1
|
Zhao X, Jia F, Wang B, Hu Z, Han B, Mei N, Jia F, Liu Y, Yao H. Metatranscriptomics sheds light on electron transfer in anammox bacteria enhanced by the redox mediator neutral red. ENVIRONMENTAL RESEARCH 2025; 274:121288. [PMID: 40043932 DOI: 10.1016/j.envres.2025.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Enhancing the activity of key enzymes has been recognized as an effective strategy to improve anammox performance. Neutral red (NR), a potent redox-active electron carrier, has been shown to boost various enzyme activities and microbial reaction rates. However, its potential to enhance anammox performance remains underexplored. This study aimed to investigate the effects of different NR concentrations on anammox nitrogen removal efficiency and gene transcription levels. The results revealed that anammox activity increased with NR doses in the lower concentration range (0.05-0.3 g L-1). The optimal dosage at 0.1 g L-1 significantly increased specific anammox activity (SAA) by 16.73 ± 2.68% (p ≤ 0.001), compared to the control without NR addition. Moreover, the total EPS concentration increased by 16.87 ± 1.20% (p ≤ 0.01). Conversely, NR concentrations exceeding the optimal range inhibited anammox activity. Metatranscriptomic analysis showed that appropriate NR supplementation upregulated the expression of cofactor modules related to electron transfer and functional genes (hdh and hzsB) involved in anammox nitrogen removal, thereby enhancing overall performance. Moreover, the mild oxidative stress induced by low NR doses was mitigated through the upregulation of antioxidant genes. In contrast, excessive NR (0.5-1.0 g L-1) led to an accumulation of reactive oxygen species (ROS) that overwhelmed the antioxidant defense system, resulting in impaired electron transfer and reduced metabolic activity. Specifically, when the NR concentration was increased to 1.0 g L-1, SAA decreased significantly by 26.45 ± 2.55% (p ≤ 0.001). These findings indicate that appropriately controlled NR supplementation can improve anammox activity, providing a promising strategy for rapid start-up and improved nitrogen removal in practical anammox systems.
Collapse
Affiliation(s)
- Xingcheng Zhao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Bo Wang
- Department of Food Science, Aarhus University, 8200, Aarhus N, Denmark
| | - ZhiFeng Hu
- Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, China
| | - Baohong Han
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Ning Mei
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Feirui Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Yawen Liu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
2
|
Ouyang B, Zhang Z, Chen F, Li F, Fu ML, Lan H, Yuan B. Energy production and denitrogenation performance by sludge biochar based constructed wetlands-microbial fuel cells system: Overcoming carbon constraints in water. WATER RESEARCH 2025; 273:123024. [PMID: 39733529 DOI: 10.1016/j.watres.2024.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication. This study explores the use of sewage sludge biochar (SB) and activated carbon (AC) as electrodes in microbial fuel cell-constructed wetlands (MFC-CW) to enhance nitrogen removal and energy generation. Results indicated that the sludge biochar closed-circuit CW (MSBS-CW) achieved considerable total nitrogen removal (95.85 %) and maximum power density (9.05 mW/m²). Furthermore, high-throughput sequencing and functional gene analysis revealed substantial shifts in the microbial community within MSBS-CW, particularly in the electroactive bacteria (Geobacter), autotrophic denitrifying bacterium (Hydrogenophaga, Thiobacillus) and anaerobic ammonium oxidation bacteria (Candidatus_Brocadia). Electrochemical and material characterization showed that SB enhanced the cathode's electrochemical performance and the anode's biocompatibility, thereby improving denitrification and energy generation. This study demonstrates that sludge biochar is an effective low-cost electrode material for MFC-CW systems, offering a sustainable solution for nitrogen removal and energy production under carbon-constrained conditions.
Collapse
Affiliation(s)
- Boda Ouyang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Zhiyong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fuzhi Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Fei Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| |
Collapse
|
3
|
Cornell CR, Bangala JI, Masiello CA, Alvarez PJJ. Beyond the Bench: Contextualizing the Impacts of Char Redox Properties on Biogeochemical Cycling and Microbial Ecosystem Services. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1080-1090. [PMID: 39772564 DOI: 10.1021/acs.est.4c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The electrochemical properties of chars have been recently described, positioning chars as active participants in microbial redox processes through functional groups, aromatic structures, redox-active metals, and radicals. While bench-scale studies have advanced mechanistic understanding of char's behavior and potential effects, translating these findings to complex ecosystems remains challenging. This is mainly due to the complexities of microbial communities and the unique properties of various ecosystems. Factors like char aging and patina formation, and environmental parameters including oxygen and moisture availability, pH, and organic matter content can significantly affect char electrochemical properties and microbial interactions. This highlights the need for a broader understanding of char redox processes to predict and effectively manage unintended environmental impacts or enhance beneficial effects. Long-term monitoring of complex systems amended with char is also needed to determine whether char accumulation has long-term redox effects on microbial ecosystem services, including biogeochemical cycling. Predictive understanding of these processes would inform the production of chars to enhance beneficial processes such as increased soil productivity, and provide new opportunities for engineered environmental remediation. Here, we summarize how char redox properties affect well-defined microbial systems and discuss key factors that determine whether the effects of char redox properties are enhanced or attenuated in complex systems. We also identify critical knowledge gaps about chars' role in microbial redox processes that are important for environmental sustainability and postulate that managing char's redox properties, such as electron donating, accepting, or conducting ability, is an emerging opportunity to influence microbial ecosystem services.
