1
|
Lu J, Gao Y, Huang D, Jing S, Wang H, Li Y, Ding X, Hu Q, Xiu G, Lin M, Zhang W, Huang C. Reactive Organic Gases from Vehicle Evaporative Emissions: Rates, Compositions, and Temperature Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11132-11144. [PMID: 40454969 DOI: 10.1021/acs.est.4c09415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
This study quantifies evaporative volatile organic compound emissions from China 3 to China 6 standard vehicles using a variable temperature sealed housing evaporative determination system. Total hydrocarbon (THC) emission factors during diurnal breathing losses (DBL) exhibited distinct temporal trends: the averages were 0.58, 0.87, 0.40, and 0.18 g·day-1 for DBL day 1 (0-24 h) escalating to 2.97, 2.88, 0.41, and 0.21 g·day-1 for DBL day 2 (24-48 h) across emission standards. Proton Transfer Reaction Time-of-Flight Mass Spectrometry identified 197 reactive organic gases (ROGs), with oxygenated and nitrogen-containing compounds contributing 20% ± 11%, 18% ± 9%, and 13% ± 9% to hot soak losses, DBL day 1, and DBL day 2, respectively. Alkanes, alkenes, aromatics, and carbonyls/ketones dominated ROG emissions (44%-99% combined). The emission composition shifted significantly across high-, normal-, and low-emitting vehicles: traditional hydrocarbons decreased progressively, while carbonyls/ketones increased, attenuating hydroxyl radical reactivity (OHR) reduction. Temperature-dependent experiments revealed proportional increases in THC and key ROG emissions per unit temperature increase, well-characterized by exponential functions. Controlling evaporative emissions by regulating oxygenated species and adopting near-zero emission vehicles reduces aerosol/ozone formation, while reactive carbonyl/ketone shifts in modern fleets highlight evolving atmospheric impacts, requiring tailored control strategies.
Collapse
Affiliation(s)
- Jun Lu
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, Shanghai 200237, China
| | - Yaqin Gao
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Dandan Huang
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng'ao Jing
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, Shanghai 200237, China
| | - Hongli Wang
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yingjie Li
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xiang Ding
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qingyao Hu
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, Shanghai 200237, China
| | - Mingyue Lin
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, Shanghai 200237, China
| | - Wei Zhang
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, Shanghai 200237, China
| | - Cheng Huang
- Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| |
Collapse
|
2
|
Wei Y, Jing X, Chen Y, Sun W, Zhang Y, Zhu R. Spatial-Temporal Characteristics, Source Apportionment, and Health Risks of Atmospheric Volatile Organic Compounds in China: A Comprehensive Review. TOXICS 2024; 12:787. [PMID: 39590967 PMCID: PMC11598060 DOI: 10.3390/toxics12110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Volatile organic compounds (VOCs) are ubiquitous in the atmosphere, posing significant adverse impacts on air quality and human health. However, current research on atmospheric VOCs mainly focuses on specific regions or industries, without comprehensive national-level analysis. In this study, a total of 99 articles on atmospheric VOCs in China published from 2015 to 2024 were screened, and data on their concentrations, source apportionment, and health risks were extracted and summarized. The results revealed that the annual average concentrations of TVOCs and their groups in China generally increased and then decreased between 2011 and 2022, peaking in 2018-2019. A distinct seasonal pattern was observed, with the highest concentrations occurring in winter, followed by autumn, spring, and summer. TVOC emissions were highly concentrated in northern and eastern China, mainly contributed by alkanes and alkenes. Source apportionment of VOCs indicated that vehicle sources (32.9% ± 14.3%), industrial emissions (18.0% ± 12.8%), and other combustion sources (13.0% ± 13.0%) were the primary sources of VOCs in China. There was a significant positive correlation (p < 0.05) between the annual mean VOC concentration and population size, and a notable negative correlation (p < 0.05) with GDP per capita. Atmospheric VOCs had no non-carcinogenic risk (HI = 0.5) but exhibited a probable carcinogenic risk (7.5 × 10-5), with relatively high values for 1,2-dibromoethane, 1,2-dichloroethane, and naphthalene. The health risk was predominantly driven by halocarbons. These findings are essential for a better understanding of atmospheric VOCs and for developing more targeted VOC control measures.
