1
|
Anbarasu K, Thanigaivel S, Sathishkumar K, Alam MM, Al-Sehemi AG, Devarajan Y. Harnessing Artificial Intelligence for Sustainable Bioenergy: Revolutionizing Optimization, Waste Reduction, and Environmental Sustainability. BIORESOURCE TECHNOLOGY 2025; 418:131893. [PMID: 39608419 DOI: 10.1016/j.biortech.2024.131893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Assessing the mutual benefits of artificial intelligence (AI) and bioenergy systems, to promote efficient and sustainable energy production. By addressing issues with conventional bioenergy techniques, it highlights how AI is revolutionising optimisation, waste reduction, and environmental sustainability. With its capacity for intelligent decision-making, predictive modelling, and adaptive controls to maximise bioenergy processes, artificial intelligence (AI) emerges as a crucial catalyst for overcoming these obstacles. The focus on particular uses of AI to enhance bioenergy systems. Algorithms for machine learning are essential for forecasting biomass properties, selecting feedstock optimally, and enhancing energy conversion procedures in general. Enhancing real-time adaptability and guaranteeing optimal performance under a range of operational conditions is made possible by the integration of AI-driven monitoring and control systems. Additionally, it looks at how AI supports precision farming methods in bioenergy settings, enhancing crop management strategies and increasing the output of biofuels. AI-guided autonomous systems help with precision planting, harvesting, and processing, which reduces resource use and maximises yield. AI's contribution to advanced biofuel technology by using data analytics and computational models, it can hasten the creation of new, more effective bioenergy sources. AI-driven grid management advancements could guarantee the smooth integration of bioenergy into current energy infrastructures. The revolutionary role that artificial intelligence (AI) has played in bioenergy systems, making a strong case for the incorporation of AI technologies to drive the global energy transition towards a more ecologically conscious and sustainable future.
Collapse
Affiliation(s)
- K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602 105, India
| | - S Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - K Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602 105, India
| | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, PO Box 9004, Abha 61413, Kingdom of Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, PO Box 9004, Abha 61413, Kingdom of Saudi Arabia
| | - Yuvarajan Devarajan
- Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602 105, India.
| |
Collapse
|
2
|
Liu J, Liu H, He C, Xiao H, Jin M, Yao H. Correlation between sewage sludge pore structure evolution and water filtration performance: Effect of thermal hydrolysis with or without carbonaceous skeleton-assisted. WATER RESEARCH 2024; 268:122578. [PMID: 39423784 DOI: 10.1016/j.watres.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Municipal sewage sludge contains a high water content and strong hydrophilicity, making mechanical dewatering a critical step in sludge treatment and disposal. To clarify the collapse of filtration channels within the sludge cake under high pressure and to develop more precise targeted conditioning methods, this study focused on the direct correlation between pore structure evolution and sludge dewatering performance. A self-designed online system was used to compare the dewatering processes of raw sludge, thermal hydrolyzed (TH) sludge, and carbonaceous skeleton-assisted thermal hydrolyzed (CSkel-TH) sludge. In-depth analysis was conducted on the structure scanning data of the filter cake at different time intervals and the corresponding filtrate mass data. The results showed that during the press filtration process, the raw sludge gradually transformed into a filter cake, with larger pores trapping the water. In the upper and bottom layers, regions with a porosity higher than 10 % appeared, forming a "water-locking layer" even with continued pressure, it became impossible to remove additional water. After separate hydrolysis, the porosity and pore connectivity of the sludge decreased, and the thickness of the "water-locking layer" increased as press filtration progressed, inhibiting water discharge and making cake formation difficult. Following CSkel-TH treatment, the number of pores with diameters ranging from tens to over a hundred micrometers increased, and the connectivity between pores was enhanced. In this case, the channels formed by interconnected small pores continuously transported the water trapped in the large pores outward, facilitating water discharge. This work provided a basis for further targeted regulation of pore structures to enhance the effectiveness of high-pressure dewatering of sludge.
