1
|
Huang W, Focker M, van der Fels-Klerx HJ. Modeling antimicrobial fate in the circular food system. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025. [PMID: 40400225 DOI: 10.1111/risa.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 05/23/2025]
Abstract
The livestock sector plays a critical role in the circular food production system, but excessive use of antimicrobials (AMs) in livestock farming can lead to AM residue contamination in human food. CirFSafe, a model framework was developed to predict the fate of five different AMs in a primary circular food production system, comprising mixed farms with arable (maize) and animal (bovine) components. Two bovine exposure scenarios to AMs were simulated: annual constant exposure and a one-off exposure in the first year of circularity. Over a 5-year timeframe, model predictions suggest that fertilizing soil with animal manure and feeding animals with maize grown in the same soil are unlikely to cause AM residues in milk or meat exceeding European regulatory limits. Nevertheless, the distinct residual patterns of different AMs across the system underscore the need for precautionary monitoring, particularly for the routine use of flumequine (FLU) and doxycycline (DOX), which exhibits a greater tendency to transfer into food products.
Collapse
Affiliation(s)
- Weixin Huang
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marlous Focker
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Tan G, Tang DWS, Silva V, Mu H, Qin S, Rima O, Geissen V, Yang X. Co-occurrence of multiple contaminants: Unentangling adsorption behaviour in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126118. [PMID: 40132742 DOI: 10.1016/j.envpol.2025.126118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/26/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
The co-occurrence of pesticides, pharmaceuticals, and MPs has resulted in combined toxicity and high risks to ecosystems and human health. However, understanding on the interactions among co-occurring pollutants in soils remains limited. This study focused on adsorption behaviour of a pesticide mixture (chlorpyrifos (CPF), pendimethalin (PDM) and pyraclostrobin (PCS)) in three soils (sandy soil (S1), loamy soil (S2), and silt soil (S3)) to examine the absorption behaviour of pesticides in the presence of the pharmaceutical compound albendazole (ALB) and starch-based microplastics (MPs). The results showed that ALB significantly decreased (p < 0.05) the adsorption of CPF, PDM, and PCS by 29 %-41 % in S1. The adsorption of CPF (+20 %) and PCS (+101 %) in S2 were significantly enhanced but PDM (-22 %) adsorption was inhibited by ALB. ALB also significantly (p < 0.05) promoted CPF and PCS adsorption in S3 by 39 % and 120 %, respectively, but did not change PDM adsorption. In soil-MP matrices, ALB significantly reduced the adsorption of CPF (-25 %), PDM (-26 %), and PCS (-21 %) in the S1-MP matrix, but no significant change in the S2 and S3-MP matrices was observed. Moreover, MPs significantly (p < 0.05) increased the adsorption of the pesticide mixture by 120-730 %, but reduced ALB adsorption by 11-24 % in soils. Further, regardless of ALB presence, correlation analysis suggested that Kd of pesticides showed positive correlations (p < 0.01) to soil organic matter, specific surface area, and clay content in soil matrices without MP-contamination, while no significant positive correlation between Kd of pesticides and soil properties was observed in soil-MPs matrices. This study indicates that co-occurring pollutants could alter the adsorption behaviour of pesticides in soil and thereby affect their bioavailability and mobility in the soil ecosystem. Further study is urgently needed to assess the ecotoxicity of co-occurring multi-contaminants, as well as their potential transport to other environmental compartments.