Collapse
Affiliation(s)
- Carolyn R Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Johanna I Bangala
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Caroline A Masiello
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Deng Z, Sun C, Ma G, Zhang X, Guo H, Zhang T, Zhang Y, Hu Y, Li D, Li YY, Kong Z. Anaerobic treatment of nitrogenous industrial organic wastewater by carbon-neutral processes integrated with anaerobic digestion and partial nitritation/anammox: Critical review of current advances and future directions. BIORESOURCE TECHNOLOGY 2025; 415:131648. [PMID: 39447922 DOI: 10.1016/j.biortech.2024.131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Anaerobic digestion combined with partial nitritation/anammox technology holds promising potential for the carbon-neutral treatment of nitrogenous industrial organic wastewater, boasting remarkable advantages in effective removal of both organic matters and nitrogen, bio-energy recovery and carbon emission reduction. This study provides a concise overview of the development and advantages of anaerobic digestion combined with partial nitritation/anammox technology for treating nitrogenous industrial organic wastewater. The process excels in removing organic matter and nitrogen, recovering bio-energy, and reducing carbon emissions, compared to traditional physicochemical and biological methods. Case studies highlight its energy-saving and efficient attributes, especially for carbon-neutral nitrogen removal. Challenges for achieving stable operation in the future are discussed, and the study offers insights into the broader application of this integrated process in industrial wastewater treatment.
Collapse
Affiliation(s)
- Zixuan Deng
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chengde Sun
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Tao Zhang
- College of Design and Innovation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- College of Design and Innovation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
5
|
Wu M, Yao C, Wang Z, Xiong Y, Zhang X, Chen A, Yang W. Influence of sludge biochar at different carbonization temperatures on anammox process. ENVIRONMENTAL TECHNOLOGY 2024:1-15. [PMID: 39666648 DOI: 10.1080/09593330.2024.2438893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Adding biochar can expedite the establishment of the anaerobic ammonia oxidation (anammox) process and improve the nitrogen removal efficiency of the anammox reactor. However, the optimization research of biochar derived from dewatered sludge on anammox is relatively limited. In this study, four sequencing batch reactors (SBRs) were compared for the enrichment of anammox bacteria using synthetic wastewater with sludge biochar carbonized at temperatures of 300°C, 550°C, and 800°C, and without biochar (CK). The start-up and the nitrogen removal performance of anammox process were evaluated, as well as the effect of organic carbon on nitrogen removal. The results showed that the addition of sludge biochar at different pyrolysis temperatures all can accelerate the start-up of the anammox process, improve the nitrogen removal efficiency, and reduce the total nitrogen (TN) in the effluent. Although the reactor with biochar carbonized at 800°C showed the fastest increase in the nitrogen loading, the best TNRE occurred in the reactor with biochar carbonized at 300°C, which was 8.0% higher than those of the control (CK, p < 0.05). The predominant genus of anammox in SBRs differed between the sludge biochar reactor and the control reactor (without biochar), which were Candidatus Brocadia and Candidatus Jettenia, respectively. Additionally, the total abundances of anammox bacteria and denitrifiers increased with the addition of sludge biochar.
Collapse
Affiliation(s)
- Maolin Wu
- School of Water and Environment, Chang'an University, Xi'an, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xian, People's Republic of China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xian, People's Republic of China
| | - Cheng Yao
- School of Water and Environment, Chang'an University, Xi'an, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xian, People's Republic of China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xian, People's Republic of China
| | - Zhengxiang Wang
- School of Water and Environment, Chang'an University, Xi'an, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xian, People's Republic of China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xian, People's Republic of China
| | - Yongqi Xiong
- School of Water and Environment, Chang'an University, Xi'an, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xian, People's Republic of China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xian, People's Republic of China
| | - Xiaoling Zhang
- School of Water and Environment, Chang'an University, Xi'an, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xian, People's Republic of China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xian, People's Republic of China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xian, People's Republic of China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xian, People's Republic of China
| | - Wenjuan Yang
- School of Water and Environment, Chang'an University, Xi'an, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xian, People's Republic of China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xian, People's Republic of China
| |
Collapse
|
6
|
Jiao F, Zhang X, Zhang T, Hu Y, Lu R, Ma G, Chen T, Guo H, Li D, Pan Y, Li YY, Kong Z. Insights into carbon-neutral treatment of rural wastewater by constructed wetlands: A review of current development and future direction. ENVIRONMENTAL RESEARCH 2024; 262:119796. [PMID: 39147183 DOI: 10.1016/j.envres.2024.119796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.