Collapse
Affiliation(s)
- Jinxin Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huan Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Han Xiao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minghao Jin
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Yao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Manali A, Pothoulaki A, Gikas P. The state of the art in biosolids gasification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121385. [PMID: 38875979 DOI: 10.1016/j.jenvman.2024.121385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Biosolids is a by-product of wastewater treatment that needs to be further processed. Traditional biosolids treatment and disposal technologies are inefficient under the current demanding standards. Thermochemical conversion technologies have been employed for biosolids management, with gasification being the most promising due to the production of syngas, a gaseous product that may be used for the production of energy or high-added-value substances through reforming reactions. Gasification is a complex thermochemical process; its performance and yield are strongly affected by the type of feedstock, but also by the system configuration and process conditions. Gasification usually takes place at temperatures between 700 and 1,200 °C, but it may also occur at lower temperatures (above 375 °C: supercritical water gasification) or at higher temperatures (above 3,000 °C: plasma gasification). The present review briefly presents the biosolids management practices, focusing on the gasification process and syngas treatment, while the state of the art in biosolids gasification is critically presented and discussed. A number of types of gasifiers (more frequently fluidized bed, but also fixed bed, rotary kiln, downdraft, etc.), gasifying agents, and operational conditions have been used for biosolids gasification. The key results of the study regarding biosolids gasification are: (i) the increase of temperature and equivalence ratio enhances the gasification performance, resulting in high syngas yield and quality, high cold gas efficiency, and low tar and char production; (ii) the calorific value of the obtained syngas tends to decrease with the increase of equivalence ratio; and (iii) the use of catalysts has been proven to substantially improve the gasification performance, compared to non-catalytic gasification. The proper selection of technical parameters determines the effectiveness of biosolids gasification, which is considered as a promising technology for the energy recovery from biosolids, so to upgrade wastewater treatment and improve environmental quality.
Collapse
Affiliation(s)
- Anthoula Manali
- Design of Environmental Processes Laboratory, School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
| | - Aikaterini Pothoulaki
- Design of Environmental Processes Laboratory, School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
| | - Petros Gikas
- Design of Environmental Processes Laboratory, School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
| |
Collapse
|
4
|
Rasaq WA, Okpala COR, Igwegbe CA, Białowiec A. Catalyst-Enhancing Hydrothermal Carbonization of Biomass for Hydrochar and Liquid Fuel Production-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2579. [PMID: 38893844 PMCID: PMC11173454 DOI: 10.3390/ma17112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The research impact of catalysts on the hydrothermal carbonization (HTC) process remains an ongoing debate, especially regarding the quest to enhance biomass conversion into fuels and chemicals, which requires diverse catalysts to optimize bio-oil utilization. Comprehensive insights and standardized analytical methodologies are crucial for understanding HTC's potential benefits in terms of biomass conversion stages. This review seeks to understand how catalysts enhance the HTC of biomass for liquid fuel and hydrochar production, drawing from the following key sections: (a) catalyst types applied in HTC processes; (b) biochar functionality as a potential catalyst; (c) catalysts increasing the success of HTC process; and (d) catalyst's effect on the morphological and textural character of hydrochar. The performance of activated carbon would greatly increase via catalyst action, which would progress the degree of carbonization and surface modification, alongside key heteroatoms. As catalytic HTC technology advances, producing carbon materials for thermochemical activities will become more cost-effective, considering the ever-growing demands for high-performance thermochemical technologies.
Collapse
Affiliation(s)
- Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
| | - Charles Odilichukwu R. Okpala
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA;
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
| |
Collapse
|
5
|
Strugała-Wilczek A, Basa W, Pankiewicz-Sperka M, Xu D, Duan P, Hao B, Wang Y, Leng L, Yang L, Fan L, Kapusta K. Distribution characteristics and migration pathways of metals during hydrothermal liquefaction of municipal sewage sludge in the presence of various catalysts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171023. [PMID: 38367729 DOI: 10.1016/j.scitotenv.2024.171023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
A series of hydrothermal liquefaction (HTL) experiments with two different samples of municipal sewage sludge (MSS) were conducted at 350 °C for 30 min residence time in a high pressure batch reactor. The main aim of the study was to explore the distribution and migration pathways of a broad range of metals and metalloids in the HTL products (bio-oil, char and aqueous phase) obtained in the presence of various homogeneous and heterogeneous catalysts (Na2CO3, Li2CO3, K2CO3, Ba(OH)2, Fe2O3, CeO2, NiMo/MoO3, MoS2, Ni/NiO, SnO2, FeS). The elements under study included 16 environmentally significant metals and metalloids (As, B, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sn, Zn and Hg). The study showed that the quantitative migration of the tested metals and metalloids to the particular HTL products, relative to their initial content in the raw sludge, is different for the individual elements. Most metals exhibited a particularly strong affinity to the solid fraction (biochar). In the obtained HTL bio-oils, all tested elements were identified, except of Cd. It was also found that B and As have high affinity to the aqueous phase. A direct effect of catalysts on the contents of some elements in the products was also proved by the study, e.g. increased concentration of Cr in the biochar when Fe2O3 was used as a process catalyst. Due to the wide scope of the tested elements and broad range of catalyst used, the results obtained represent a unique and comprehensive set of environmental data compared to similar HTL studies previously conducted for MSS.