Collapse
Affiliation(s)
- Yangbing Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| | - Xuexue Jing
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| | - Yaping Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| | - Wenxin Sun
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| | - Yuzhe Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rencheng Zhu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| |
Collapse
|
3
|
Li M, Huang X, Yan D, Lai S, Zhang Z, Zhu L, Lu Y, Jiang X, Wang N, Wang T, Song Y, Ding A. Coping with the concurrent heatwaves and ozone extremes in China under a warming climate. Sci Bull (Beijing) 2024; 69:2938-2947. [PMID: 38944635 DOI: 10.1016/j.scib.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 07/01/2024]
Abstract
Intensive human activity has brought about unprecedented climate and environmental crises, in which concurrent heatwaves and ozone extremes pose the most serious threats. However, a limited understanding of the comprehensive mechanism hinders our ability to mitigate such compound events, especially in densely populated regions like China. Here, based on field observations and climate-chemistry coupled modelling, we elucidate the linkage between human activities and the climate system in heat-related ozone pollution. In China, we have observed that both the frequency and intensity of heatwaves have almost tripled since the beginning of this century. Moreover, these heatwaves are becoming more common in urban clusters with serious ozone pollution. Persistent heatwaves during the extremely hot and dry summers of 2013 and 2022 accelerated photochemical ozone production by boosting anthropogenic and biogenic emissions, and aggravated ozone accumulation by suppressing dry deposition due to water-stressed vegetation, leading to a more than 30% increase in ozone pollution in China's urban areas. The sensitivity of ozone to heat is demonstrated to be substantially modulated by anthropogenic emissions, and China's clean air policy may have altered the relationship between ozone and temperature. Climate model projections further highlight that the high-emission climate-socioeconomic scenario tends to intensify the concurrent heat and ozone extremes in the next century. Our results underscore that the implementation of a strict emission strategy will significantly reduce the co-occurrence of heatwaves and ozone extremes, achieving climate and environmental co-benefits.
Collapse
Affiliation(s)
- Mengmeng Li
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing 210023, China
| | - Xin Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing 210023, China.
| | - Dan Yan
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Shiyi Lai
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Zihan Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Lei Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yuting Lu
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xinyi Jiang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Nan Wang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610044, China
| | - Tijian Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Song
- Department of Environmental Science, Peking University, Beijing 100871, China
| | - Aijun Ding
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Li R, Zhong C, Ning Y, Liu Y, Song P, Xu R, Mao H. Exhaust and evaporative volatile organic compounds emissions from vehicles fueled with ethanol-blended-gasoline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124163. [PMID: 38782165 DOI: 10.1016/j.envpol.2024.124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
By 2020, China has implemented the use of 10% ethanol-blended-gasoline (E10), which is expected to notably impact vehicular volatile organic compounds (VOCs) emissions. The adoption of E10 reduced certain emissions but raised concerns with about more reactive oxygenated volatile organic compounds (OVOCs). This study aimed to evaluate the impact of E10 on the total VOCs emissions from both exhaust and evaporative emissions by conducting tests on the CHINA V (or CHINA VI) light-duty gasoline vehicles (LDGVs) using 0% ethanol blended gasoline (E0) and E10. E10 reduces VOCs emissions in the exhaust, and reduces the ozone and secondary organic aerosol generation potential of VOCs in the exhaust, as evidenced by the lower emission factors (EFs), ozone formation potentials (OFPs) and secondary organic aerosol formation potential (SOAFPs) in the CHINA V LDGVs. Evaporative emissions showed differences in emitted VOCs, with lower EFs, OFPs and SOAFPs for the CHINA V LDGVs fueled with E10. The CHINA VI LDGVs also exhibited reduced EFs, OFPs and SOAFPs. These findings highlight the environmental benefits of E10 in the CHINA VI-compliant LDGVs; however, the effectiveness of the earlier CHINA V standard vehicles requires further evaluation.