Collapse
Affiliation(s)
- Feifei Jiao
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Chen
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
7
|
Wang Y, Tian L, Zheng J, Tan Y, Li Y, Wei L, Zhang F, Zhu L. Enhancing nitrogen removal in low C/N wastewater with recycled sludge-derived biochar: A sustainable solution. WATER RESEARCH 2024; 267:122551. [PMID: 39369509 DOI: 10.1016/j.watres.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Denitrification is an important biological process in wastewater treatment plants (WWTPs). However, a low carbon-to-nitrogen (C/N) ratio limits the availability of organic carbon, potentially reducing denitrification efficiency. This study investigates the impact of sludge-derived biochar on the nitrogen removal of activated sludge for low C/N ratio municipal wastewater. Sludge-based biochar was characterized by its physicochemical properties, revealing that biochar prepared at 400 °C exhibited the highest specific surface area and the most favorable surface functional groups for electron transfer. The results from batch tests showed that adding 4 g/L of biochar dosage enhanced denitrification rates and total nitrogen (TN) removal efficiency the most. Sequencing batch reactors (SBRs) experiments further confirmed that biochar dosgae improved the removal efficiencies of COD, NH4+-N, and TN, achieving stable values of 97.2 ± 1.2 %, 99.2 ± 0.6 %, and 83.8 ± 2.4 %, respectively. Metabolic and electrochemical analyses revealed that biochar addition enhanced the activity of denitrification enzymes, increasing the ammonia oxidation rate by 12.9 ± 0.7 %, nitrite oxidation rate by 14.7 ± 1.2 %, nitrate reduction rate by 36.9 ± 1.5 %, and nitrite reduction rate by 16.4 ± 0.8 %. The relative abundance of denitrification functional genes (amoA, nirS, nirK, narG, nosZ) increased, and the activities of the corresponding enzymes (AMO, NXR, NAP, NIR) rose by 23±6 %, 53±5 %, 260±15 %, and 55±7 %, respectively. This increase in enzyme activity suggested enhanced denitrification processes, which was further supported by the 60.1 ± 3.7 % increase in electron transfer system activity (ETSA), indicating that biochar acted as an electron shuttle. This study proposes a potential sustainable approach for sludge recycling and enhanced wastewater nitrogen removal under low C/N conditions.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luling Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yixiao Tan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lecheng Wei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Zhang
- School of Chemistry and Physics, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
8
|
Shaw DR, Tobon Gonzalez J, Bibiano Guadarrama C, Saikaly PE. Emerging biotechnological applications of anaerobic ammonium oxidation. Trends Biotechnol 2024; 42:1128-1143. [PMID: 38519307 DOI: 10.1016/j.tibtech.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an energy-efficient method for nitrogen removal that opens the possibility for energy-neutral wastewater treatment. Research on anammox over the past decade has primarily focused on its implementation in domestic wastewater treatment. However, emerging studies are now expanding its use to novel biotechnological applications and wastewater treatment processes. This review highlights recent advances in the anammox field that aim to overcome conventional bottlenecks, and explores novel and niche-specific applications of the anammox process. Despite the promising results and potential of these advances, challenges persist for their real-world implementation. This underscores the need for a transition from laboratory achievements to practical, scalable solutions for wastewater treatment which mark the next crucial phase in the evolution of anammox research.
Collapse
Affiliation(s)
- Dario Rangel Shaw
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Julian Tobon Gonzalez
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Carlos Bibiano Guadarrama
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Zhang L, Jiang Q, Huang D, Bin Y, Luo D, Gao Y. Study on the mechanism of enhanced anaerobic ammonia oxidation performance by extracellular electron acceptor biochar. ENVIRONMENTAL TECHNOLOGY 2024; 45:4062-4072. [PMID: 37477378 DOI: 10.1080/09593330.2023.2240489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/04/2023] [Indexed: 07/22/2023]
Abstract
ABSTRACTAnaerobic ammonia oxidation process has the advantages of energy and cost reduction, therefore, it has been considered as one of the main alternatives to conventional biological denitrification process in recent years. Biochar has been applied in the anammox process for nitrogen removal efficiency. But, due to its extracellular electron transfer capacity and abundance of redox-specific functional groups, which served as extracellular electron acceptor to anaerobically oxidize NH4+ is still controversy. In this study, the anaerobic ammonia oxidation was investigated when biochar was used as electron acceptor in the wastewater. According to the optimal process variables determined in the batch tests, when the influent NH4+-N concentration in the anaerobic ammonia oxidation reaction was 30-50 mg/L and the biochar dosing was at 10 g/L, it showed some promotion in the long-term experiments. The anaerobic ammonia oxidation process with biochar as the electron acceptor reached more than 60% NH4+-N removal efficiency in the system, and the ΔNO3--N/ΔNH4+-N ratio reached 0.19 which tended to the theoretical value. After 20 days, the voltage in the system keeps fluctuating about 4 mV, indicated that the functional bacteria using biochar as the electron acceptor gradually dominated the system. In addition, the abundance of norank_f__norank_o__SBR1031 in the Chloroflexi phylum has increased significantly at 29.92%, while the abundance of the major genus Candidatus_Kuenenia in AnAOB has decreased slightly at 11.47%.
Collapse
Affiliation(s)
- Li Zhang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Qi Jiang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Diannan Huang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Ye Bin
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing, People's Republic of China
| | - Di Luo
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Yunan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| |
Collapse
|
10
|
Cao J, Xu A, Gao D, Gong X, Cheng L, Zhou Q, Yang T, Gong F, Liu Z, Liang H. Enhance PD/A biofilm formation via a novel biochar/tourmaline modified-biocarriers to treat low-strength contaminated surface water: Initial adhesion and high-substrate microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121803. [PMID: 39002458 DOI: 10.1016/j.jenvman.2024.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
In this work, a novel polyurethane carrier modified with biochar and tourmaline/zeolite powder at ratio of 1:1 and 1:2 was developed to promote the formation of biofilms and the synergy of overall bacterial activity for Partial Denitrification/Anammox to treat low-nitrogen contaminated surface water. Based on the batch experiment, the modified biocarrier, BTP2 (biochar: tourmaline = 2: 1), exhibited the highest total nitrogen removal efficiency (83.63%) under influent total nitrogen of 15 mg/L and COD/NO3- of 3. The dense biofilm was formed in inner side of biocarrier owing to the increased surface roughness and various functional groups suggested by scanning electron microscopy and Fourier-transform infrared analysis. The EPS content increased from 200.15 to 220.26 mg/g VSS in BTP2 system. Besides, the rapid NH4+ capture and organics release of the modified carrier fueled the growth of anammox and denitrification bacteria, with the activity of 2.13 ± 0.52 mg N/gVSS/h and 6.70 ± 0.52 mg N/gVSS/h (BTP2). High-throughput sequencing unraveled the increased abundances of Candidatus_Competibacter (0.82%), Thauera (0.60%) and Candidatus_Brocadia (0.55%) which was responsible for the synergy of incomplete reduction of NO3- to NO2- and NH4+ oxidation. Overall, this study provided a valid and simple-control guide for biofilm formation towards rapid enrichment and great collaboration of Anammox and denitrification bacteria.
