1
|
Ren T, Smreczak B, Ukalska-Jaruga A, Li X, Hassan W, Cai A. Differential impacts of nitrogen addition on soil dissolved organic carbon in humid and non-humid regions: A global meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124744. [PMID: 40024155 DOI: 10.1016/j.jenvman.2025.124744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Soil dissolved organic carbon (DOC) is the most active carbon pool, providing essential carbon and energy to soil microorganisms while playing a crucial role in carbon sequestration, transport, and stabilization in soils. Nitrogen (N) addition, a key factor influencing terrestrial carbon cycling, can significantly alter soil DOC dynamics. However, the global patterns and underlying drivers of DOC responses to N addition, particularly across regions with varying aridity indices, remain unclear. This study analyzed 1132 paired observations from 103 independent studies to quantify the response pattern of DOC to N addition in humid (554 observations) and non-humid (574 observations) regions and identify the factors driving these effects. The findings revealed an asymmetrical effect of N addition on soil DOC between humid and non-humid regions, rather than on microbial biomass carbon (MBC) or soil organic carbon (SOC). Specifically, N addition significantly decreased soil DOC (-2.49%) in humid regions, while it increased DOC (7.30%) in non-humid regions. The effect size of soil DOC decreased linearly with the ratio of MBC to SOC in humid regions but increased linearly in non-humid regions. In humid regions, soil DOC response was positively correlated with initial MBC and inversely correlated with initial soil pH, whereas the opposite trend was observed in non-humid regions. Seasonal precipitation variability was identified as a significant driver of soil DOC response, independent of temperature, soil properties, and N addition rates. Moreover, initial SOC content was the primary driving factor for soil DOC response in humid regions, while the N addition rates were the primary driver in non-humid regions. These findings have important implications for enhancing soil carbon pool management, improving global carbon models, and addressing climate change, particularly under varying climatic conditions.
Collapse
Affiliation(s)
- Tianjing Ren
- Department Soil Science and Environmental Analyses, Institute of Soil Science and Plant Cultivation‒State Research Institute, 24-100, Puławy, Poland.
| | - Bożena Smreczak
- Department Soil Science and Environmental Analyses, Institute of Soil Science and Plant Cultivation‒State Research Institute, 24-100, Puławy, Poland
| | - Aleksandra Ukalska-Jaruga
- Department Soil Science and Environmental Analyses, Institute of Soil Science and Plant Cultivation‒State Research Institute, 24-100, Puławy, Poland
| | - Xiaojie Li
- Forest Ecology Stable Isotope Center, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waseem Hassan
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 32200, Pakistan
| | - Andong Cai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Yang Z, He G, Yang Q, Zhang D, Zhang Y, Wen S, Yang X, Yang L, Ji L. Nitrogen enrichment stimulates nutrient cycling genes of rhizosphere soil bacteria in the Phoebe bournei young plantations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123101. [PMID: 39486293 DOI: 10.1016/j.jenvman.2024.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Anthropogenic nitrogen (N) deposition is expected to increase substantially and continuously in terrestrial ecosystems, endangering the balance of N and phosphorus (P) in P-deficient subtropical forest soil. Despite the widely reported responses of the microbial community to simulated N deposition, there is limited understanding of how N deposition affects the rhizosphere soil processes by mediating functional genes and community compositions of soil bacteria. Here, five levels of simulated N deposition treatments (N0, 0 g m-2·yr-1; N1, 100 g m-2·yr-1; N2, 200 g m-2·yr-1; N3, 300 g m-2·yr-1; and N4, 400 g m-2·yr-1) were performed in a 10-year-old Phoebe bournei plantation. Quantitative microbial element cycling smart chip technology and 16S rRNA gene sequencing were employed to analyze functional gene compositions involved in carbon (C), N, and P cycling, as well as rhizosphere bacterial community composition. N deposition significantly influenced C cycling relative abundance of genes in the rhizosphere soil, especially those involved in C degradation. Low and moderate levels (100-300 g m-2·yr-1) of N deposition promoted the relative abundance of the C decomposition-related genes (e.g., amyA, abfA, pgu, chiA, cex, cdh, and glx), whereas high N deposition (400 g m-2·yr-1) suppressed enzyme (e.g., soil invertase, soil urease, and soil acid phosphatase) activities, affecting the C cycling processes in the rhizosphere. Simulated N deposition affected the functional genes associated with C, N, and P cycling by mediating soil pH and macronutrients. These findings provide new insights into the management of soil C sequestration in P. bournei young plantations as well as the regulation of C, N, and P cycling and microbial functions within ecosystems.