Collapse
Affiliation(s)
- Ruikang Li
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chongzhi Zhong
- China Automotive Technology & Research Center Co. Ltd, Tianjin, 300071, China
| | - Yang Ning
- Tianjin Eco-Environmental Monitoring Center, Tianjin, 300192, China
| | - Yan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Pengfei Song
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ruiguang Xu
- Hebei University of Engineering, Handan, 056009, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Zhang Y, Yang X, Wang Y, Yang Z, Zhao H, Ding Y. Light-duty vehicle organic gas emissions from tailpipe and evaporation: A review of influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174523. [PMID: 38986694 DOI: 10.1016/j.scitotenv.2024.174523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Vehicle organic gas emissions are becoming an increasingly significant pollution source in many cities, leading to serious negative impacts on human health and the environment. However, interest in vehicular emissions is currently mostly focused on the emission characteristics of regulated gas, while little information is available on the systematic overview of organic gas emissions, particularly under different conditions. This review classifies the current status of research and control measures regarding organic gas emissions from light-duty vehicles. The key factors influencing tailpipe and evaporative emissions, including temperature, fuel composition, vehicle mileage, driving conditions, and road conditions, are identified. Building upon this review, we conducted a case study to comprehensively assess the impact of temperature and fuel on organic gas emissions. Looking ahead, future research on organic gas emissions from motor vehicles could delve deeper into the component characteristics, evaporative emissions, and model applications. Better understanding the effects of crucial factors on organic gas emissions from vehicles would aid in effectively managing and regulating tailpipe and evaporative emissions, thereby improving atmospheric air quality.
Collapse
Affiliation(s)
- Ying Zhang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinping Yang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhengjun Yang
- China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China
| | - Haiguang Zhao
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Huo S, Zhang X, Xu W, Dang J, Xu F, Xie W, Tao C, Han Y, Liu X, Teng Z, Xie R, Cao X, Zhang Q. Updating vehicle VOCs emissions characteristics under clean air actions in a tropical city of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172733. [PMID: 38663608 DOI: 10.1016/j.scitotenv.2024.172733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
In the context of clean air actions in China, vehicle emission limits have been continuously tightened, which has facilitated the reduction of volatile organic compounds (VOCs) emissions. However, the characteristics of VOC emissions from vehicles with strict emission limits are poorly understood. This study investigated the VOC emission characteristics from vehicles under the latest standards based on tunnel measurements, and identified future control strategies for vehicle emissions. The results showed that the highest percentage of VOCs from vehicle consisted of alkanes (80.9 %), followed by aromatics (15.8 %) and alkenes (3.1 %). Alkanes had the most significant ozone formation potential due to their high concentrations, in contrast to the aromatics that have been dominant in previous studies. The measured fleet-average VOC emission factor was 71.3 mg·km-1, including tailpipe emissions of 39.6 mg·km-1 and evaporative emissions of 31.7 mg·km-1. The VOC emission factors of the subgroups were obtained. The emission of evaporated VOCs accounted for 44.5 % of the total vehicle VOC emissions, which have increased substantially from previous studies. In addition, the emission characteristics of vehicles that are under the latest emission threshold values have changed significantly, and the mixing ratio of toluene/benzene (T/B) has been updated to 3:1. This study updates the VOCs emission factors of vehicles under clean air actions and highlights the future mitigation policies should focus on reducing evaporative VOC emissions.
