1
|
Karkou E, Teo CJ, Savvakis N, Poinapen J, Arampatzis G. Industrial circular water use practices through the application of a conceptual water efficiency framework in the process industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122596. [PMID: 39321677 DOI: 10.1016/j.jenvman.2024.122596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/20/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Increased industrial water demand and resource depletion require the incorporation of sustainable and efficient water and wastewater management solutions in the industrial sector. Conventional and advanced treatment technologies, closed-water loops at different levels from an industrial process to collaborative networks among industries within the same or another sector and digital tools and services facilitate the materialization of circular water use practices. To this end, the scope of this paper is the application of the Conceptual Water Efficiency Framework (CWEF), which has been developed within the AquaSPICE project aspiring to enhance water circularity within industries in a holistic way. Four water-intensive process industries (two chemical industries, one oil refinery plant and one meat production plant) are examined, revealing its adaptability, versatility and flexibility according to the requirements of each use case. It is evident that the synergy of process, circular and digital innovations can promote sustainability, contribute to water conservation in the industry, elaborating a compact approach to be replicated from other industries.
Collapse
Affiliation(s)
- Efthalia Karkou
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece.
| | - Chuan Jiet Teo
- KWR Water Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, Netherlands; Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D-52074, Aachen, Germany
| | - Nikolaos Savvakis
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece
| | - Johann Poinapen
- KWR Water Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, Netherlands
| | - George Arampatzis
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece
| |
Collapse
|
2
|
Sharma P, Parakh SK, Tsui TH, Bano A, Singh SP, Singh VP, Lam SS, Nadda AK, Tong YW. Synergetic anaerobic digestion of food waste for enhanced production of biogas and value-added products: strategies, challenges, and techno-economic analysis. Crit Rev Biotechnol 2024; 44:1040-1060. [PMID: 37643972 DOI: 10.1080/07388551.2023.2241112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 08/31/2023]
Abstract
The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.
Collapse
Affiliation(s)
- Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Sheetal Kishor Parakh
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - To Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Ambreen Bano
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction, and Molecular Immunology Laboratory, Integral University, Lucknow, India
| | - Surendra Pratap Singh
- Department of Botany, Plant Molecular Biology Laboratory, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, C.M.P. Degree College, a Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
3
|
Vítková M, Zarzsevszkij S, Šillerová H, Karlova A, Šimek P, Wimmerová L, Martincová M, Urbánek B, Komárek M. Sustainable use of composted sewage sludge: Metal(loid) leaching behaviour and material suitability for application on degraded soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172588. [PMID: 38642754 DOI: 10.1016/j.scitotenv.2024.172588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Composted sewage sludge was investigated as a promising material for the reclamation or remediation of degraded sites. Using sewage sludge as soil amendment provides environmental benefits and risks while supporting circularity and waste minimisation. This study aims to comprehensively assess the suitability of locally available low-cost sludge treatment for sustainable and environmentally safe topsoil disposal in a brownfield area affected by coal mining. A nine-month composting was conducted before field application to the soil environment. The objectives were to assess: (i) composting time-dependent and pH-dependent metal(loid) leachability from composted sludges, (ii) the effect of sludges on metal(loid) leachability from soil over the first six months, and (iii) metal(loid) plant uptake during the first vegetation season as well as the bioaccumulation and translocation factors. The set of standardised leaching experiments confirmed the positive effect of compost maturity, i.e. despite some fluctuations over time, metal(loid) availability from the final composts was very low. Some metals showed unusual pH-dependent behaviour with the highest leachability at pH 8 due to excessive release of dissolved organic matter from the not-yet-stabilised matrix. Ecotoxicity testing confirmed the safety of the final composts for further soil application. The sludge-amended plots displayed similar metal(loid) leaching and pH evolution in time compared to the control biomass-amended plot. However, plant species (Artemisia vulgaris L.) that formed the natural vegetation cover of the experimental plots showed cumulative metal(loid) uptake. Cadmium and zinc were identified as the critical metals possibly related to the applied sludges, yielding high bioaccumulation and translocation factors. Yet, the quality of the compost feedstock, heterogeneity, and background values of the brownfield site need to be considered. Nevertheless, soil respiration indicated no adverse effects on soil health six months after sludge application. Overall, the composted material demonstrated potential suitability for remediation application in the studied area.