Collapse
Affiliation(s)
- Gaowei Tan
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Darrell W S Tang
- Water, Energy, and Environmental Engineering, University of Oulu, Finland
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Hongyu Mu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Shijie Qin
- College of Land Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Osman Rima
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Sardar MF, Younas F, Li H, Ali J, Zhu P, Yu X, Cui Z, Guo W. Current scenario of emerging pollutants in farmlands and water reservoirs: Prospects and challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117829. [PMID: 39908865 DOI: 10.1016/j.ecoenv.2025.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Globally, roughly more than 400 million metric tons of plastics are produced annually. Similarly, the pharmaceuticals business is rising exponentially yearly, 5.8 %. It is expected to increase from USD 714 billion to USD 1454 billion by 2029. Beyond their intended uses, these substances are released into the environment as contaminants due to improper usage and management practices. Therefore, pharmaceuticals and microplastics (MPs) are classified as emerging pollutants (EPs), and their existence in agricultural ecosystems adversely affects soil and environmental health, ultimately impacting both ecological and human well-being. Pharmaceuticals and MP-loaded organic amendments (especially manure) are a primary cause of emerging soil pollutants. The increasing application of treated wastewater or biosolids as irrigation water or soil conditioners, mainly when derived from untreated sewage sludge, can introduce pharmaceuticals and MPs into the farmlands, merging these pollutants within the soil medium. The co-occurrence of MPs and pharmaceuticals leads to prolonged environmental presence and gradual bioaccumulation in organisms over time, contributing to persistent contamination and long-lasting effects on ecosystems. Moreover, these EPs have the potential to alter the composition of soil biogeochemistry and disrupt overall soil health and productivity. Numerous methods have been developed to address this emerging issue, including electrochemical degradation, advanced oxidation processes, photocatalytic degradation, biosurfactants, micro- and nano-bubble systems, ultrasonic cavitation, nanotechnology, constructed wetlands, and many hybrid approaches. This review explores the extent of EPs, their interactions, and management strategies in EPs-contaminated environments.
Collapse
Affiliation(s)
- Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jawad Ali
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Zhu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiaona Yu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Davies E, Stamm C, Fuhrimann S, Chow R. Mixed pesticide sources identified by using wastewater tracers in rivers of South African agricultural catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177206. [PMID: 39471938 DOI: 10.1016/j.scitotenv.2024.177206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The agriculturally dominated region of the Western Cape, South Africa is vulnerable to pesticide pollution. A 2017-2019 pesticide monitoring campaign in the agricultural catchments of Grabouw, Piketberg and Hex River Valley identified year-round detections despite few agricultural applications, making pesticide pollution sources unclear. To better trace pesticide sources in these catchments, our study measured 19 pharmaceutical compounds and one industrial chemical as an indicator for wastewater treatment plant (WWTP) effluent - in addition to 44 pesticides. Passive samplers were deployed monthly in rivers from February 2022 to March 2023 in Grabouw, Hex River Valley, and Piketberg, and one control sample in Jonkershoek Nature Reserve (May 2022). Some pesticides without year-round agricultural applications had high detection frequencies and Groundwater Ubiquity Scores, suggesting leaching of pesticides into groundwater connected to rivers. Cumulative pharmaceutical concentrations correlated strongly with cumulative pesticide concentrations only in the Piketberg catchment, suggesting WWTPs as a possible pesticide source. Herbicide detections in Jonkershoek Nature Reserve (e.g., atrazine) suggest contamination from atmospheric transport, invasive plant control or trail maintenance. The Environmental Quality Standard (EQS) for imidacloprid, chlorpyrifos, terbuthylazine and spiroxamine was exceeded at least once during the 1-year monitoring period, mostly related to expected agricultural applications, indicating high persistence and continuous exposure risk to aquatic organisms. Our study is the first to describe the relevance of WWTPs as a pesticide source in South African agricultural catchments. Drivers of pesticide contamination were area dependent, emphasizing the need for catchment-specific understanding. Future research requires sampling of groundwater and wastewater influent and effluent to improve our understanding of pesticide transport pathways and sources.
Collapse
Affiliation(s)
- E Davies
- Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - C Stamm
- Swiss Federal Institute of Aquatic Science and Technology (eawag), 8600 Dübendorf, Switzerland
| | - S Fuhrimann
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland
| | - R Chow
- Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa; Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Pérez-Lucas G, Navarro S. How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment. J Xenobiot 2024; 14:1343-1377. [PMID: 39449417 PMCID: PMC11503385 DOI: 10.3390/jox14040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil-plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment.