Collapse
Affiliation(s)
- Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Tianfu Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fugeng Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhenkun Liu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
11
|
Yang B, Sun J, Wang Z, Duan Y. Sustainable biochar application in anammox process: Unveiling novel pathways for enhanced nitrogen removal and efficient start-up at low temperature. BIORESOURCE TECHNOLOGY 2024; 402:130773. [PMID: 38701987 DOI: 10.1016/j.biortech.2024.130773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
This study explored the use of biochar to accelerate the establishment of anaerobic ammonium oxidation (anammox) reactors operating at 15 ± 1℃. Incorporating 10 g/L bamboo charcoal in S1 accelerated the start-up of anammox in 87 days, which was significantly shorter than 103 days in S0 (without biochar). After 140 days, S1 exhibited a 10.9 % increase in nitrogen removal efficiency due to a 28.9 % elevation in extracellular polymeric substances, bolstering anammox bacterial resilience. Predominant anammox bacteria (Cadidatus Brocadia and Cadidatus Jettenia) showed relative abundances of 3.19 % and 0.38 % in S1, respectively, which were significantly higher than 0.40 % and 0.05 % in S0. Biochar provides favorable habitats for the enrichment of anammox bacteria and accelerates the establishment of anammox at low temperatures. This finding holds promise for enhancing the efficiency of anammox in cold climates and advancing sustainable wastewater nitrogen removal.
Collapse
Affiliation(s)
- Biao Yang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Jiawei Sun
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zhongyu Wang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yun Duan
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
12
|
Zhang Z, Li D, Zhou C, Huang X, Chen Y, Wang S, Liu G. Enhanced nitrogen removal via partial nitrification/denitrification coupled Anammox using three stage anoxic/oxic biofilm process with intermittent aeration. WATER RESEARCH 2024; 255:121491. [PMID: 38520779 DOI: 10.1016/j.watres.2024.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Pre-capturing organics in municipal wastewater for biogas production, combined with Anammox-based nitrogen removal process, improves the sustainability of sewage treatment. Thus, enhancing nitrogen removal via Anammox in mainstream wastewater treatment becomes very crucial. In present study, a three-stage anoxic/oxic (AO) biofilm process with intermittent aeration was designed to strengthen partial nitrification/denitrification coupling Anammox (PNA/PDA) in treatment of low C/N wastewater, which contained chemical oxygen demand (COD) of 79.8 mg/L and total inorganic nitrogen (TIN) of 58.9 mg/L. With a hydraulic retention time of 8.0 h, the process successfully reduced TIN to 10.6 mg/L, achieving a nitrogen removal efficiency of 83.3 %. The 1st anoxic zone accounted for 32.0 % TIN removal, with 10.3 % by denitrification and 21.7 % by PDA, meanwhile, the 2nd and 3rd anoxic zones contributed 19.4 % and 4.5 % of TIN removal, primarily achieved through PDA (including endogenous PD coupling Anammox). The 1st and 2nd intermittent zones accounted for 27.2 % and 17.0 % of TIN removal, respectively, with 13.7 %-21.3 % by PNA and 3.2 %-5.3 % by PDA. Although this process did not pursue nitrite accumulation in any zone (< 1.5 mg-N/L), PNA and PDA accounted for 35.1 % and 52.1 % of TIN removal, respectively. Only 0.21 % of removed TIN was released as nitrous oxide. The AnAOB of Candidatus Brocadia was enriched in each zone, with a relative abundance of 0.66 %-2.29 %. In intermittent zones, NOB had been partially suppressed (AOB/NOB = 0.73-0.88), mainly due to intermittent aeration and effective nitrite utilization by AnAOB since its population size was much greater than NOB. Present study indicated that the three-stage AO biofilm process with intermittent aeration could enhance nitrogen removal via PNA and PDA with a low N2O emission factor.