Collapse
Affiliation(s)
- Ziqiao Yang
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Gongxiu He
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Qingsheng Yang
- Nuclear Geological Survey Institute of Hunan Province, 410007, PR China
| | - Dongdong Zhang
- Ecology Geological Survey and Monitoring Institute of Hunan Province, 410119, PR China
| | - Ying Zhang
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Shizhi Wen
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xisha Yang
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Lili Yang
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Li Ji
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| |
Collapse
|
3
|
Zheng B, Xiao Z, Liu J, Zhu Y, Shuai K, Chen X, Liu Y, Hu R, Peng G, Li J, Hu Y, Su Z, Fang M, Li J. Vertical differences in carbon metabolic diversity and dominant flora of soil bacterial communities in farmlands. Sci Rep 2024; 14:9445. [PMID: 38658691 PMCID: PMC11043072 DOI: 10.1038/s41598-024-60142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The carbon cycle in soil is significantly influenced by soil microbes. To investigate the vertical distribution of the dominant groups in agricultural soil and the carbon metabolic diversity of soil bacteria, 45 soil samples from the 0 ~ 50 cm soil layer in Hunan tobacco-rice multiple cropping farmland were collected in November 2017, and the carbon diversity of the soil bacterial community, bacterial community composition and soil physical and chemical properties were determined. The results showed that the carbon metabolic capabilities and functional diversity of the soil bacterial community decreased with depth. The three most widely used carbon sources for soil bacteria were carbohydrates, amino acids, and polymers. The dominant bacterial groups in surface soil (such as Chloroflexi, Acidobacteriota, and Bacteroidota) were significantly positively correlated with the carbon metabolism intensity. The alkali-hydrolysable nitrogen content, soil bulk density and carbon-nitrogen ratio were the key soil factors driving the differences in carbon metabolism of the soil bacterial communities in the different soil layers.
Collapse
Affiliation(s)
- Bufan Zheng
- Agronomy College, Hunan Agricultural University, Changsha, 410128, China
| | - Zhipeng Xiao
- Hunan Tobacco Monopoly Bureau, Changsha, 410004, China
| | - Jiaqi Liu
- Hubei Tobacco Industry Co., Ltd., Wuhan, 430040, China
| | - Yi Zhu
- Hunan Tobacco Monopoly Bureau, Changsha, 410004, China
| | - Kaifeng Shuai
- Hunan Tobacco Monopoly Bureau, Changsha, 410004, China
| | - Xiaye Chen
- Hunan Tobacco Monopoly Bureau, Changsha, 410004, China
| | - Yongjun Liu
- Hunan Tobacco Monopoly Bureau, Changsha, 410004, China
| | - Ruiwen Hu
- Agronomy College, Hunan Agricultural University, Changsha, 410128, China
| | - Guangjue Peng
- Agronomy College, Hunan Agricultural University, Changsha, 410128, China
| | - Junlin Li
- Guangxi Tobacco Industry Co., Ltd., Nanning, 530001, China
| | - Yichao Hu
- Guangxi Tobacco Industry Co., Ltd., Nanning, 530001, China
| | - Zan Su
- Guangxi Tobacco Industry Co., Ltd., Nanning, 530001, China.
| | - Ming Fang
- Hunan Tobacco Monopoly Bureau, Changsha, 410004, China.
| | - Juan Li
- Agronomy College, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Huo J, Song B, Lin X, Riaz M, Zhao X, Liu S, She Q. Ecological characteristics of sugar beet plant and rhizosphere soil in response to high boron stress: A study of the remediation potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120655. [PMID: 38513589 DOI: 10.1016/j.jenvman.2024.120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
High boron (B) stress degrades the soil environment and reduces plant productivity. Sugar beet has a high B demand and potential for remediation of B-toxic soils. However, the mechanism regarding the response of sugar beet plants and rhizosphere soil microbiome to high B stress is not clear. In the potted soil experiment, we set different soil effective B environments (0.5, 5, 10, 30, 50, and 100 mg kg-1) to study the growth status of sugar beets under different B concentrations, as well as the characteristics of soil enzyme activity and microbial community changes. The results showed that sugar beet growth was optimal at 5 mg kg-1 of B. Exceeding this concentration the tolerance index decreased. The injury threshold EC20 was reached at an available B concentration of 35.8 mg kg-1. Under the treatment of 100 mg kg-1, the B accumulation of sugar beet reached 0.22 mg plant-1, and the tolerance index was still higher than 60%, which had not yet reached the lethal concentration of sugar beet. The abundance of Acidobacteriota, Chloroflexi and Patescibacteria increased, which was beneficial to the resistance of sugar beet to high B stress. In summary, under high B stress sugar beet had strong tolerance, enhanced capacity for B uptake and enrichment, and changes in soil microbial community structure. This study provides a theoretical basis for clarifying the mechanism of sugar beet resistance to high B stress and soil remediation.
