the distribution and interconnection of MPs in WWTPs and environmental media, which could help to trace the sources of MPs pollution and assess the ecological risks in the environment.
Collapse
Affiliation(s)
- Haoyu Wei
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jian Wang
- Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Suyi Pan
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jincheng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hao Ding
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ken Smith
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zeyuan Yang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
29
|
Osten JRV, Benítez-Torres JA, Rojas-González RI, Morgado F, Borges-Ramírez MM. Microplastics in sediments from the southern Gulf of Mexico: Abundance, distribution, composition, and adhered pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162290. [PMID: 36804972 DOI: 10.1016/j.scitotenv.2023.162290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Approximately 23 Mt of plastics reaches the ocean each year, fragmented into microplastics (MP). MPs are widely dispersed in the sea, becoming deposited in sediments. MPs are considered carriers of pollutants such as heavy metals and polycyclic aromatic hydrocarbons and, when ingested by biota, pose a high health risk. This study determined metals and PAHs in sedimentary microplastics from the southern Gulf of Mexico (GOM). One hundred twenty-four sediment samples were collected, covering an area of 26,220 km2. The mean (±SD) of MPs in sediments was 16.46 ± 17.76 MPs/kg. The most abundant polymers were cellophane (CE), polyvinylidene fluoride (PVDF), polyethylene (PE), polyamides (PA), and nylon (NYL). A strong correlation (r: 0.83) was found between MP density and sediment depth. PA and PE were found near shorelines and PVDF near oil platforms. Aluminum, arsenic, and tin had the highest concentration (89.6 ± 94.6, 23.1 ± 70.3, and 19 ± 29.2 μg g-1, respectively), and acenaphthylene was the PAH with the highest concentration (3.4 ± 12.6 μg g-1). This study shows that MP with a higher density is found at greater depths, and this research is one of the first to cover a large area of the Gulf of Mexico.
Collapse
Affiliation(s)
- Jaime Rendón-von Osten
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, Campus VI, Av. Héroe de Nacozari 480, CP 24070, Campeche, Campeche, Mexico.
| | - Jorge A Benítez-Torres
- Ecología Aplicada del Sureste A.C. (EASAC), Andador Caracol 1, Fraccionamiento Lavalle Urbina, CP 24087, Campeche, Campeche, Mexico.
| | - R Isaac Rojas-González
- Dirección de Investigación Pesquera en el Atlántico, Instituto Nacional de Pesca y Acuacultura, Av. México 190 Col Del Carmen, C.P. 04100, Coyoacán, Ciudad de México, Mexico.
| | - Fernando Morgado
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Merle M Borges-Ramírez
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, Campus VI, Av. Héroe de Nacozari 480, CP 24070, Campeche, Campeche, Mexico; El Colegio de la Frontera Sur (ECOSUR), Avenida Rancho, Polígono 2-A, Ciudad Industrial Lerma, CP 24500, Campeche, Campeche, Mexico.
| |
Collapse
|
30
|
Ji J, Wu X, Li X, Zhu Y. Effects of microplastics in aquatic environments on inflammatory bowel disease. ENVIRONMENTAL RESEARCH 2023; 229:115974. [PMID: 37088319 DOI: 10.1016/j.envres.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) has been increasing in recent years, particularly in newly industrialized nations. Environmental factors have been identified as playing a crucial role in IBD pathogenesis. Microplastics (MPs), a novel class of environmental pollutants, are a significant global pollution concern. MPs are found in almost all aquatic environments. MPs in the environment may pose health risks, specifically concerning the intestinal system, due to prolonged exposure through the consumption of aquatic foods and drinking water. In this review, we aimed to provide a comprehensive overview of the current knowledge on the impact of MPs in water resources on the occurrence and progression of IBD. Our systematic analysis of in vitro and in vivo studies found that MPs induce intestinal barrier dysfunction, imbalance in the intestinal microbiome, and metabolic abnormalities, ultimately leading to IBD. In addition, MP exposure causes greater harm to individuals with preexisting gastrointestinal disorders than those without them. Our analysis of this literature review highlights the need for further research to improve the understanding of the complex relationship between MP exposure and IBD.