Collapse
Affiliation(s)
| | - Wioleta Basa
- GIG, Department of Energy Saving and Air Protection, Plac Gwarków 1, 40-166 Katowice, Poland
| | | | - Donghai Xu
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Botian Hao
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanyuan Wang
- Shanghai Key Laboratory of Green Chemistry and Green Process, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Le Yang
- School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Krzysztof Kapusta
- GIG, Department of Energy Saving and Air Protection, Plac Gwarków 1, 40-166 Katowice, Poland.
| |
Collapse
|
6
|
Alexis Parra-Orobio B, Soto-Paz J, Ricardo Oviedo-Ocaña E, Vali SA, Sánchez A. Advances, trends and challenges in the use of biochar as an improvement strategy in the anaerobic digestion of organic waste: a systematic analysis. Bioengineered 2023; 14:2252191. [PMID: 37712696 PMCID: PMC10506435 DOI: 10.1080/21655979.2023.2252191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 09/16/2023] Open
Abstract
A recently strategy applied to anaerobic digestion (AD) is the use of biochar (BC) obtained from the pyrolysis of different organic waste. The PRISMA protocol-based review of the most recent literature data from 2011-2022 was used in this study. The review focuses on research papers from Scopus® and Web of Knowledge®. The review protocol used permits to identify 169 articles. The review indicated a need for further research in the following challenges on the application of BC in AD: i) to increase the use of BC in developing countries, which produce large and diverse amounts of waste that are the source of production of this additive; ii) to determine the effect of BC on the AD of organic waste under psychrophilic conditions; iii) to apply tools of machine learning or robust models that allow the process optimization; iv) to perform studies that include life cycle and technical-economic analysis that allow identifying the potential of applying BC in AD in large-scale systems; v) to study the effects of BC on the agronomic characteristics of the digestate once it is applied to the soil and vi) finally, it is necessary to deepen in the effect of BC on the dynamics of nitrogen and microbial consortia that affect AD, considering the type of BC used. In the future, it is necessary to search for new solutions in terms of the transport phenomena that occurs in AD with the use of BC using robust and precise mathematical models at full-scale conditions.
Collapse
Affiliation(s)
- Brayan Alexis Parra-Orobio
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jonathan Soto-Paz
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
- Facultad de Ingeniería, Grupo de Investigación En Amenazas, Vulnerabilidad Y Riesgos a Fenómenos Naturales, Universidad de Investigación y Desarrollo, Bucaramanga, Colombia
| | - Edgar Ricardo Oviedo-Ocaña
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Seyed Alireza Vali
- Department of Chemical, Biological and Environmental Engineering, Composting Research Group, Autonomous University of Barcelona, Barcelona, Spain
| | - Antoni Sánchez
- Department of Chemical, Biological and Environmental Engineering, Composting Research Group, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Stefanelli E, Vitolo S, Di Fidio N, Puccini M. Tailoring the porosity of chemically activated carbons derived from the HTC treatment of sewage sludge for the removal of pollutants from gaseous and aqueous phases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118887. [PMID: 37678019 DOI: 10.1016/j.jenvman.2023.118887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
The management of sewage sludge is currently an open issue due to the large volume of waste to be treated and the necessity to avoid incineration or landfill disposal. Hydrothermal carbonization (HTC) has been recognized as a promising thermochemical technique to convert sewage sludge into value-added products. The hydrochar (HC) obtained can be suitable for environmental application as fuel, fertilizer, and sorbent. In this study, activated hydrochars (AHs) were prepared from sewage sludge through HTC followed by chemical activation with potassium hydroxide (KOH) and tested for the removal of pollutants in gaseous and aqueous environments, investigating carbon dioxide (CO2) and ciprofloxacin (CIP) adsorption capacity. The effects of activation temperature (550-750 °C) and KOH/HC impregnation ratio (1-3) on the produced AHs morphology and adsorption capacity were studied by Response Surface Methodology (RSM). The results of RSM analysis evidenced a maximum CO2 uptake of 71.47 mg/g for mild activation conditions (600-650 °C and KOH/HC = 1 ÷ 2), whereas the best CIP uptake of 628.61 mg/g was reached for the most severe conditions (750 °C, KOH/HC = 3). The prepared AHs were also applied for the removal of methylene blue (MB) from aqueous solutions, and the MB uptake results were used for estimating the specific surface area of AHs. High surface areas up to 1902.49 m2/g were obtained for the highest activation temperature and impregnation ratio investigated. Predictive models of CO2 and CIP uptake were developed by RSM analysis, and the optimum activation conditions for maximizing the adsorption performance together with high AH yield were identified: 586 °C and KOH/HC ratio = 1.34 for maximum yield (26.33 %) and CO2 uptake (67.31 mg/g); 715 °C and KOH/HC ratio = 1.78 for maximum yield (18.75 %) and CIP uptake (370.77 mg/g). The obtained results evidenced that chemical activation of previously HTC-treated sewage sludge is a promising way to convert waste into valuable low-cost adsorbents.