Collapse
Affiliation(s)
- Jialu Huo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Baiquan Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Xiaochen Lin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaoyu Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shangxuan Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Qingqing She
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
5
|
Hu Y, Deng Q, Kätterer T, Olesen JE, Ying SC, Ochoa-Hueso R, Mueller CW, Weintraub MN, Chen J. Depth-dependent responses of soil organic carbon under nitrogen deposition. GLOBAL CHANGE BIOLOGY 2024; 30:e17247. [PMID: 38491798 DOI: 10.1111/gcb.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Emerging evidence points out that the responses of soil organic carbon (SOC) to nitrogen (N) addition differ along the soil profile, highlighting the importance of synthesizing results from different soil layers. Here, using a global meta-analysis, we found that N addition significantly enhanced topsoil (0-30 cm) SOC by 3.7% (±1.4%) in forests and grasslands. In contrast, SOC in the subsoil (30-100 cm) initially increased with N addition but decreased over time. The model selection analysis revealed that experimental duration and vegetation type are among the most important predictors across a wide range of climatic, environmental, and edaphic variables. The contrasting responses of SOC to N addition indicate the importance of considering deep soil layers, particularly for long-term continuous N deposition. Finally, the lack of depth-dependent SOC responses to N addition in experimental and modeling frameworks has likely resulted in the overestimation of changes in SOC storage under enhanced N deposition.
Collapse
Affiliation(s)
- Yuanliu Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Thomas Kätterer
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jørgen Eivind Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Samantha C Ying
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3), Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Carsten W Mueller
- Institute of Ecology, Chair of Soil Science, Technische Universitaet Berlin, Berlin, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Michael N Weintraub
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio, USA
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Institute of Global Environmental Change, Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Wang D, Lan Y, Chen W, Han X, Liu S, Cao D, Cheng X, Wang Q, Zhan Z, He W. The six-year biochar retention interacted with fertilizer addition alters the soil organic nitrogen supply capacity in bulk and rhizosphere soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117757. [PMID: 36996567 DOI: 10.1016/j.jenvman.2023.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen fractions in soil, like organic nitrogen, mineral nitrogen, and free amino acids, are sensitive pointers to the soil nitrogen pools involved in nutrient cycling. As a potential improvement measure, biochar might improve soil fertility and nutrient availability. However, few studies have focused on the long-term effects of biochar retention on the soil nitrogen supply capacity of bulk and rhizosphere soil in brown earth. Therefore, a six-year field experiment was conducted in 2013, concentrating on the impact of biochar retention on soil nitrogen fractions. Four biochar rates were tested: no biochar amendment (CK); 15.75 t ha-1 of biochar (BC1); 31.5 t ha-1 of biochar (BC2); 47.25 t ha-1 of biochar (BC3). Our results showed that the elevated application rates significantly enhanced soil organic matter (SOM), and total nitrogen (TN), and improved pH in both bulk and rhizosphere soils. Acid-hydrolyzable nitrogen (AHN) content in biochar treatments was higher than that of CK in bulk and rhizosphere soil. The content of non-hydrolyzable nitrogen (NHN) was increased in 47.25 t ha-1 of biochar retention. Ammonium nitrogen (AN) and amino sugar nitrogen (ASN) contents were higher in bulk soil than in rhizosphere soil. Neutral amino acid contents were the highest both in bulk and rhizosphere soil. Principal component analysis (PCA) showed that soil organic nitrogen was significantly influenced by BC3 treatment in bulk soil, and largely influenced by other treatments in rhizosphere soil. Partial least square path modeling (PLSPM) revealed that NH4+-N was mainly derived from amino acid nitrogen (AAN) and AN in bulk soil and AAN and ASN in rhizosphere soil. These results indicate that different biochar retention rates contributed to improve soil nutrients. Amino acid nitrogen was the prominent nitrogen source of NH4+-N in bulk and rhizosphere soils.
Collapse
Affiliation(s)
- Di Wang
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China
| | - Yu Lan
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China.
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China.
| | - Xiaori Han
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China; Land and Environment College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Suying Liu
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China
| | - Dianyun Cao
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China
| | - Xiaoyi Cheng
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China
| | - Qingyang Wang
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China
| | - Zengyi Zhan
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China
| | - Wanying He
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, PR China, Shenyang, 110866, China
| |
Collapse
|