Collapse
Affiliation(s)
- Jiali Ji
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Li
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
31
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
32
|
Kim N, Kim SY, Lee SW, Lee EH. Adsorption behavior of polyamide microplastics as a vector of the cyanotoxin microcystin-LR in environmental freshwaters. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130683. [PMID: 36610341 DOI: 10.1016/j.jhazmat.2022.130683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Microplastics are ubiquitous environmental contaminants, and concern about microplastics functioning as vectors for coexisting environmental contaminants has been increasing. In this study, we evaluated the potential of microplastics as a vector for microcystins (MCs) in an aquatic environment. Six microplastics-polyvinylidene chloride, polystyrene, polyamide-6 (PA-6), polyvinyl chloride, poly(ethylene terephthalate), and polyethylene-were used in the experiments, and the PA-6 microplastics showed strong affinity toward the cyanotoxin microcystin-leucine arginine (MC-LR) with an adsorption efficiency of 89.5 ± 0.1 %. The adsorption of MC-LR onto PA-6 microplastics was well described by the pseudo-first-order kinetics and Langmuir isotherm models, and the adsorption was considered to be driven mainly by polar-polar interactions. The maximum adsorption capacity (qm) of MC-LR onto PA-6 microplastics was estimated to be 85.64-129.05 μg per g of PA-6 microplastics. Coexisting ions of NaCl, MgSO4, KH2PO4, CaCO3, and Na2HPO4 marginally affected the adsorption of MC-LR onto the PA-6 microplastics. However, water-quality parameters of conductivity and total-nitrogen content in environmental freshwaters influenced the adsorption of MC-LR onto PA-6 microplastics. The adsorption capability of PA-6 microplastics was evaluated using extracellular MCs (i.e., MC-LR, MC-YR, MC-RR, and total MCs) released from Microcystis aeruginosa cells during their growth.
Collapse
Affiliation(s)
- Namyeon Kim
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - So Yoon Kim
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, Republic of Korea.
| |
Collapse
|
33
|
Pratiwi HM, Takagi T, Rusni S, Inoue K. Euryhaline fish larvae ingest more microplastic particles in seawater than in freshwater. Sci Rep 2023; 13:3560. [PMID: 36899025 PMCID: PMC10006175 DOI: 10.1038/s41598-023-30339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Microplastic (MP) pollution is a major concern in aquatic environments. Many studies have detected MPs in fishes; however, little is known about differences of microplastic uptake by fish in freshwater (FW) and those in seawater (SW), although physiological conditions of fish differ significantly in the two media. In this study, we exposed larvae (21 days post-hatching) of Oryzias javanicus (euryhaline SW) and Oryzias latipes (euryhaline FW), to 1-µm polystyrene microspheres in SW and FW for 1, 3, or 7 days, after which, microscopic observation was conducted. MPs were detected in the gastrointestinal tracts in both FW and SW groups, and MP numbers were higher in the SW group in both species. Vertical distribution of MPs in the water, and body sizes of both species exhibited no significant difference between SW and FW. Detection of water containing a fluorescent dye revealed that O. javanicus larvae swallowed more water in SW than in FW, as has also been reported for O. latipes. Therefore, MPs are thought to be ingested with water for osmoregulation. These results imply that SW fish ingest more MPs than FW fish when exposed to the same concentration of MPs.