Collapse
Affiliation(s)
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
6
|
Rakonjac N, Roex E, Beeltje H. Surface water monitoring of chemicals associated with animal husbandry in an agricultural region in the Netherlands using passive sampling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:670. [PMID: 38940882 PMCID: PMC11213807 DOI: 10.1007/s10661-024-12818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Compounds originating from animal husbandry can pollute surface water through the application of manure to soil. Typically, grab sampling is employed to detect these residues, which only provides information on the concentration at the time of sampling. To better understand the emission patterns of these compounds, we utilized passive samplers in surface water to collect data at eight locations in a Dutch agricultural region, during different time intervals. As a passive sampler, we chose the integrative-based Speedisk® hydrophilic DVB. In total, we targeted 46 compounds, among which 25 antibiotics, three hormones, nine antiparasitics, and nine disinfectants. From these 46 compounds, 22 compounds accumulated in passive samplers in amounts above the limit of quantification in at least one sampling location. Over the 12-week deployment period, a time integrative uptake pattern was identified in 53% of the examined cases, with the remaining 47% not displaying this behavior. The occurrences without this behavior were primarily associated with specific location, particularly the most upstream location, or specific compounds. Our findings suggest that the proposed use of passive samplers, when compared in this limited context to traditional grab sampling, may provide enhanced efficiency and potentially enable the detection of a wider array of compounds. In fact, a number of compounds originating from animal husbandry activities were quantified for the first time in Dutch surface waters, such as flubendazole, florfenicol, and tilmicosine. The set-up of the sampling campaign also allowed to distinguish between different pollution levels during sampling intervals on the same location. This aspect gains particular significance when considering the utilization of different compounds on various occasions, hence, it has the potential to strengthen ongoing monitoring and mitigation efforts.
Collapse
Affiliation(s)
- Nikola Rakonjac
- Soil Physics and Land Management Group, Wageningen University, Droevendaalsesteeg 3, 6708PB, Wageningen, the Netherlands.
| | - Erwin Roex
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | |
Collapse
|
7
|
Mravcová L, Amrichová A, Navrkalová J, Hamplová M, Sedlář M, Gargošová HZ, Fučík J. Optimization and validation of multiresidual extraction methods for pharmaceuticals in Soil, Lettuce, and Earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33120-33140. [PMID: 38676866 PMCID: PMC11133184 DOI: 10.1007/s11356-024-33492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The presence of human and veterinary pharmaceuticals (PhACs) in the environment poses potential risks. To comprehensively assess these risks, robust multiresidual analytical methods are essential for determining a broad spectrum of PhAC classes in various environmental compartments (soil, plants, and soil organisms). This study optimized extraction methods for analyzing over 40 PhACs from various matrices, including soil, lettuce, and earthworms. A four-step ultrasonic extraction method with varying extraction conditions and subsequent solid phase extraction was developed for soil samples. QuEChERS methods were optimized for extracting PhACs from lettuce and earthworm samples, addressing a literature gap in these less-studied matrices. The quantification of PhACs in soil, lettuce, and earthworm extracts was performed using a single LC-MS/MS method. Following thorough method validation, earthworms and lettuce were exposed to a mixture of 27 pharmaceuticals in a soil environment. The method validation results demonstrated the robustness of these methods for a broad spectrum of PhACs. Specifically, 29 out of 42 PhACs were extracted with an average efficiency > 50% and RSD < 30% from the soil; 40 out of 42 PhACs exhibited average efficiency > 50% and %RSD < 30% from the earthworms, while 39 out of 42 PhACs showed average efficiency > 50% and RSD < 30% from the lettuce. Exposure experiments confirmed the viability of these methods for quantifying a diverse range of PhACs in different environmental compartments. This study presents three thoroughly validated methods for determining more than 40 PhACs in diverse matrices, enabling a comprehensive assessment of PhAC dissemination in the environment.
Collapse
Affiliation(s)
- Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Anna Amrichová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jitka Navrkalová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Marie Hamplová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Zillien C, Groenveld T, Schut O, Beeltje H, Blanco-Ania D, Posthuma L, Roex E, Ragas A. Assessing city-wide pharmaceutical emissions to wastewater via modelling and passive sampling. ENVIRONMENT INTERNATIONAL 2024; 185:108524. [PMID: 38458114 DOI: 10.1016/j.envint.2024.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
With increasing numbers of chemicals used in modern society, assessing human and environmental exposure to them is becoming increasingly difficult. Recent advances in wastewater-based epidemiology enable valuable insights into public exposure to data-poor compounds. However, measuring all >26,000 chemicals registered under REACH is not just technically unfeasible but would also be incredibly expensive. In this paper, we argue that estimating emissions of chemicals based on usage data could offer a more comprehensive, systematic and efficient approach than repeated monitoring. Emissions of 29 active pharmaceutical ingredients (APIs) to wastewater were estimated for a medium-sized city in the Netherlands. Usage data was collected both on national and local scale and included prescription data, usage in health-care institutions and over-the-counter sales. Different routes of administration were considered as well as the excretion and subsequent in-sewer back-transformation of conjugates into respective parent compounds. Results suggest model-based emission estimation on a city-level is feasible and in good agreement with wastewater measurements obtained via passive sampling. Results highlight the need to include excretion fractions in the conceptual framework of emission estimation but suggest that the choice of an appropriate excretion fraction has a substantial impact on the resulting model performance.