Collapse
Affiliation(s)
- Eleonora Stefanelli
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Sandra Vitolo
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Nicola Di Fidio
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Monica Puccini
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy.
| |
Collapse
|
8
|
Wu S, Wang Q, Fang M, Wu D, Cui D, Pan S, Bai J, Xu F, Wang Z. Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165327. [PMID: 37419347 DOI: 10.1016/j.scitotenv.2023.165327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
With the improvement of living standards, food waste (FW) has become one of the most important organic solid wastes worldwide. Owing to the high moisture content of FW, hydrothermal carbonization (HTC) technology that can directly utilize the moisture in FW as the reaction medium, is widely used. Under mild reaction conditions and short treatment cycle, this technology can effectively and stably convert high-moisture FW into environmentally friendly hydrochar fuel. In view of the importance of this topic, this study comprehensively reviews the research progress of HTC of FW for biofuel synthesis, and critically summarizes the process parameters, carbonization mechanism, and clean applications. Physicochemical properties and micromorphological evolution of hydrochar, hydrothermal chemical reactions of each model component, and potential risks of hydrochar as a fuel are highlighted. Furthermore, carbonization mechanism of the HTC treatment process of FW and the granulation mechanism of hydrochar are systematically reviewed. Finally, potential risks and knowledge gaps in the synthesis of hydrochar from FW are presented and new coupling technologies are pointed out, highlighting the challenges and prospects of this study.
Collapse
Affiliation(s)
- Shuang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China.
| | - Minghui Fang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Dongyang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Da Cui
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Shuo Pan
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Jingru Bai
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Faxing Xu
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| | - Zhenye Wang
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| |
Collapse
|
9
|
Godvin Sharmila V, Kumar Tyagi V, Varjani S, Rajesh Banu J. A review on the lignocellulosic derived biochar-based catalyst in wastewater remediation: Advanced treatment technologies and machine learning tools. BIORESOURCE TECHNOLOGY 2023; 387:129587. [PMID: 37549718 DOI: 10.1016/j.biortech.2023.129587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Wastewater disposal in the ecosystem affects aquatic and human life, which necessitates the removal of the contaminants. Eliminating wastewater contaminants using biochar produced through the thermal decomposition of lignocellulosic biomass (LCB) is sustainable. Due to its high specific surface area, porous structure, oxygen functional groups, and low cost, biochar has emerged as an alternate contender in catalysis. Various innovative advanced technologies were combined with biochar for effective wastewater treatment. This review examines the use of LCB for the synthesis of biochar along with its activation methods. It also elaborates on using advanced biochar-based technologies in wastewater treatment and the mechanism for forming oxidizing species. The research also highlights the use of machine learning in pollutant removal and identifies the obstacles of biochar-based catalysts in both real-time and cutting-edge technologies. Probable and restrictions for further exploration are discussed.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam 629171, Tamil Nadu, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India.