Collapse
Affiliation(s)
- Sisi Huo
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Xin Zhang
- Environmental Research Institute, Shandong University, Qingdao 266237, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Wenshuai Xu
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China; Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China.
| | - Juan Dang
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Fei Xu
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Wenjing Xie
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Chenliang Tao
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yanan Han
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Xinning Liu
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Zhuochao Teng
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Rongfu Xie
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Xiaocong Cao
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Qingzhu Zhang
- Environmental Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Yang X, Song K, Guo S, Wang Y, Wang J, Peng D, Wen Y, Li A, Fan B, Lu S, Ding Y. Elucidating the unexpected importance of intermediate-volatility organic compounds (IVOCs) from refueling procedure. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134361. [PMID: 38669924 DOI: 10.1016/j.jhazmat.2024.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Evaporative emissions release organic compounds comparable to gasoline exhaust in China. However, the measurement of intermediate volatility organic compounds (IVOCs) is lacking in studies focusing on gasoline evaporation. This study sampled organics from a real-world refueling procedure and analyzed the organic compounds using comprehensive two-dimensional gas chromatography coupled with a mass spectrometer (GC×GC-MS). The non-target analysis detected and quantified 279 organics containing 93 volatile organic compounds (VOCs, 64.9 ± 7.4 % in mass concentration), 182 IVOCs (34.9 ± 7.4 %), and 4 semivolatile organic compounds (SVOCs, 0.2 %). The refueling emission profile was distinct from that of gasoline exhaust. The b-alkanes in the B12 volatility bin are the most abundant IVOC species (1.9 ± 1.4 μg m-3) in refueling. A non-negligible contribution of 17.5 % to the ozone formation potential (OFP) from IVOCs was found. Although IVOCs are less in concentration, secondary organic aerosol potential (SOAP) from IVOCs (58.1 %) even exceeds SOAP from VOCs (41.6 %), mainly from b-alkane in the IVOC range. At the molecular level, the proportion of cyclic compounds in SOAP (12.1 %) indeed goes above its mass concentration (3.1 %), mainly contributed by cyclohexanes and cycloheptanes. As a result, the concentrations and SOAP of cyclic compounds (>50 %) could be overestimated in previous studies. Our study found an unexpected contribution of IVOCs from refueling procedures to both ozone and SOA formation, providing new insights into secondary pollution control policy.
Collapse
Affiliation(s)
- Xinping Yang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kai Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junfang Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Di Peng
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Wen
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Ang Li
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Baoming Fan
- TECHSHIP (Beijing) Technology Co., LTD, Beijing 100039, China
| | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Wu X, Chen Q, He R. Experimental research and estimation model of gasoline evaporative emissions from vehicles in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171875. [PMID: 38522530 DOI: 10.1016/j.scitotenv.2024.171875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Evaporative emission is an important source of vehicle pollutant emission and volatile organic compounds (VOCs), causing serious environmental pollution. Carbon canisters are used to store fuel vapor in evaporative emission control (EVAP) system, but canisters are prone to saturation, leading to the direct release of fuel vapor into the atmosphere. Therefore, accurate estimation of fuel vapor generation is crucial for EVAP system. Gasoline evaporation rate is mainly influenced by vapor-liquid interface area, gasoline saturated vapor pressure, filling level and temperature. The quantitative relation between different parameters and gasoline evaporation rate has rarely been reported, and a gasoline evaporative emission estimation model suitable for China needs to be proposed urgently. In this study, gasoline evaporative emission tests have been carried out in VT-SHED, and the effects of vapor-liquid interface area, filling level and temperature on gasoline evaporative emissions have been analyzed under the premise of consistent gasoline temperature and ambient temperature. Some valuable conclusions are obtained. The results show that different from expectation, gasoline evaporative emissions are not positively correlated with the vapor-liquid interface area. There is an approximately exponential relationship between the headspace volume and gasoline evaporative emissions. The widely used Reddy equation and Hata equation underestimate the gasoline vapor generation in China. Based on China VI test program and gasoline, accurate estimation of mass transfer coefficient has been conducted, and a new semi-empirical estimation model for vapor generation has been proposed. The model can accurately estimate the fuel evaporation of vehicles in China, providing guidance for the matching and optimization of EVAP system.