Collapse
Affiliation(s)
- Caterina Zillien
- Radboud University, Department of Environmental Science, Nijmegen, the Netherlands.
| | - Thijs Groenveld
- Radboud University, Department of Environmental Science, Nijmegen, the Netherlands
| | - Odin Schut
- Open University, Department of Environmental Science, Heerlen, the Netherlands
| | - Henry Beeltje
- TNO, Environmental Modelling, Sensing and Analysis, Utrecht, the Netherlands
| | - Daniel Blanco-Ania
- Radboud University, Department of Synthetic Organic Chemistry, Nijmegen, the Netherlands
| | - Leo Posthuma
- Radboud University, Department of Environmental Science, Nijmegen, the Netherlands; National Institute for Public Health and the Environment (RIVM), Centre for Sustainability, Environment and Health, Bilthoven, the Netherlands
| | - Erwin Roex
- National Institute for Public Health and the Environment (RIVM), Centre for Zoonoses and Environmental Microbiology, Bilthoven, the Netherlands
| | - Ad Ragas
- Radboud University, Department of Environmental Science, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Fučík J, Amrichová A, Brabcová K, Karpíšková R, Koláčková I, Pokludová L, Poláková Š, Mravcová L. Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20017-20032. [PMID: 38367114 PMCID: PMC10927849 DOI: 10.1007/s11356-024-32492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L-1 of ENR) and poultry litter (up to 70 mg∙kg-1 of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg-1 to 9 μg∙kg-1 after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Anna Amrichová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Kristýna Brabcová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
- Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Renata Karpíšková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivana Koláčková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucie Pokludová
- Institute for State Control of Veterinary Biologicals and Medicines (ISCVBM), Hudcova 56 A, Brno, Czech Republic
| | - Šárka Poláková
- Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
10
|
Nguyen MK, Lin C, Nguyen HL, Hung NTQ, La DD, Nguyen XH, Chang SW, Chung WJ, Nguyen DD. Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165323. [PMID: 37422238 DOI: 10.1016/j.scitotenv.2023.165323] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
In recent years, pharmaceutical active compounds (PhACs) have attained global prevalence. The behavior of PhACs in agricultural soils is complex and depends on several factors, such as the nature of the compounds and their physicochemical characteristics, which affect their fate and potential threats to human health, ecosystems, and the environment. The detection of residual pharmaceutical content is possible in both agricultural soils and environmental matrices. PhACs are commonly found in agricultural soil, with concentrations varying significantly, ranging from as low as 0.048 ng g-1 to as high as 1420.76 mg kg-1. The distribution and persistence of PhACs in agriculture can lead to the leaching of these toxic pollutants into surface water, groundwater, and vegetables/plants, resulting in human health risks and environmental pollution. Biological degradation or bioremediation plays a critical role in environmental protection and efficiently eliminates contamination by hydrolytic and/or photochemical reactions. Membrane bioreactors (MBRs) have been investigated as the most recent approach for the treatment of emerging persistent micropollutants, including PhACs, from wastewater sources. MBR- based technologies have proven to be effective in eliminating pharmaceutical compounds, achieving removal rates of up to 100%. This remarkable outcome is primarily facilitated by the processes of biodegradation and metabolization. In addition, phytoremediation (i.e., constructed wetlands), microalgae-based technologies, and composting can be highly efficient in remediating PhACs in the environment. The exploration of key mechanisms involved in pharmaceutical degradation has revealed a range of approaches, such as phytoextraction, phytostabilization, phytoaccumulation, enhanced rhizosphere biodegradation, and phytovolatilization. The well-known advanced/tertiary removal of sustainable sorption by biochar, activated carbon, chitosan, etc. has high potential and yields excellent quality effluents. Adsorbents developed from agricultural by-products have been recognized to eliminate pharmaceutical compounds and are cost-effective and eco-friendly. However, to reduce the potentially harmful impacts of PhACs, it is necessary to focus on advanced technologies combined with tertiary processes that have low cost, high efficiency, and are energy-saving to remove these emerging pollutants for sustainable development.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
11
|