| |
Collapse
|
10
|
Guo G, Lin L, Jin F, Mašek O, Huang Q. Application of heavy metal immobilization in soil by biochar using machine learning. ENVIRONMENTAL RESEARCH 2023; 231:116098. [PMID: 37172676 DOI: 10.1016/j.envres.2023.116098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Biochar application is a promising strategy for the immobilization of heavy metal (HM)-contaminated soil, while it is always time-consuming and labor-intensive to clarify key influenced factors of soil HM immobilization by biochar. In this study, four machine learning algorithms, namely random forest (RF), support vector machine (SVR), Gradient boosting decision trees (GBDT), and Linear regression (LR) are employed to predict the HMimmobilization ratio. The RF was the best-performance ML model (Training R2 = 0.90, Testing R2 = 0.85, RMSE = 4.4, MAE = 2.18). The experiment verification based on the optimal RF model showed that the experiment verification was successful, as the results were comparable to the RF modeling results with a prediction error<20%. Shapley additive explanation and partial least squares path model method were used to identify the critical factors and direct and indirect effects of these features on the immobilization ratio. Furthermore, independent models of four HM (Cd, Cu, Pb, and Zn) also achieved better model prediction performance. Feature importance and interactions relationship of influenced factors for individual HM immobilization ratio was clarified. This work can provide a new insight for HM immobilization in soils.
Collapse
Affiliation(s)
- Genmao Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Linyi Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Fangming Jin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| |
Collapse
|
11
|
Pecchi M, Baratieri M, Maag AR, Goldfarb JL. Uncovering the transition between hydrothermal carbonization and liquefaction via secondary char extraction: A case study using food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:281-289. [PMID: 37329834 DOI: 10.1016/j.wasman.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/20/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Despite the ability to perform both processes in the same reactor, hydrothermal carbonization (HTC) and hydrothermal liquefaction (HTL) are considered two distinct processes differentiated by their reaction temperatures. As temperatures increase from the less severe HTC range into the HTL regime, the product distribution progressively favors an organic bio-oil phase relative to solid hydrochar. Solvents are commonly used to extract bio-oil from the solid residues produced during HTL, and to separate the amorphous secondary char from the coal-like primary char of HTC hydrochars. This suggests secondary char is a HTL biocrude precursor. Lipid-rich food waste was hydrothermally processed between 190 and 340 °C, spanning HTC to HTL conditions. Higher temperatures produce more gas, less liquid, and similar amounts of a progressively less oxygenated hydrochars, suggesting a gradual transition from HTC to HTL. However, analyses of ethanol-separated primary chars and secondary chars tell a different story. While the primary char is progressively more carbonized with temperature, the secondary char composition sharply changes at 250 °C. That is, lipid hydrolysis begins around 220 °C, but proceeds rather completely at 250 °C and above. A lower HTL temperature reduces the energy cost of the hydrothermal process, yet enables full lipid hydrolysis into long chain fatty acids while minimizing recondensation and repolymerization of fatty acids onto the primary char and their subsequent amidation. This maximizes the conversion of lipid-rich feedstocks into liquid fuel precursors with up to 70 % energy recovery.
Collapse
Affiliation(s)
- Matteo Pecchi
- Department of Biological & Environmental Engineering, Cornell University, USA; Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Alex R Maag
- Department of Biological & Environmental Engineering, Cornell University, USA; Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jillian L Goldfarb
- Department of Biological & Environmental Engineering, Cornell University, USA.
| |
Collapse
|
12
|
Lyu H, Hu K, Wu Z, Shen B, Tang J. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163011. [PMID: 36965728 DOI: 10.1016/j.scitotenv.2023.163011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
13
|
Allende S, Brodie G, Jacob MV. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review. ENVIRONMENTAL RESEARCH 2023; 226:115619. [PMID: 36906271 DOI: 10.1016/j.envres.2023.115619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The agricultural industry faces a permanent increase in waste generation, which is associated with the fast-growing population. Due to the environmental hazards, there is a paramount demand for generating electricity and value-added products from renewable sources. The selection of the conversion method is crucial to develop an eco-friendly, efficient and economically viable energy application. This manuscript investigates the influencing factors that affect the quality and yield of the biochar, bio-oil and biogas during the microwave pyrolysis process, evaluating the biomass nature and diverse combinations of operating conditions. The by-product yield depends on the intrinsic physicochemical properties of biomass. Feedstock with high lignin content is favourable for biochar production, and the breakdown of cellulose and hemicellulose leads to higher syngas formation. Biomass with high volatile matter concentration promotes the generation of bio-oil and biogas. The pyrolysis system's conditions of input power, microwave heating suspector, vacuum, reaction temperature, and the processing chamber geometry were influence factors for optimising the energy recovery. Increased input power and microwave susceptor addition lead to high heating rates, which were beneficial for biogas production, but the excess pyrolysis temperature induce a reduction of bio-oil yield.