Collapse
Affiliation(s)
- Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic.
| | - Szimona Zarzsevszkij
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Hana Šillerová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Anna Karlova
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Pavel Šimek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Lenka Wimmerová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Marie Martincová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Boris Urbánek
- DEKONTA, a.s., Dřetovice 109, 273 42 Stehelčeves, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| |
Collapse
|
4
|
Liao C, Na B, Tang X, Zhao M, Zhang C, Chen S, You M, Bai B, Hao L, Tondrob D, Qu G, Yang S, Huang B, Gou W, Xie Y, Bai S, Chen C, Li P. Contribution of the bacterial community of poorly fermented oat silage to biogas emissions on the Qinghai Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165336. [PMID: 37414176 DOI: 10.1016/j.scitotenv.2023.165336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
To better utilize poorly fermented oat silage on the Qinghai Tibetan Plateau, 239 samples of this biomass were collected from the plateau temperate zone (PTZ), plateau subboreal zone (PSBZ), and nonplateau climatic zone (NPCZ) in the region and analyzed for microbial community, chemical composition and in vitro gas production. Climatic factors affect the bacterial α-diversity and β-diversity of poorly fermented oat silage, which led to the NPCZ having the highest relative abundance of Lactiplantibacillus plantarum. Furthermore, the gas production analysis showed that the NPCZ had the highest maximum cumulative gas emissions of methane. Through structural equation modeling analysis, environmental factors (solar radiation) affected methane emissions via the regulation of lactate production by L. plantarum. The enrichment of L. plantarum contributes to lactic acid production and thereby enhances methane emission from poorly fermented oat silage. Notably, there are many lactic acid bacteria detrimental to methane production in the PTZ. This knowledge will be helpful in revealing the mechanisms of environmental factors and microbial relationships influencing the metabolic processes of methane production, thereby providing a reference for the clean utilization of other poorly fermented silage.
Collapse
Affiliation(s)
- Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang, China
| | - Binbin Na
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xiaolong Tang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Man Zhao
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Changbing Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Shiyong Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Minghong You
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Binqiang Bai
- College of Agricultural Science, Qinghai University, Xining 810016, China
| | - Lizhuang Hao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Dorjeeh Tondrob
- Institute of Pratacultural Science, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850000, China
| | - Guangpeng Qu
- Institute of Pratacultural Science, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850000, China
| | - Shuqing Yang
- Tibet Institute of Modern Life and Health, Lhasa 850000, China
| | - Bo Huang
- Tibet Jingliang Agriculture and Animal Husbandry Industry Development Co, Lhasa 850000, China
| | - Wenlong Gou
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, China; Sichuan Academy of Grassland Sciences, Chengdu 611731, China.
| |
Collapse
|
5
|
Zhang L, Tsui TH, Wah Tong Y, Sharon S, Shoseyov O, Liu R. Biochar applications in microbial fermentation processes for producing non-methane products: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023; 386:129478. [PMID: 37460021 DOI: 10.1016/j.biortech.2023.129478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The objective of this review is to encourage the technical development of biochar-assisted microbial fermentation. To this end, recent advances in biochar applications for microbial fermentation processes (i.e., non-methane products of hydrogen, acids, alcohols, and biofertilizer) have been critically reviewed, including process performance, enhanced mechanisms, and current research gaps. Key findings of enhanced mechanisms by biochar applications in biochemical conversion platforms are summarized, including supportive microbial habitats due to the immobilization effect, pH buffering due to alkalinity, nutrition supply due to being rich in nutrient elements, promoting electron transfer by acting as electron carriers, and detoxification of inhibitors due to high adsorption capacity. The current technical limitations and biochar's industrial applications in microbial fermentation processes are also discussed. Finally, suggestions like exploring functionalized biochar materials, biochar's automatic addition and pilot-scale demonstration are proposed. This review would further promote biochar applications in microbial fermentation processes for the production of non-methane products.
Collapse
Affiliation(s)
- Le Zhang
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - To-Hung Tsui
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Sigal Sharon
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Oded Shoseyov
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
6
|
Araújo ES, Pereira MFG, da Silva GMG, Tavares GF, Oliveira CYB, Faia PM. A Review on the Use of Metal Oxide-Based Nanocomposites for the Remediation of Organics-Contaminated Water via Photocatalysis: Fundamentals, Bibliometric Study and Recent Advances. TOXICS 2023; 11:658. [PMID: 37624163 PMCID: PMC10458580 DOI: 10.3390/toxics11080658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The improper disposal of toxic and carcinogenic organic substances resulting from the manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water resources and cause serious damage to animal and human health and to the ecosystem. In this sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides or between these oxides and other functional semiconductor materials, have gained increasing attention from researchers and industrial developers as a potential alternative to produce efficient and environmentally friendly photocatalysts for the remediation of water contamination by organic compounds. Thus, this work presents an updated review of the main advances in the use of metal oxide nanocomposites-based photocatalysts for decontamination of water polluted by these substances. A bibliometric analysis allowed to show the evolution of the importance of this research topic in the literature over the last decade. The results of the study also showed that hierarchical and heterogeneous nanostructures of metal oxides, as well as conducting polymers and carbon materials, currently stand out as the main materials for the synthesis of MON, with better photocatalysis performance in the degradation of dyes, pharmaceuticals and pesticides.