Delgado N, Orozco J, Zambrano S, Casas-Zapata JC, Marino D. Veterinary pharmaceutical as emerging contaminants in wastewater and surface water: An overview. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132431. [PMID: 37688873 DOI: 10.1016/j.jhazmat.2023.132431] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Veterinary pharmaceuticals have become of interest due to their indiscriminate use. Thus, this paper compiles studies on detection in surface and wastewater, and the treatment applied for their removal. Additionally, a case study was performed to evaluate its commercialization, as the ecological risk assessment for the most relevant compounds. 241 compounds were detected. The highest concentrations were found for antibiotics such as oxytetracycline, amoxicillin, and monensin, with values up to 3732.4 µg/L. Biological treatments have been mainly reported, obtaining removal greater than 80% for sulfadiazine, sulfamethazine, sulfamethoxazole, enrofloxacin, and oxytetracycline. Considering the case study, enrofloxacin and oxytetracycline were widely commercialized. Finally, there was a low risk for the species exposed to enrofloxacin, in contrast, the species exposed to oxytetracycline presented a high risk of long-term mortality. Concluding that veterinary compounds have emerged as a significant concern regarding water source contamination, owing to their potential adverse effects on aquatic biota and even human. This is particularly relevant because many water bodies that receive wastewater are utilized for drinking water purposes. Consequently, the development of comprehensive, full-scale systems for efficient antibiotic removal before their introduction into water sources becomes imperative. Equally important is the need to reconsider their extensive use altogether.
Collapse
Affiliation(s)
- Nasly Delgado
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia.
| | - Jessica Orozco
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Santiago Zambrano
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Juan C Casas-Zapata
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Damián Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 47y 115, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
12
|
Zhao F, Yang L, Yen H, Feng Q, Li M, Chen L. Reducing risks of antibiotics to crop production requires land system intensification within thresholds. Nat Commun 2023; 14:6094. [PMID: 37773228 PMCID: PMC10541423 DOI: 10.1038/s41467-023-41258-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023] Open
Abstract
Land system intensification has substantially enhanced crop production; however, it has also created soil antibiotic pollution, undermining crop production. Here, we projected soil antibiotic pollution risks to crop production at multiple geographical scales in China and linked them to land system intensification (including arable land expansion and input increase). Our projections suggest that crop production will substantially decrease when the soil antibiotic pollution risk quotient exceeds 8.30-9.98. Land systems explain most of the variability in antibiotic pollution risks (21-66%) across spatial scales. The convex nonlinearities in tradeoffs between antibiotic pollution risk and crop production indicate that vegetable and wheat production have higher thresholds of land system intensification at which the risk-yield tradeoffs will peak than do maize and rice production. Our study suggests that land system intensification below the minimum thresholds at multiple scales is required for acceptable antibiotic pollution risks related to crop yield reduction.
Collapse
Affiliation(s)
- Fangkai Zhao
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haw Yen
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
- Environmental Exposure Modeling, Bayer U.S. Crop Science Division, Chesterfield, MO, 63017, USA
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liding Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Zhao F, Yang L, Tang J, Fang L, Yu X, Li M, Chen L. Urbanization-land-use interactions predict antibiotic contamination in soil across urban-rural gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161493. [PMID: 36634779 DOI: 10.1016/j.scitotenv.2023.161493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Antibiotics ubiquitously occur in soils and pose a potential threat to ecosystem health. Concurrently, urbanization and land-use intensification have transformed soil ecosystems, but how they affect antibiotic contamination remain largely unknown. Therefore, we profiled a broad-scale pattern of antibiotics in soil from agricultural lands and green spaces across urbanization gradients, and explored the hypothetical models to verify the effects of urbanization and land-use intensity on antibiotic contamination. The results showed that antibiotic concentrations and seasonality were higher in agricultural soil than in green spaces, which respectively showed linear or hump-shaped declines along with the increasing distance to urban centers. However, the response of antibiotic pollution to land-use intensity depended strongly on the urbanization level. More importantly, interactions between urbanization and land-use explained, on average, 59.6 % of the variation in antibiotic concentrations in soil across urbanization gradients. The proposed interactions can predict the non-linear changes in soil vulnerability to antibiotic contamination. Our study revealed that the urbanization can modulate the effects of land-use intensity on antibiotic concentration and seasonality in the soil environment, and that there is high stress on peri-urban soil ecosystems due to ongoing land-use changes arising from rapid urbanization processes.