Collapse
Affiliation(s)
- Scarlett Allende
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Graham Brodie
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- Electronics Material Lab, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
14
|
Li J, Pan L, Li Z, Wang Y. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163895. [PMID: 37146809 DOI: 10.1016/j.scitotenv.2023.163895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) in biochar derived from pyrolysis of sludge or manure is the main issue for its large-scale application in soils for carbon sequestration. However, there is a paucity of efficient approaches to predict and comprehend the HM migration during pyrolysis for preparing low HM-contained biochar. Herein, the data on the feedstock information (FI), additive, total concentration of feedstock (FTC) of HM Cr and Cd, and pyrolysis condition, were extracted from the literature, to predict total concentration (TC) and retention rate (RR) of Cr and Cd in sludge/manure biochar using ML for mapping their migration during pyrolysis. Two datasets for Cr and Cd were compiled with 388 and 292 data points from 48 and 37 peer-review papers. The results indicated that the TC and RR of Cr and Cd could be predicted by the Random Forest model with test R2 of 0.74-0.98. Their TC and RR in biochar were dominated by the FTC and FI, respectively; while pyrolysis temperature was the most important to Cd RR. Moreover, potassium-based inorganic additives decreased the TC and RR of Cr while increased those of Cd. The predictive models and insights provided by this work could aid the understanding of HM migration during manure and sludge pyrolysis and guide the preparation of low HM-contained biochar.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China.
| | - Lanjia Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Engineering Laboratory for Recycling Technology of Municipal Solid Wastes, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
15
|
Ge H, Zheng J, Xu H. Advances in machine learning for high value-added applications of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 369:128481. [PMID: 36513310 DOI: 10.1016/j.biortech.2022.128481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Lignocellulose can be converted into biofuel or functional materials to achieve high value-added utilization. Biomass utilization process is complex and multi-dimensional. This paper focuses on the biomass conversion reaction conditions, the preparation of biomass-based functional materials, the combination of biomass conversion and traditional wet chemistry, molecular simulation and process simulation. This paper analyzes the mechanism, advantages and disadvantages of important machine learning (ML) methods. The application examples of ML in different aspects of high value utilization of lignocellulose are summarized in detail. The challenges and future prospects of ML in this field are analyzed.
Collapse
Affiliation(s)
- Hanwen Ge
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jun Zheng
- Munich University of Technology, Arcisstraße 21, 80333, München, Germany
| | - Huanfei Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
16
|
Wang Q, Wu S, Cui D, Zhou H, Wu D, Pan S, Xu F, Wang Z. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158034. [PMID: 35970457 DOI: 10.1016/j.scitotenv.2022.158034] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 05/17/2023]
Abstract
The organic solid waste (OSW) is a potential resource that loses its original value in people's daily production process. It can be used for secondary energy utilization through hydrothermal technology, which is similar to artificially simulating the natural coalification process. Co-hydrothermal carbonization (co-HTC) is a promising thermochemical conversion pathway, and advanced mechanisms can eliminate the drawbacks of single-feedstock hydrothermal carbonization (HTC). The preparation and production process of hydrochar can solve the problems of energy crisis and environmental pollution. This paper comprehensively reviews the key mechanisms of co-HTC to prepare solid fuels, and reviews the development process and practical application of hydrothermal technology. To begin with, the physical and chemical properties and combustion performance of co-hydrochar depend on the production method, process parameters, and selection of raw materials. The co-hydrochar usually has a higher HHV and a low atomic ratio of H/C and O/C, which improves combustion performance. Subsequently, the transformation path of the hydrothermal process of lignocellulosic and protein OSW was comprehensively expounded, and the reaction mechanism of the co-HTC of the two OSWs was effectively proposed. The effect of the ratio of different raw materials on the synergistic effect of co-HTC was also analyzed. Furthermore, the typical advantages and disadvantages of environmental safety, technical economy, and practical application in the co-HTC process are expounded. All in all, this review provides some foundations and new directions for the co-HTC of OSWs to prepare potential fuel. In addition, several prospects for the development and integrated application of co-HTC are presented in the future.