Collapse
Affiliation(s)
- Hilda Mardiana Pratiwi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Suhaila Rusni
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Koji Inoue
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8563, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| |
Collapse
|
34
|
Pandey N, Verma R, Patnaik S, Anbumani S. Abundance, characteristics, and risk assessment of microplastics in indigenous freshwater fishes of India. ENVIRONMENTAL RESEARCH 2023; 218:115011. [PMID: 36502908 DOI: 10.1016/j.envres.2022.115011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) pollution has pressing concerns regarding environmental health and the availability of safe food for humans. Information on the occurrence of MP in freshwater biota in the Indian scenario is currently lacking. The present study examined MP contamination in edible and non-edible tissues of widely consumed freshwater fishes. All the fish species (n = 35/species) analyzed had microplastic contamination with the highest MP abundance of 7.86 ± 2.0 items/individual in Channa punctatus followed by Labeo rohita (4.17 ± 0.6 items/individual) and Labeo bata (3.03 ± 0.4 items/individual); whereas MP abundance in small indigenous fishes (SIF) such as Salmostoma bacaila and Puntius amphibius accounts for 0.83 ± 0.13 and 0.77 ± 0.2 items/individual respectively. The principal component analysis results showed a 77.434% variance from two components identified for MP distribution. Fibre type MP was the most dominant type besides fragments and pellets that opined the type of MP required for ecotoxicity assessment, the need of the hour. Raman spectroscopy analysis confirms high-density and low-density polyethylene-type polymers. Evidence of MP in edible tissue indicates the translocation phenomenon resulting in human exposure through the consumption of biota contaminated with MP. Risk assessment revealed a low risk of MP based on its abundance while polymer type indicates a high risk for the fish species investigated. A thorough investigation of the level of adsorbed organic contaminants in the MP is warranted to address the interactive effects on biota. To the best of our knowledge, this is the first detailed report on MP contamination and its risk assessment in Indian freshwater fishes.
Collapse
Affiliation(s)
- Namrata Pandey
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Rahul Verma
- Water Analysis Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
35
|
Dehaut A, Himber C, Colin M, Duflos G. Think positive: Proposal of a simple method to create reference materials in the frame of microplastics research. MethodsX 2023; 10:102030. [PMID: 36718205 PMCID: PMC9883234 DOI: 10.1016/j.mex.2023.102030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In the context of the harmonization of methodologies employed to isolate and count microplastics in samples or to organize ring trials tests, the use of reference materials, i.e. samples with controlled amount of particles is required. The method proposed here uses transparent, sealed capsules containing in-house generated microplastics as a convenient way to generate microplastic reference materials. This method is a simple approach for adding particles to samples without risk of loss during particle extraction or transporting/handling.•Low-cost and easy-to-use preparation of heterogeneous mix of microplastic reference particles•Possibility to control microplastic size, shape, and polymeric composition•Applicable to many protocols and wide range of applications on water, sediments and biota.
Collapse
|
36
|
Amaneesh C, Anna Balan S, Silpa PS, Kim JW, Greeshma K, Aswathi Mohan A, Robert Antony A, Grossart HP, Kim HS, Ramanan R. Gross Negligence: Impacts of Microplastics and Plastic Leachates on Phytoplankton Community and Ecosystem Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5-24. [PMID: 36534053 DOI: 10.1021/acs.est.2c05817] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plastic debris is an established environmental menace affecting aquatic systems globally. Recently, microplastics (MP) and plastic leachates (PL) have been detected in vital human organs, the vascular system, and in vitro animal studies positing severe health hazards. MP and PL have been found in every conceivable aquatic ecosystem─from open oceans and deep sea floors to supposedly pristine glacier lakes and snow covered mountain catchment sites. Many studies have documented the MP and PL impacts on a variety of aquatic organisms, whereby some exclusively focus on aquatic microorganisms. Yet, the specific MP and PL impacts on primary producers have not been systematically analyzed. Therefore, this review focuses on the threats posed by MP, PL, and associated chemicals on phytoplankton, their comprehensive impacts at organismal, community, and ecosystem scales, and their endogenous amelioration. Studies on MP- and PL-impacted individual phytoplankton species reveal the production of reactive oxygen species, lipid peroxidation, physical damage of thylakoids, and other physiological and metabolic changes, followed by homo- and heteroaggregations, ultimately eventuating in decreased photosynthesis and primary productivity. Likewise, analyses of the microbial community in the plastisphere show a radically different profile compared to the surrounding planktonic diversity. The plastisphere also enriches multidrug-resistant bacteria, cyanotoxins, and pollutants, accelerating microbial succession, changing the microbiome, and thus, affecting phytoplankton diversity and evolution. These impacts on cellular and community scales manifest in changed ecosystem dynamics with widespread bottom-up and top-down effects on aquatic biodiversity and food web interactions. These adverse effects─through altered nutrient cycling─have "knock-on" impacts on biogeochemical cycles and greenhouse gases. Consequently, these impacts affect provisioning and regulating ecosystem services. Our citation network analyses (CNA) further demonstrate dire effects of MP and PL on all trophic levels, thereby unsettling ecosystem stability and services. CNA points to several emerging nodes indicating combined toxicity of MP, PL, and their associated hazards on phytoplankton. Taken together, our study shows that ecotoxicity of plastic particles and their leachates have placed primary producers and some aquatic ecosystems in peril.