Collapse
Affiliation(s)
- Evando S. Araújo
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, Brazil;
| | - Michel F. G. Pereira
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, Brazil;
| | - Georgenes M. G. da Silva
- Federal Institute of Education, Science and Technology of the Sertão Pernambucano, Petrolina 56314-520, Brazil;
| | - Ginetton F. Tavares
- Research and Extension Center, Laboratory of Fuels and Materials (NPE/LACOM), Department of Chemistry, Federal University of Paraíba, Campus I, João Pessoa 58051-900, Brazil;
| | - Carlos Y. B. Oliveira
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina, Florianópolis 88040-535, Brazil;
| | - Pedro M. Faia
- Electrical and Computer Engineering Department, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), FCTUC, University of Coimbra, Polo 2, Pinhal de Marrocos, 3030-290 Coimbra, Portugal;
| |
Collapse
|
7
|
Zhang Y, Zhao C, Ren F, Wang X, Sun X, Zou Y, Liu Y, Tian Y. Treatment of compressed leachate from refuse transfer stations by freeze-melt method. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:181-190. [PMID: 37059042 DOI: 10.1016/j.wasman.2023.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
A small amount of leachate with complex composition will be produced during the compressing of municipal solid waste in refuse transfer stations. In this study, the freeze-melt method, a green and efficient wastewater treatment technology, was used to treat the compressed leachate. The effects of freezing temperature, freezing duration, and ice melting method on the removal rates of contaminants were investigated. The results showed that the freeze-melt method was not selective for the removal of chemical oxygen demand (COD), total organic carbon (TOC), ammonia-nitrogen (NH3-N) and total phosphorus (TP). The removal rate of contaminants was positively correlated with freezing temperature and negatively correlated with freezing duration, and the slower the growth rate of ice, the higher the purity of ice. When the compressed leachate was frozen at -15 °C for 42 h, the removal rates of COD, TOC, NH3-N and TP were 60.00%, 58.40%, 56.89% and 55.34%, respectively. Contaminants trapped in ice were removed during the melting process, especially in the early stages of melting. The divided melting method was more beneficial than the natural melting method in removing contaminants during the initial stage of melting, which contributes to the reduction of produced water losses. This study provides a new idea for the treatment of small amounts of highly concentrated leachate generated by compression facilities distributed in various corners of the city.
Collapse
Affiliation(s)
- Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China.
| | - Chen Zhao
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Fangyun Ren
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xiufeng Wang
- Shandong Peninsula Water Development Co., Ltd., Yantai 265200, China
| | - Xiuping Sun
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yihong Zou
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yepeng Tian
- Yantai University Trier College of Sustainable Technology, Yantai University, Yantai 264005, China
| |
Collapse
|
8
|
Bian X, Wang K, Gong H. Biochar-enhanced agricultural application of liquid digestate from food waste anaerobic digestion for celery cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161562. [PMID: 36638990 DOI: 10.1016/j.scitotenv.2023.161562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/08/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
In this research, the performance of biochar-enhanced agricultural application of food waste liquid digestate for celery cultivation was investigated to reveal its utilization potential and environmental impacts. Liquid digestate demonstrated a good agronomic effect, with a significant fertilization efficiency of 42.3 % during celery growth. With liquid digestate addition (270 t/ha), the same level of harvested celery yield of 15,345 kg/ha was achieved compared with chemical fertilizer utilization of 15,495 kg/ha. Based on the same nitrogen input, the liquid digestate application increased the sugar content of the harvested celery (7 %-15 %) while decreasing the nitrate content (29 %-45 %). The harvested celery with liquid digestate application indicated higher contents of total nitrogen, total phosphorus and total potassium levels than those in the chemical fertilizer group. Liquid digestate as a fertilizer supplemented the soil with nutrients, including phosphorus, potassium and organic matter, but did not cause excessive accumulation. The inorganic nitrogen content of the leachate increased as applied liquid digestate increased. However, it remained 20 %-60 % lower than that of chemical fertilizer at the same fertilization efficiency. After applying liquid digestate, there was no significant increase was observed in soil salinity. The coupled addition of biochar helps to improve the overall effects of liquid digestate for agricultural application and reduce negative environmental impacts. This study demonstrates that returning liquid digestate to agricultural fields as fertilizer is an environmentally and economically beneficial practice.