Collapse
Affiliation(s)
- Fangkai Zhao
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfeng Tang
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Rakonjac N, van der Zee SEATM, Wipfler L, Roex E, Urbina CAF, Borgers LH, Ritsema CJ. An analytical framework on the leaching potential of veterinary pharmaceuticals: A case study for the Netherlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160310. [PMID: 36410490 DOI: 10.1016/j.scitotenv.2022.160310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Veterinary pharmaceuticals (VPs) residues may end up on the soil via manure, and from there can be transported to groundwater due to leaching. In this study an analytical framework to estimate the leaching potential of VPs at the national scale is presented. This approach takes soil-applied VPs concentrations, soil-hydraulic and soil-chemical properties, groundwater levels, sorption and degradation of VPs into account. For six commonly soil-applied VPs in the Netherlands, we assess quantities leached to groundwater and their spatial distribution, as well as the relative importance of processes that drive leaching. Our results for VPs Oxytetracycline, Doxycycline, and Ivermectin indicate that maximum quantities that may leach to groundwater are very low, i.e. ≪1 μg/ha, hence spatial differences are not investigated. For VPs Sulfadiazine and Flubendazole we identify a few regions that are potentially prone to leaching, with leached quantities higher than 1 μg/ha. Leaching patterns of these two VPs are dominated by soil properties and groundwater levels rather than soil-applied quantities. For Dexamethasone, even though applied on the soil in much lower concentrations compared to other investigated VPs, spatially widespread leaching to groundwater is found, with leached quantities higher than 1 μg/ha. Due to the leaching affinity of Dexamethasone, variations in the soil-applied amounts have significant influence on the quantities leached to groundwater. Dexamethasone is highlighted as important for the future environmental risk assessment efforts. This study has shown that the leaching potential of VPs is not determined by one single parameter, but by a combination of parameters. This combination also depends on the compound investigated.
Collapse
Affiliation(s)
- Nikola Rakonjac
- Soil Physics and Land Management Group, Wageningen University, Wageningen, the Netherlands; Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | - Louise Wipfler
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Erwin Roex
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | - C A Faúndez Urbina
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Chile
| | | | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
15
|
Zhao F, Yang L, Yen H, Yu X, Fang L, Li M, Chen L. Can agricultural land use alter the responses of soil biota to antibiotic contamination? JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129350. [PMID: 35749896 DOI: 10.1016/j.jhazmat.2022.129350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics accumulate in soils via various agricultural activities, endangering soil biota that play fundamental roles in maintaining agroecosystem function. However, the effects of land-use heterogeneity on soil biota tolerance to antibiotic stresses are not well understood. In this study, we explored the relationships between antibiotic residues, bacterial communities, and earthworm populations in areas with different land-use types (forest, maize, and peanut fields). The results showed that antibiotic levels were generally higher in maize and peanut fields than in forests. Furthermore, land use modulated the effects of antibiotics on soil bacterial communities and earthworm populations. Cumulative antibiotic concentrations in peanut fields were negatively correlated with bacterial diversity and earthworm abundance, whereas no significant correlations were detected in maize fields. In contrast, antibiotics improved bacterial diversity and richness in forest soils. Generally, earthworm populations showed stronger tolerance to antibiotics than did soil bacterial communities. Agricultural land use differentially modified the responses of the soil bacterial community and earthworm population to antibiotic contamination, and earthworms might provide an alternative for controlling antibiotic contamination.
Collapse
Affiliation(s)
- Fangkai Zhao
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haw Yen
- School of Forestry and Wildlife Sciences, Auburn University, Auburn 36849, USA; Environmental Exposure Modeling, Bayer US Crop Science Division, Chesterfield 63017, USA
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Brown K, Blake RS, Dennany L. Electrochemiluminescence within Veterinary Science: A Review. Bioelectrochemistry 2022; 146:108156. [DOI: 10.1016/j.bioelechem.2022.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|