Collapse
Affiliation(s)
- Zhuang Zhang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Deyong Li
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Changhui Zhou
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Xiaoshan Huang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yantong Chen
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Shijie Wang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Guoqiang Liu
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
13
|
Paritosh K, Kesharwani N. Biochar mediated high-rate anaerobic bioreactors: A critical review on high-strength wastewater treatment and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120348. [PMID: 38457889 DOI: 10.1016/j.jenvman.2024.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Treatment of high-strength wastewater is critical for the aquatic environment and receiving water bodies around the globe. Untreated or partially treated high-strength wastewater may cause severe damage to the existing water bodies. Various high-rate anaerobic bioreactors have been developed in the last decades for treating high-strength wastewater. High-rate anaerobic bioreactors are effective in treating industrial wastewater and provide energy in the form of methane as well. However, the physical or chemical properties of high-strength industrial wastewater, sometimes, disrupt the functioning of a high-rate anaerobic bioreactor. For example, the disintegration of granular sludge in up flow anaerobic sludge blanket reactor or membrane blocking in an anaerobic membrane bioreactor are the results of a high-strength wastewater treatment which hamper the proper functioning and may harm the wastewater treatment plant economically. Biochar, if added to these bioreactors, may help to alleviate the ill-functioning of high-rate anaerobic bioreactors. The primary mechanisms by biochar work in these bioreactors are direct interspecies electron transfer, microbial immobilization, or gene level alternations in microbial structure. The present article explores and reviews the recent application of biochar in a high-rate anaerobic bioreactor treating high-strength industrial wastewater.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Nupur Kesharwani
- Department of Civil Engineering, Government Engineering College, Bilaspur, Chhattisgarh, India
| |
Collapse
|
14
|
Qin Y, Wei Q, Chen R, Jiang Z, Qiu Y, Jiang Y, Li L. Roles of red mud-based biochar carriers in the recovery of anammox activity: characteristics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20488-20498. [PMID: 38376779 DOI: 10.1007/s11356-024-32263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Anaerobic ammonium oxidation (anammox) sludge is easily deactivated in the process of treating ammonia-laden wastewater. To investigate an effective recovery method, red mud-based biochar carriers (RMBC) were prepared and added to a deactivated anammox reactor; the operation of this reactor had been interrupted for 6 months with starvation and low temperature. The deactivated sludge with added RMBC was recovered rapidly after 31 days, with the specific anammox activity rapidly increasing to 0.84 g N/(g VSS∙day), and the recovery efficiency of nitrogen removal rate increased by four times compared to the unadded control. The granulation degree and extracellular polymeric substances secretion of the anammox sludge with the added RMBC were significantly higher than that of the control group. In addition, a large number of spherical anammox bacteria were observed moored at the porous channels of RMBC, and the copy numbers of functional genes of anammox bacteria were approximately twice that of the control group. Hence, RMBC is a potential sludge activator, and it can provide a "house" to protect anammox bacteria, enhance the metabolic activity and the agglomerative growth of anammox bacteria, and synergistically achieve rapid recovery of deactivated anammox sludge.
Collapse
Affiliation(s)
- Yongli Qin
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Qiaoyan Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Ruihong Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zhicheng Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuchen Qiu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yongrong Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Li Li
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
15
|
Liu X, Wang L, Zheng J, Mao W, Liu W, Zhu G, Ji XM, Zhang Q. Multi-omics analysis reveals the collaboration and metabolisms of the anammox consortia driven by soluble/non-soluble Fe(III) as the sole iron element. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120124. [PMID: 38244412 DOI: 10.1016/j.jenvman.2024.120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Iron is recognized as a physiological requirement for anammox bacteria (AnAOB), with Fe(II) considered to be the most effective form. However, Fe(III), instead of Fe(II) is the common iron form in natural and artificial ecosystems. In this study, the nitrogen removal performance and metabolic mechanisms in anammox consortia with soluble and non-soluble Fe(III) as the sole iron element were investigated. After the 150-day operation, the soluble (FeCl3) and insoluble (Fe2O3) Fe(III)-fed anammox systems reached nitrogen removal rates of 71.84 ± 0.80% and 50.20 ± 0.98%, respectively. AnAOB could survive with soluble (FeCl3) or insoluble (Fe2O3) Fe(III) as the sole iron element, reaching relative abundances of 18.49% and 13.16%, respectively. The results show that the formation of anammox core consortia can enable AnAOB's survival to adverse external conditions of Fe(II) deficiency. Metagenomic and metatranscriptomic analysis reveal that Ca. Kuenenia can only uptake Fe(II) into the cell for metabolisms either independently through the extracellular electron transfer or with the cross-feeding of symbiotic microbes. This study provides insight into the utilization and metabolic mechanisms of Fe(III) in Ca. Kuenenia-dominated consortia, and deepens the understanding of anammox core consortia in the nitrogen, carbon, and iron cycling, further promoting the practical applications of anammox processes.
Collapse
Affiliation(s)
- Xuerui Liu
- School of Humanity, Southeast University, Nanjing, 211189, China; Center for Ecotourism and Regional Development, Southeast University, Nanjing, 211189, China
| | - Lixia Wang
- School of Energy and Environment, Southeast University, Nanjing, 211189, China
| | - Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijie Mao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 211189, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qi Zhang
- School of Energy and Environment, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
Zhang X, Al-Dhabi NA, Gao B, Zhou L, Zhang X, Zhu Z, Tang W, Chuma A, Chen C, Wu P. Robust rehabilitation of anammox system by granular activated carbon under long-term starvation stress: Microbiota restoration and metabolic reinforcement. BIORESOURCE TECHNOLOGY 2024; 393:130113. [PMID: 38013039 DOI: 10.1016/j.biortech.2023.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
This article investigates the buffering capacity and recovery-enhancing ability of granular activated carbon (GAC) in a starved (influent total nitrogen: 20 mg/L) anaerobic ammonium oxidation (anammox) reactor. The findings revealed that anammox aggregated and sustained basal metabolism with shorter performance recovery lag (6 days) and better nitrogen removal efficiency (84.9 %) due to weak electron-repulsion and abundance redox-active groups on GAC's surface. GAC-supported enhanced extracellular polymeric substance secretion aided anammox in resisting starvation. GAC also facilitated anammox bacterial proliferation and expedited the restoration of anammox microbial community from a starved state to its initial-level. Metabolic function analyses unveiled that GAC improved the expression of genes involved in amino acid metabolism and sugar-nucleotide biosynthesis while promoted microbial cross-feeding, ultimately indicating the superior potential of GAC in stimulating more diverse metabolic networks in nutrient-depleted anammox consortia. This research sheds light on the microbial and metabolic mechanisms underlying GAC-mediated anammox system in low-substrate habitats.