Collapse
Affiliation(s)
- Xiao Bian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Gong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Paletta R, Candamano S, Filippelli P, Lopresto CG. Influence of Fe2O3 Nanoparticles on the Anaerobic Digestion of Macroalgae Sargassum spp. Processes (Basel) 2023. [DOI: 10.3390/pr11041016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The anaerobic digestion (AD) of biomass is a green technology with known environmental benefits for biogas generation. The biogas yield from existing substrates and the biodegradability of biomasses can be improved by conventional or novel enhancement techniques, such as the addition of iron-based nanoparticles (NPs). In this study, the effect of different concentrations of Fe2O3-based NPs on the AD of brown macroalga Sargassum spp. has been investigated by 30 days trials. The effect of NPs was evaluated at different concentrations. The control sample yielded a value of 80.25 ± 3.21 NmLCH4/gVS. When 5 mg/g substrate and 10 mg/g substrate of Fe2O3 NPs were added to the control sample, the yield increased by 24.07% and 26.97%, respectively. Instead, when 50 mg/g substrate of Fe2O3 NPs was added to the control sample, a negative effect was observed, and the biomethane yield decreased by 38.97%. Therefore, low concentrations of Fe2O3 NPs favor the AD process, whereas high concentrations have an inhibitory effect. Direct interspecies electron transfer (DIET) via Fe2O3 NPs and their insolubility play an important role in facilitating the methanogenesis process during AD.
Collapse
|
10
|
Tsui TH, van Loosdrecht MCM, Dai Y, Tong YW. Machine learning and circular bioeconomy: Building new resource efficiency from diverse waste streams. BIORESOURCE TECHNOLOGY 2023; 369:128445. [PMID: 36473583 DOI: 10.1016/j.biortech.2022.128445] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biorefinery systems are playing pivotal roles in the technological support of resource efficiency for circular bioeconomy. Meanwhile, artificial intelligence presents great potential in handling scientific tasks of high-dimensional complexity. This review article scrutinizes the status of machine learning (ML) applications in four critical biorefinery systems (i.e. composting, fermentation, anaerobic digestion, and thermochemical conversions) as well as their advancements against traditional modeling techniques of mechanistic approach. The contents cover their algorithm selections, modeling challenges, and prospective improvements. Perspectives are sketched to further inform collective efforts on crucial aspects. The multidisciplinary interchange of modeling knowledge will enable a more progressive digital transformation of sustainability efforts in supporting sustainable development goals.
Collapse
Affiliation(s)
- To-Hung Tsui
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | | | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
11
|
Dogan H, Aydın Temel F, Cagcag Yolcu O, Turan NG. Modelling and optimization of sewage sludge composting using biomass ash via deep neural network and genetic algorithm. BIORESOURCE TECHNOLOGY 2023; 370:128541. [PMID: 36581236 DOI: 10.1016/j.biortech.2022.128541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this study, the use of Deep Cascade Forward Neural Network (DCFNN) was investigated to model both linear and non-linear chaotic relationships in co-composting of dewatered sewage sludge and biomass fly ash (BFA). Model results were evaluated in comparison with RSM, Feed Forward Neural Network (FFNN) and Feed Back Neural Network (FBNN), and Cascade Forward Neural Network (CFNN). DCFNN produced predictive results with MAPE values less than 1% for all datasets in all experimental designs except one with 1.99%. Furthermore, the decision variables were optimized by Genetic Algorithm (GA). The desirability level obtained from the optimization results was found to be 100% in a few designs and above 95% in all other designs. The results showed that DCFNN is a reliable and consistent tool for modeling composting process parameters, also GA is a satisfactory tool for determining which outputs the input parameters will produce in an experimental setup.