Collapse
Affiliation(s)
- C Amaneesh
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Shankari Anna Balan
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom
- Wageningen University & Research, P.O. Box 8000, 6700 EA, Wageningen, Netherlands
| | - P S Silpa
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Kozhumal Greeshma
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - A Aswathi Mohan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Aiswarya Robert Antony
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, 12587 Berlin, Germany
- Potsdam University, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Centre for Policy Research & Governance, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| |
Collapse
|
37
|
Purwiyanto AIS, Prartono T, Riani E, Koropitan AF, Naulita Y, Takarina ND, Cordova MR. The contribution of estuaries to the abundance of microplastics in Jakarta Bay, Indonesia. MARINE POLLUTION BULLETIN 2022; 184:114117. [PMID: 36126483 DOI: 10.1016/j.marpolbul.2022.114117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Rivers are one of the main pollution routes to the ocean. This study examines the source of microplastics (MPs) in Jakarta Bay based on their characteristics and estimates MPs emissions from 9 estuaries around Jakarta Bay in 3 administrative areas (Tangerang, North Jakarta, and Bekasi). The sample used was the water's surface taken using a round net. The highest abundance was found in the Dadap River, and the lowest was in the Angke River. The characteristics of the MPs are dominated by fragments, the size of 300-500 μm, and composed of polyethylene. It shows that the MPs originate from the fragmentation of residents' plastic waste that has been in the waters for a quite long time. The nine estuaries also showed a high contribution to MPs in Jakarta Bay: from North Jakarta > Tangerang > Bekasi. The emission is highly correlated with water discharge and MPs' particles in each estuary.
Collapse
Affiliation(s)
- Anna Ida Sunaryo Purwiyanto
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang 30862, Indonesia; Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia.
| | - Tri Prartono
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Alan Frendy Koropitan
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Yuli Naulita
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Noverita Dian Takarina
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Gedung E, Kampus UI Depok, Depok 16424, Indonesia
| | - Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency, BRIN Kawasan Jakarta Ancol, Jl, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| |
Collapse
|
38
|
Jeong S, Jang S, Kim SS, Bae MA, Shin J, Lee KB, Kim KT. Size-dependent seizurogenic effect of polystyrene microplastics in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129616. [PMID: 36104895 DOI: 10.1016/j.jhazmat.2022.129616] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The effects of polystyrene microplastic (PS-MP) size on neurotoxicity remain to be evaluated at various microsizes, and the seizurogenic effects of PS-MPs are unknown. This study aimed to evaluate the swimming behavior of zebrafish larvae under light-dark transitions after exposure to four PS-MP sizes (i.e., 1, 6, 10, and 25 μm) at concentrations of 500, 5,000, and 50,000 particles/mL. Changes in electroencephalographic signals, seizure-related gene expression, and neurochemical concentrations were measured. Locomotor activity was inhibited only by 10-μm PS-MPs. According to electroencephalographic signals, the number and total duration of seizure-like events significantly increased by 10-μm PS-MPs, which was confirmed by the altered expression of seizure-related genes c-fos and pvalb5. Additionally, an increase in the levels of neurochemicals choline, betaine, dopamine, 3-methoxytyramine, and gamma-aminobutyric acid indicated that the observed hypoactivity and seizure-like behavior were associated with the dysregulation of the cholinergic, dopaminergic, and GABAergic systems. Overall, these findings demonstrate that exposure to PS-MPs can potentially cause seizurogenic effects in developing zebrafish embryos, and we highlight that PS-MPs 10 µm in size dominantly affect neurotoxicity.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea
| | - Soogyeong Jang
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, the Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, the Republic of Korea
| | | | - Ki-Baek Lee
- Zefit Inc., Daegu 42988, the Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea.
| |
Collapse
|