Collapse
Affiliation(s)
- Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Amen Chuma
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chongjun Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
17
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Lin L, Zhang Y, Li YY. Enhancing start-up strategies for anammox granular sludge systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166398. [PMID: 37604370 DOI: 10.1016/j.scitotenv.2023.166398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been developed as one of the optimal alternatives to the conventional biological nitrogen removal process because of its high nitrogen removal capacity and low energy consumption. However, the slow growth rate of anammox bacteria and its high sensitivity to environmental changes have resulted in fewer anammox sludge sources for process start-up and a lengthy start-up period. Given that anammox microorganisms tend to aggregate, granular-anammox sludge is a frequent byproduct of the anammox process. In this study, we review state-of-the-art strategies for promoting the formation of anammox granules and the start-up of the anammox process based on the literature of the past decade. These strategies are categorized as the transformation of alternative sludge, the addition of accelerators, the introduction of functional carriers, and the implementation of other physical methods. In addition, the formation mechanism of anammox granules, the operational performance of various strategies, and their promotion mechanisms are introduced. Finally, prospects are presented to indicate the gaps in contemporary research and the potential future research directions. This review functions as a summary guideline and theoretical reference for the cultivation of granular-anammox sludge, the start-up of the anammox process, and its practical application.
Collapse
Affiliation(s)
- Lan Lin
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
19
|
Li D, Dong Y, Li S, Jiang P, Zhang J. Biological carbon promotes the recovery of anammox granular sludge after starvation. BIORESOURCE TECHNOLOGY 2023:129305. [PMID: 37311527 DOI: 10.1016/j.biortech.2023.129305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
This article adopts the strategy of adding biochar and increasing HRT to accelerate the performance and particle morphology recovery of anaerobic ammonia oxidation granular sludge stored at room temperature for 68 days. The results showed that biochar accelerated the death of heterotrophic bacteria, shortened the cell lysis and lag period of the recovery process by 4 days, and it only took 28 days for the nitrogen removal performance of the reactor to recover to the original level, and 56 days for re-granulation. Biochar promoted the secretion of EPS (56.96 mg gVSS-1), and the sludge volume and nitrogen removal performance of the bioreactor remain stable. Biochar also accelerated the growth of Anammox bacteria. The abundance of Anammox bacteria in the biochar reactor reached 38.76% on the 28th day. The high abundance of functional bacteria and the optimized community structure of biochar made system (Candidatus_Kuenenia: 38.30%) more risk-resistant than control reactor.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Yiwen Dong
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Pengfei Jiang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
20
|
Liu S, Yin M, Sun L, Jiao Y, Zheng Y, Yan L. Iron-loaded sludge biochar alleviates the inhibitory effect of tetracycline on anammox bacteria: Performance and mechanism. CHEMOSPHERE 2023; 333:138987. [PMID: 37209845 DOI: 10.1016/j.chemosphere.2023.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The anaerobic ammonia oxidation (anammox) process is sensitive to environmental pollutants, such as antibiotics. In this study, the harmful effect of tetracycline (TC) on the performance of an anammox reactor and the mitigation of TC inhibition by iron-loaded sludge biochar (Fe-BC) were studied by analyzing extracellular polymeric substances (EPS), microbial community structure and functional genes. The total inorganic nitrogen (TIN) removal rate of the TC reactor was reduced by 5.86% compared to that of the control group, while that of the TC + Fe-BC reactor improved by 10.19% compared to that of the TC reactor. Adding Fe-BC increased the activity of anammox sludge by promoting the secretion of EPS (including protein, humic acids and c-Cyts). The results of the enzymolysis experiment showed that protein can improve the activity of anammox sludge, while the ability of polysaccharide to improve the activity of anammox was related to the treated enzymes. In addition, Fe-BC alleviated the inhibitory effect of TC by mediating the anammox electron transfer process. Furthermore, Fe-BC increased the absolute abundance of hdh and hzsB by 2.77 and 1.18 times compared to the TC reactor and improved the relative abundance of Candidatus Brocadia in the absence of TC. The addition of Fe-BC is an effective way to alleviate the inhibitory effect of TC on the anammox process.
Collapse
Affiliation(s)
- Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
21
|
Tang L, Su C, Wang Q, Cao L, Xian Y, Wen S, Zhou Y, Gao S. Use of iron-loaded biochar to alleviate anammox performance inhibition under PFOA stress conditions: Integrated analysis of sludge characteristics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161178. [PMID: 36581267 DOI: 10.1016/j.scitotenv.2022.161178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The negative effects of perfluorooctanoic acid (PFOA) on biological nitrogen removal performance in wastewater treatment plants, are receiving increasing attention due to the widespread reporting of this issue. In this study, pomelo peel iron-loaded biochar (Fe-PBC) was added to an anammox bioreactor to alleviate the negative effects of PFOA. Results showed that the addition of Fe-PBC increased the ammonia and nitrite removal efficiencies from 77.7 ± 9.6 % and 79.5 ± 5.6 % to 94.45 ± 5.1 % and 95.9 ± 5.0 %, respectively. In addition, Fe-PBC promoted the removal of PFOA from wastewater, increasing the PFOA removal efficiency from 5.2 % to 29.2 ± 4.3 % from 100 to 200 days. The introduction of iron-loaded biochar into the anammox bioreactor increased the CO ratio by 13.64 % by 150 days. In addition, a CO fitting peak was detected in the Fe-PBC, indicating that the Fe-PBC was loaded with microorganisms. Microbial community analysis showed a decrease in the relative abundances of Proteobacteria and Nitrospirae from 31 % and 3.4 % to 16.8 % and 0.9 %, respectively, while the relative abundance of Planctomycetes increased from 26.8 % to 44.1 %. Metagenomic analysis found that the functional genes hzsB and hdh increased from 98,666 ± 11,400 and 3190 ± 460 to 119,333 ± 15,534 and 138,650 ± 11,233 copy numbers/MLSS. The increase in anammox biomass may be attributed to the presence of iron, an essential element for the synthesis of key anammox enzyme. Furthermore, iron was also associated with the enhanced extracellular electron transfer in the anammox system induced by Fe-PBC.