Collapse
Affiliation(s)
- Hale Dogan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| | - Fulya Aydın Temel
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Giresun 28200, Turkey
| | - Ozge Cagcag Yolcu
- Department of Statistics, Faculty of Sciences and Arts, Marmara University, İstanbul 34722, Turkey
| | - Nurdan Gamze Turan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| |
Collapse
|
12
|
Sun H, Liao C, Lu G, Zheng Y, Cheng Q, Xie Y, Wang C, Chen C, Li P. Role of Lactiplantibacillus paraplantarum during anaerobic storage of ear-removed corn on biogas production. BIORESOURCE TECHNOLOGY 2022; 364:128061. [PMID: 36195220 DOI: 10.1016/j.biortech.2022.128061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
To optimize the volatile fatty acid production for anaerobic fermentation, the ear-removed corn was ensiled without (control) or with Lactiplantibacillus plantarum (LP), Lacticaseibacillus paracasei (LC) and L. paraplantarum (LpP). Inoculation of LpP increased acetic acid content by 40%, and decreased butyric acid content by 38% in relative to control. Moreover, inoculation of LpP decreased the bacterial alpha diversity indices, while inherent species of Lentilactobacillus buchneri and L. hilgardii dominated the anaerobic fermentation. In particular, inoculation of LpP restricted the growth of yeasts and production of propionic acid at the early stage of storage, but continuously stimulated anaerobic fermentation, resulting in a higher maximal cumulative gas emissions of methane (by about 20 %) than that of LP and LC. Therefore, inoculation of LpP during anaerobic storage was favorable to produce intermediate metabolites (acetic acid) for subsequent biogas production of ear-removed corn.
Collapse
Affiliation(s)
- Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangrou Lu
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chunmei Wang
- Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
13
|
Qian X, Bi X, Xu Y, Yang Z, Wei T, Xi M, Li J, Chen L, Li H, Sun S. Variation in community structure and network characteristics of spent mushroom substrate (SMS) compost microbiota driven by time and environmental conditions. BIORESOURCE TECHNOLOGY 2022; 364:127915. [PMID: 36089128 DOI: 10.1016/j.biortech.2022.127915] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Global mushroom production is growing rapidly, raising concerns about polluting effects of spent mushroom substrate (SMS) and interest in uses in composts. In this study, SMS composting trials and high-throughput sequencing were carried out to investigate to better understand how the structure, co-occurrence patterns, and functioning of bacterial and fungal communities vary through compost time and across environmental conditions. The results suggested that both bacterial and fungal microbiota displayed significant variation in community composition across different composting stages. Enzyme activity levels showed both directional and fluctuating changes during composting, and the activity dynamics of carboxymethyl cellulase, polyphenol oxidase, laccase, and catalase correlated significantly with the succession of microbial community composition. The co-occurrence networks are "small-world" and modularized and the topological properties of each subnetwork were significantly influenced by the environmental factors. Finally, seed germination and seedling experiments were performed to verify the biosafety and effectiveness of the final composting products.
Collapse
Affiliation(s)
- Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohui Bi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfei Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziwei Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taotao Wei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijuan Xi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanzhou Li
- Wuhan Benagen Technology Company, Wuhan 430000, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
14
|
Tang W, Huang C, Ling Z, Lai C, Yong Q. Efficient utilization of waste wheat straw through humic acid and ferric chloride co-assisted hydrothermal pretreatment for fermentation to produce bioethanol. BIORESOURCE TECHNOLOGY 2022; 364:128059. [PMID: 36191752 DOI: 10.1016/j.biortech.2022.128059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The adsorbed ash and lignin contained in waste wheat straw (WWS) have been the essential factors restricting its high-value utilization in biorefinery. Hence, humic acid (HA) and FeCl3 as the additives of hydrothermal pretreatment were applied to simultaneously enhance the removal of lignin and eliminate the acid buffering of ash in WWS, respectively. The results showed that the xylan and lignin removal of WWS pretreated with 10 g/L HA and 20 mM FeCl3 could be efficiently increased from 61.4% to 72.9% and from 14.7% to 38.7%, respectively. The enzymatic hydrolysis efficiency and ethanol yield of WWS were increased this way from 44.4% to 82.7% and from 20.55% to 36.86%, respectively. According to the characterization of WWS, the synergistic interaction between HA and FeCl3 was beneficial to the cellulose accessibility and surface lignin area of WWS changed in positive directions, leading to the improvement of hydrolysis efficiency.
Collapse
Affiliation(s)
- Wei Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
Castro AR, Martins G, Salvador AF, Cavaleiro AJ. Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms 2022; 10:2142. [PMID: 36363734 PMCID: PMC9695802 DOI: 10.3390/microorganisms10112142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/22/2023] Open
Abstract
Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted.