Collapse
Affiliation(s)
- Xudong Wu
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China; CATARC Automobile Test Center (Tianjin) Co., Ltd, Tianjin 300300, China
| | - Qiang Chen
- China Automotive Technology & Research Center Co., Ltd, Tianjin 300300, China; CATARC Automobile Test Center (Tianjin) Co., Ltd, Tianjin 300300, China
| | - Ren He
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Huang W, Xiao Y, Li X, Wu C, Zhang C, Wang X. Bibliometric analysis of research hotspots and trends in the field of volatile organic compound (VOC) emission accounting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42547-42573. [PMID: 38884935 DOI: 10.1007/s11356-024-33896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Volatile organic compounds (VOCs) have been extensively studied because of their significant roles as precursors of atmospheric ozone and secondary organic aerosol pollution. The research aims to comprehend the current advancements in domestic and international VOC emission accounting. The study utilized the CiteSpace software to represent the pertinent material from Web of Science visually. The hot spots and future development trends of VOC emission calculation are analyzed from the perspectives of thesis subject words, cooperative relationships, co-citation relationships, journals, and core papers. According to the statistics, the approaches most often employed in VOC accounting between 2013 and 2023 are source analysis and emission factor method. Atmospheric environment is the journal with the most publications in the area. The Chinese Academy of Sciences and the University of Colorado System are prominent institutions in VOC emission accounting research, both domestically and internationally. The primary research focuses on the realm of VOC emission accounting clusters, which are "emission factor," "source analysis," "model," "air quality," and "health." A current trend in VOC emission accounting involves the construction of a VOC emission inventory using a novel model that combines emission factors and source analysis. This study reviews the progress made in calculating volatile organic compound (VOC) emissions over the past decade. It aims to provide researchers with a new perspective to promote the development of this field.
Collapse
Affiliation(s)
- Weiqiu Huang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China.
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yilan Xiao
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China
| | - Xufei Li
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunyan Wu
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China
| | - Cheng Zhang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China
| | - Xinya Wang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
10
|
Wu W, Fu TM, Arnold SR, Spracklen DV, Zhang A, Tao W, Wang X, Hou Y, Mo J, Chen J, Li Y, Feng X, Lin H, Huang Z, Zheng J, Shen H, Zhu L, Wang C, Ye J, Yang X. Temperature-Dependent Evaporative Anthropogenic VOC Emissions Significantly Exacerbate Regional Ozone Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5430-5441. [PMID: 38471097 DOI: 10.1021/acs.est.3c09122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017. The temperature dependency of AVOC emissions drove an enhanced simulated ozone-temperature sensitivity of 1.0 to 1.8 μg m-3 K-1, comparable to the simulated ozone-temperature sensitivity driven by the temperature dependency of biogenic VOC emissions (1.7 to 2.4 μg m-3 K-1). Ozone enhancements driven by temperature-induced AVOC increases were localized to their point of emission and were relatively more important in urban areas than in rural regions. The inclusion of the temperature-dependent AVOC emissions in our model improved the simulated ozone-temperature sensitivities on days of ozone exceedance. Our results demonstrated the importance of temperature-dependent AVOC emissions on surface ozone pollution and its heretofore unrepresented role in air pollution-meteorology interactions.
Collapse
Affiliation(s)
- Wenlu Wu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Steve R Arnold
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Dominick V Spracklen
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Aoxing Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Tao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaolin Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yue Hou
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiajia Mo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiongkai Chen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yumin Li
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xu Feng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haipeng Lin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zhijiong Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Junyu Zheng
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Cheng Y, Huang XF, Peng Y, Tang MX, Zhu B, Xia SY, He LY. A novel machine learning method for evaluating the impact of emission sources on ozone formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120685. [PMID: 36400136 DOI: 10.1016/j.envpol.2022.120685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.
Collapse
Affiliation(s)
- Yong Cheng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiao-Feng Huang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yan Peng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Meng-Xue Tang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bo Zhu
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shi-Yong Xia
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ling-Yan He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|