Collapse
Affiliation(s)
- Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Qing Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linlin Cao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shitong Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shu Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
22
|
Wang P, Lu B, Liu X, Chai X. Accelerating the granulation of anammox sludge in wastewater treatment with the drive of "micro-nuclei": A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160238. [PMID: 36402322 DOI: 10.1016/j.scitotenv.2022.160238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Anammox granule sludge (AnGS) has great potential in the field of wastewater nitrogen removal, but its development and promotion have been limited by the slow granulation speed and fragile operating stability. Based on the reviews about the AnGS formation mechanism in this paper, "micro-nuclei" was found to play an important role in the granulation of AnGS, and adding "micro-nuclei" directly into the reactor may be an efficient way to accelerate the formation of AnGS. Then, accelerating AnGS granulation with inert particles, multivalent positive ions, and broken granule sludge as "micro-nuclei" was summarized and discussed. Among inert particles, iron-based particles may be a more advantageous candidate for "micro-nuclei" due to their ability to provide attachment sites and release ferric/ferrous ions. The precipitations of multivalent positive ions are also a potential option for "micro-nuclei" that can be generated in-situ, but a suitable dosing strategy is necessary. About broken granular sludge, the broken active AnGS may have advantages in terms of anaerobic ammonium oxidation bacteria-affinity and granulation speed, while using inactive granular sludge as "micro-nuclei" can avoid interfering bacterial invasion and has a higher cost performance than broken active AnGS. In addition, possible research directions for accelerating the formation of AnGS by dosing "micro-nuclei" were highlighted. This paper is intended to provide a possible pathway for the rapid start-up of AnGS systems, and references for the optimization and promotion of the AnGS process.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xiaoji Liu
- China Energy Conservation and Environmental Protection Group (CECEP) Feixi WTE Co., Ltd., Anhui 230000, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
23
|
Zhang L, Chen Z, Zhu S, Li S, Wei C. Effects of biochar on anaerobic treatment systems: Some perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128226. [PMID: 36328170 DOI: 10.1016/j.biortech.2022.128226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.
Collapse
Affiliation(s)
- Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhuokun Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
24
|
Yu Y, Guo H, Zhong Z, Lu Z, Zhu X, Li Z, Chang Z. Enhanced removal of tetrabromobisphenol A by Burkholderia cepacian Y17 immobilized on biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114450. [PMID: 38321669 DOI: 10.1016/j.ecoenv.2022.114450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Biochar-immobilized bacteria have been widely used to remove organic pollutants; however, the enhanced effect of biochar-immobilized bacteria on tetrabromobisphenol A (TBBPA) removal has not been fully investigated and the removal mechanism remains unclear. In this study, a bacterial strain with high TBBPA degradation ability, Burkholderia cepacian Y17, was isolated from an e-waste disassembly area, immobilized with biochar, and used for the removal of TBBPA. Comparisons were performed of the factors affecting the immobilization and TBBPA removal efficiency, including the biochar preparation temperature, immobilization temperature, and pH. The highest 7-day TBBPA removal efficiency by immobilized bacteria was observed with the most suitable biochar preparation temperature (BC500) and an immobilization pH and temperature of 7 and 35 °C, respectively. The TBBPA removal efficiency reached 59.37%, which was increased by 30.23% and 15.88% compared to that of free and inactivated immobilized Y17, respectively. The suitable biochar preparation temperature BC500, immobilization temperature of 35 °C, and neutral pH of 7 increased the bacterial population and extracellular polymer concentration, which facilitated bacterial immobilization on biochar and promoted TBBPA removal. In this case, the high immobilized bacteria concentration (4.62 × 108 cfu∙g-1) and protein and polysaccharide contents (28.43 and 16.16 mg·g-1) contributed to the removal of TBBPA by facilitating TBBPA degradation. The main TBBPA degradation processes by BC500-immobilized Y17 involved debromination, β-scission, demethylation, O-methylation, hydroxylation, and hydroxyl oxidation. This study proposes a method for preparing immobilized bacteria for TBBPA removal and enriches the microbial degradation technology for TBBPA.
Collapse
Affiliation(s)
- Yunjiang Yu
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing 404000, China
| | - Haobo Guo
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing 404000, China
| | - Zijuan Zhong
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyong Lu
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaohui Zhu
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Zhenchi Li
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Zhaofeng Chang
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China.
| |
Collapse
|
25
|
Xie J, Cao Q, An T, Mabruk A, Xie J, Chang Y, Guo M, Chen C. Small biochar addition enhanced anammox granular sludge system for practical wastewater treatment: Performance and microbial community. BIORESOURCE TECHNOLOGY 2022; 363:127749. [PMID: 35940326 DOI: 10.1016/j.biortech.2022.127749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (Anammox) granular sludge (AnGS) has poor strength and is prone to disintegration under complex environmental conditions, especially in the presence of complex organic carbon, which renders the Anammox process instable. Herein, with a mixture of landfill leachate and domestic sewage as wastewater, the effect on the properties of AnGS with two small particle size (0.1-0.2 mm) biochars (coconut and peach biochars) addition were investigated at different COD concentrations (150 mg·L-1, 200 mg·L-1, and 250 mg·L-1), as well as at different BOD/TN (B/N) (0.3 and 0.5). Results showed that the nitrogen removal efficiencies decreased from 89 % to 72 % as the COD concentration increased by 100 mg·L-1, while peach biochar reactor had better nitrogen removal performance. Excessive organic carbon supply inhibits AnAOB proliferation and B/N had the most significant effect on AnAOB (p < 0.05). The Polymerase Chain Reaction (PCR) indicated peach biochar reactor get higher activity of anammox-related functional genes (hzsA, hdh).