Collapse
Affiliation(s)
- Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China.
| | - Shuang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Da Cui
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Huaiyu Zhou
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Dongyang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Shuo Pan
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Faxing Xu
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, PR China
| | - Zhenye Wang
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, PR China
| |
Collapse
|
17
|
Fedyaeva ON, Artamonov DO, Vostrikov AA. Oxidation of municipal sewage sludge, chicken and swine manure in the water-oxygen fluid flow under uniform heating. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Abstract
The continuing increase in population means an increasing demand for products and services, resulting in huge amounts of waste being discharged into the environment. Therefore, waste management requires the application of new and innovative solutions. One new approach involves converting waste into value-added chemicals and products for use directly or after further processing into higher value-added products. These processes include biological, thermochemical, and physiochemical methods. Furthermore, biosolids, including treated sewage sludge (SS), represent one of the major by-products of human activities, constituting a major environmental hazard and requiring the treatment of contaminated wastewater with associated health hazards. Sustainable solutions to manage and dispose of this type of waste are required. In this review, pyrolysis, a thermochemical conversion technology, is explored to convert biosolids to biochars. The review addresses previous studies, by providing a critical discussion on the present status of biosolids processing, the potential for energy recovery from the pyrolysis bio-oil and biogas, and finally some benefits of the production of biochars from biosolids.
Collapse
|
19
|
Abstract
The growth of the world population has increased the production of wastes. These are generally incinerated or deposited in outdoor landfills, which impacts the environment and affects human health. A technique that allows to reuse of wastes and diminishes adverse effects on the environment is pyrolysis. Through this technique, a material known as Biochar (BC) is produced, which has proven to have interesting physical-chemical properties for it to be used as an asphalt modifier, and simultaneously, helps to mitigate negative impacts on the environment. The foregoing article presents a bibliographical review on the use of BC as a modifier for asphalt binders and asphalt mixes. This has the purpose of becoming a starting point for future research efforts. In the reviewed literature, there was no review found on this topic. In general terms, BC increases the performance of asphalt binders in high-temperature climates, and tends to reduce its performance in low-temperature ones. Few studies have evaluated the performance of BC on asphalt mixes and the long-term properties associated with durability. Based on the reviewed literature, at the end of the article, recommendations are provided for future study topics.
Collapse
|
20
|
Palansooriya K, Li J, Dissanayake PD, Suvarna M, Li L, Yuan X, Sarkar B, Tsang DCW, Rinklebe J, Wang X, Ok YS. Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4187-4198. [PMID: 35289167 PMCID: PMC8988308 DOI: 10.1021/acs.est.1c08302] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 05/19/2023]
Abstract
Biochar application is a promising strategy for the remediation of contaminated soil, while ensuring sustainable waste management. Biochar remediation of heavy metal (HM)-contaminated soil primarily depends on the properties of the soil, biochar, and HM. The optimum conditions for HM immobilization in biochar-amended soils are site-specific and vary among studies. Therefore, a generalized approach to predict HM immobilization efficiency in biochar-amended soils is required. This study employs machine learning (ML) approaches to predict the HM immobilization efficiency of biochar in biochar-amended soils. The nitrogen content in the biochar (0.3-25.9%) and biochar application rate (0.5-10%) were the two most significant features affecting HM immobilization. Causal analysis showed that the empirical categories for HM immobilization efficiency, in the order of importance, were biochar properties > experimental conditions > soil properties > HM properties. Therefore, this study presents new insights into the effects of biochar properties and soil properties on HM immobilization. This approach can help determine the optimum conditions for enhanced HM immobilization in biochar-amended soils.
Collapse
Affiliation(s)
- Kumuduni
N. Palansooriya
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South
Korea
| | - Jie Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Pavani D. Dissanayake
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South
Korea
- Soils and
Plant Nutrition Division, Coconut Research
Institute, Lunuwila 61150, Sri Lanka
| | - Manu Suvarna
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lanyu Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xiangzhou Yuan
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South
Korea
| | - Binoy Sarkar
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Daniel C. W. Tsang
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- School
of Architecture and Civil Engineering, Institute of Foundation Engineering,
Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany
- Department
of Environment, Energy and Geoinformatics, Sejong University, 98
Gunja-Dong, Gwangjin-Gu, Seoul 05006, Republic of Korea
| | - Xiaonan Wang
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South
Korea
| |
Collapse
|