Collapse
Affiliation(s)
- Ana R. Castro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Gilberto Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Andreia F. Salvador
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Ana J. Cavaleiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| |
Collapse
|
16
|
Continuous Systems Bioremediation of Wastewaters Loaded with Heavy Metals Using Microorganisms. Processes (Basel) 2022. [DOI: 10.3390/pr10091758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution is a serious concern of the modern era due to its widespread negative effects on human health and to the environment. Conventional technologies applied for the uptake of this category of persistent pollutants are complex, often expensive, and inefficient at low metal concentrations. In the last few years, non-conventional alternatives have been studied in search of better solutions in terms of costs and sustainability. Microbial adsorbents are one of the biomass-based sorbents that have extensively demonstrated excellent heavy metals removal capacity even at low concentrations. However, most of the carried-out research regarding their application in wastewater treatment has been performed in discontinuous systems. The use of microorganisms for the uptake of metal ions in continuous systems could be an important step for the upscale of the remediation processes since it facilitates a faster remediation of higher quantities of wastewaters loaded with heavy metals, in comparison with batch systems removal. Thus, the current research aims to analyze the available studies focusing on the removal of metal ions from wastewaters using microorganisms, in continuous systems, with a focus on obtained performances, optimized experimental conditions, and the sustainability of the bioremoval process. The present work found that microbial-based remediation processes have demonstrated very good performances in continuous systems. Further sustainability analyses are required in order to apply the bioremediation technology in an optimized environmentally friendly way in large-scale facilities.
Collapse
|
17
|
Membrane Fouling Prediction Based on Tent-SSA-BP. MEMBRANES 2022; 12:membranes12070691. [PMID: 35877894 PMCID: PMC9318055 DOI: 10.3390/membranes12070691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
In view of the difficulty in obtaining the membrane bioreactor (MBR) membrane flux in real time, considering the disadvantage of the back propagation (BP) network in predicting MBR membrane flux, such as the local minimum value and poor generalization ability of the model, this article introduces tent chaotic mapping in the standard sparrow search algorithm (SSA), which improves the uniformity of population distribution and the searching ability of the algorithm (used to optimize the key parameters of the BP network). The tent sparrow search algorithm back propagation network (Tent-SSA-BP) membrane fouling prediction model is established to achieve accurate prediction of membrane flux; compared to the BP, genetic algorithm back propagation network (GA-BP), particle swarm optimization back propagation network (PSO-BP), sparrow search algorithm extreme learning machine(SSA-ELM), sparrow search algorithm back propagation network (SSA-BP), and Tent particle swarm optimization back propagation network (Tent–PSO-BP) models, it has unique advantages. Compared with the BP model before improvement, the improved soft sensing model reduces MAPE by 96.76%, RMSE by 99.78% and MAE by 95.61%. The prediction accuracy of the algorithm proposed in this article reaches 97.4%, which is much higher than the 48.52% of BP. It is also higher than other prediction models, and the prediction accuracy has been greatly improved, which has some engineering reference value.
Collapse
|
18
|
Zhang L, Li F, Tsui TH, Yoh K, Sun J, Loh KC, Wang CH, Dai Y, Tong YW. Microbial succession analysis reveals the significance of restoring functional microorganisms during rescue of failed anaerobic digesters by bioaugmentation of nano-biochar-amended digestate. BIORESOURCE TECHNOLOGY 2022; 352:127102. [PMID: 35367604 DOI: 10.1016/j.biortech.2022.127102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Nano-biochar application was investigated for anaerobic digestion of orange peel waste. The application for methane production focused on the optimization of biochar feedstock, rescue of failed digesters, and microbial succession analysis. It showed that sewage sludge (SS) derived biochar had the highest performance enhancement among the different feedstocks, which could be ascribed to the improvement of electron transfer, interspecies hydrogen transfer, and supply of trace elements. Subsequently, nano SS biochar-amended digestate was evaluated for rescuing failed digesters, and the experimental results indicated its positive roles through gradual bioaugmentation operation. The dynamic analysis of microbial succession indicated the successful application was through the mechanism of restoring partially the functional microbial communities. The major reconstruction of functional microorganisms included bacteria phyla Hydrogenispora (24.5%) and Defluviitoga (18.8%) as well as methanogenic genera of Methanosarcina (41.5%) and Methanobacterium (27.3%). These findings would contribute to rescuing failed anaerobic digesters by bioaugmentation with biochar-amended digestate.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Fanghua Li
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Kato Yoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jiachen Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Kai-Chee Loh
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|