Collapse
Affiliation(s)
- Junxiang Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qianfei Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianyi An
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Adams Mabruk
- School of Civil Engineering, National University of Ireland, Galway, GA, Ireland
| | - Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Menglei Guo
- Qingyuan County Sanitation Department, Lishui 323800, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
26
|
An T, Chang Y, Xie J, Cao Q, Liu Y, Chen C. Deciphering physicochemical properties and enhanced microbial electron transfer capacity by magnetic biochar. BIORESOURCE TECHNOLOGY 2022; 363:127894. [PMID: 36067893 DOI: 10.1016/j.biortech.2022.127894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Magnetic biochar is important for improving the electron transfer capacity (ETC) of microorganisms in wastewater treatment. In this study, three magnetic biochar under different pyrolysis temperatures (300, 500 and 700 °C) were prepared by co-precipitation, and their characteristics and impacts on mediating microbial ETC were investigated. Results indicated that magnetic biochar had a higher capacitance and conductivity than pyrolytic biochar, with the largest specific capacitance of 14.7F/g for FCS700 (magnetic biochar prepared at 700 °C). The addition of magnetic biochar could improve the nitrogen removal efficiency of a sludge-biochar system. The electron transfer resistance (Rct) of magnetic biochar was lower than pyrolytic biochar by 25.5 % (300 °C), 19.7 % (500 °C), and 11.6 % (700 °C), respectively. The structure of the microbial community in the sludge-biochar system differed significantly. Spearman correlation suggested that the electrochemical properties of biochar were an important factor affecting the structure of the microbial community.
Collapse
Affiliation(s)
- Tianyi An
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Junxiang Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Qianfei Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yuxue Liu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| |
Collapse
|
27
|
Zhang L, Lan S, Hao S, Dong T, Peng Y, Yang J. Microbial driving mechanism for simultaneous removal of nitrogen and phosphorus in a pure anammox reactor under ferrous ion exposure. BIORESOURCE TECHNOLOGY 2022; 362:127844. [PMID: 36031131 DOI: 10.1016/j.biortech.2022.127844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms of Fe2+ on nitrogen and phosphorus removal and functional bacterial competition in anammox systems was investigated. Under 0.12 mM Fe2+, the performance of nitrogen and phosphorus removal increased by 10.08 % and 151.91 %, respectively, compared with the control stage. Phosphorus removal was achieved through extracellular polymeric substance (EPS) induced biomineralization to form Fe-P minerals, and functional group COC in EPS played a critical role. T-EPSs was the major nucleation site due to it maintaining the supersaturated state (saturation index > 0) of Fe-P minerals for a long time. Population succession showed that Fe2+ weakened the competition between heterotrophic denitrifier (Denitrasoma) and anammox microbe (Candidatus Brocadia) for space and substrates, which was favorable for the enrichment of anammox biomass. Moreover, the variation in gene abundance (such as Hao, Cyt c, and Nir) indicated that Fe2+ improved electron behaviors (generation, transport, and consumption) during the nitrogen metabolism of anammox systems.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuang Lan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd., Shandong 274200, China
| |
Collapse
|
28
|
Chen H, Zhang Z, Jin R, Yao J. Deciphering the short-term deactivation mechanism of the anammox performance under calcium stress. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Wang W, Wang T, Liu Q, Wang H, Xue H, Zhang Z, Wang Y. Biochar-mediated DNRA pathway of anammox bacteria under varying COD/N ratios. WATER RESEARCH 2022; 212:118100. [PMID: 35074671 DOI: 10.1016/j.watres.2022.118100] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Coupling dissimilatory nitrate reduction to ammonium (DNRA) pathway with anammox process has a prominent advantage in enhancement of nitrogen removal. However, the anammox bacteria driven-DNRA is difficult to proceed at normal autotrophic circumstance. Herein, for the first time, biochar (prepared by bamboo) was used as a mediator to stimulate the DNRA pathway of anammox bacteria under varying chemical oxygen demand (COD) to nitrogen (COD/N) ratios (0.1-0.7), and the underlying stimulation mechanism was elucidated by metagenomics sequencing analysis. Results showed that biochar addition (10 g/L) stimulated DNRA pathway of anammox bacteria at low COD/N ratios (0.1-0.5), thus enhancing the nitrogen removal efficiency (NRE) of the anammox system by 7.2%-16.4% and 0.9%-3.0%, respectively, compared to that of tests without sodium acetate and biochar (p<0.05). This enhancement was attributed to the improved extracellular electron accepting capacity of anammox biomass by biochar. The easily obtained electrons (from sodium acetate) further increased the relative abundances of anammox-related (hzs) and complete DNRA-related (napAB and nrfAH) genes (p<0.05), which catalyze electron-consuming reactions. The stimulated anammox pathway and DNRA pathway further increased the specific anammox activity and the relative abundance of anammox bacteria (especially Ca. Jettenia) by 15.5%-23.0% and 11.3%-82.6% compared with that without biochar, respectively. Metagenomics sequencing also revealed that anammox bacteria, Ca. Jettenia caeni, was the main bacteria for DNRA metabolism in this system. Our findings reveal that biochar could selectively stimulate DNRA pathway of anammox bacteria affiliated by a low amount of carbon, which provides a novel strategy to improve the nitrogen removal of anammox-based processes.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Qinghua Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zhuoran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|