1
|
Guo X, Su Q, Fan X, Liu X, Wang Y. Real "zero energy consumption" for efficient antibiotics degradation by floating photocatalysis: modeling, degradation pathway and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125798. [PMID: 40393119 DOI: 10.1016/j.jenvman.2025.125798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/20/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
Abstract
Floating photocatalysis is a real "zero energy consumption" and practicable green water treatment technology because of no need for reactor and pump, and direct contact with sunlight to produce more free radicals compared to traditional immersion photocatalysts. To realize "green" and "safe" practical application, efficiency for different water quality bodies and toxicity assessment of degradation products are key factors. In this work, an economic and efficient floating photocatalyst Bi doped P25-TiO2 (Bi@P25)/expanded perlite (EP), named BTEP was successfully constructed, exhibiting stronger visible light absorption and faster photogenerated carriers separation ability due to Bi doping and formation of Bi-O-Si bond. Ciprofloxacin (CIP) degradation efficiency (10 mg/L) in deionized water and three types of ambient water reached 97.8 % and 52.9 %-75.2 %, respectively, based on the major active species (h+ and •O2-). Three degradation pathways were determined and the reduced toxicity of most intermediates proved the process is green and safe. BTEP had strong adaptability over a wide pH range (3-9). The degradation efficiency is promoted by higher temperatures, while depressed by humic acid (HA) (still maintain over 65.3 % at 15 mg/L of HA). Moreover, the Random Forest model is the most suitable to achieve degradation efficiency prediction of different water parameters duo to the lowest root mean square error (RMSE) value (9.52) and the highest R2 value (0.9045). The BTEP based floating photocatalysis promotes the practical application of solar photocatalytic technology and realizes zero energy consumption to remove pollutants.
Collapse
Affiliation(s)
- Xinrui Guo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Qi Su
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaoyu Fan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xianjing Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
2
|
Li J, Peng X, Zeng P, Shen L, Li M, Guo Y. Removal of sulfonamides by persulfate-based advanced oxidation: A mini review. CHEMOSPHERE 2025; 370:143874. [PMID: 39638125 DOI: 10.1016/j.chemosphere.2024.143874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Sulfonamides (SAs) are known for their persistence and have become one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in the environments. The widespread presence of SAs in natural waters, wastewater, soil, and sediment has prompted growing concern due to their potential threats to both human health and ecological systems. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as a promising technology for effectively mitigating the presence of these pollutants in the environment. This review offers a comprehensive overview of the degradation of SAs by PS-AOPs. The various activation methods of persulfate for the purpose of removing SAs are elaborated upon in detail. The factors influencing the removal efficiency of SAs through PS-AOPs is thoroughly discussed. Additionally, the conceivable mechanisms and degradation pathways associated with various types of SAs are discussed. Lastly, existing challenges are identified, and future prospects pertaining to the utilization of PS-AOPs for efficient SA removal are presented.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiangtian Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Shenyang University of Technology, Shenyang, 110870, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Liang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; North China Electric Power University, Beijing, 102206, China
| | - Yanfei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Gao H, Fang M, Zhang Z, Han Y, Wang D, Wang Y, Xia H, Zhu X, Miao S, Kang X. Electronic coupling of iron-cobalt in Prussian blue towards improved peroxydisulfate activation. J Colloid Interface Sci 2025; 678:1087-1098. [PMID: 39241470 DOI: 10.1016/j.jcis.2024.08.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Prussian blue analogs (PBAs) have attracted extensive attention in the field of aqueous organic degradation due to the tremendous potential for peroxydisulfate (PDS) activation. However, the relationship between the d-band center of the catalyst and the activation behavior of PDS remained largely unexplored. Herein, a series of Fe-Co PBAs-based catalysts with different Fe/Co ratios (Fe-Co PBAs-1 = 1: 0.52; Fe-Co PBAs-2 = 1: 1.21, and Fe-Co PBAs-3 = 1: 1.48) have been prepared by a facile hydrothermal procedure and subsequent acid treatment (Fe-Co PBAs-xH). The as-prepared Fe-Co PBAs-xH exhibited superior PDS activation performance and excellent recyclability in the degradation of methylene blue (MB). Density functional theory calculations revealed that the electron-occupied state of the Fe-Co PBAs was shifted to the Fermi level, indicating a strong interaction and easier electron transfer. Moreover, the d-band center of Fe-Co PBAs was upshifted relative to that of Fe PBAs, suggesting easier adsorption of MB and PDS, which was beneficial to enhancing catalytic activation and subsequent dissociation. Radicals such as •OH, 1O2, O2•-, and SO4•- were determined by the radical quenching experiment and electron paramagnetic resonance (EPR) testing in the Fe-Co PBAs-3H/PDS system, and the order of MB degradation by the free active radical is •OH > 1O2 > O2•- > SO4•-. The degradation pathway and potential ecotoxicity of MB and its intermediates were also studied. This work can provide new insights to construct the efficient catalysts for the activation of PDS and the degradation of organic pollutants.
Collapse
Affiliation(s)
- Hongcheng Gao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Mengchen Fang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Zhenzhu Zhang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Yi Han
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Dejin Wang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Yi Wang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Hongyu Xia
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Xiaojing Zhu
- Research Center of Advanced Chemical Equipment, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China.
| | - Shihao Miao
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
4
|
Wang S, Zhang Y, Huang X. Hydroxylamine hydrochloride-driven activation of NiFe 2O 4 for the degradation of phenol via peroxymonosulfate. ENVIRONMENTAL RESEARCH 2024; 263:120057. [PMID: 39332795 DOI: 10.1016/j.envres.2024.120057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
In this study, hydroxylamine hydrochloride (HA) was employed to enhance the activation of NiFe2O4 towards peroxymonosulfate (PMS) for the effective degradation of phenol. NiFe2O4 particles were synthesized via a simple hydrothermal method, followed by characterization of their surface morphology, and microstructure. Upon the addition of HA to the system of NiFe2O4/PMS, the degradation activity is significantly enhanced. The degradation efficiency of phenol reached 98.5% after 60 min using 0.6 g/L NiFe2O4, 3 mmol/L PMS, 2 mmol/L HA at pH 7, which increased by 4.76 times compared to the system without HA. The study further explored the activation mechanism of the NiFe2O4/HA/PMS system, revealing that HA significantly enhanced the conversion of Fe3+/Fe2+ and the leaching of metal ions, thereby accelerating the reaction rate. In addition, the NiFe2O4/HA/PMS system proved effective across a broad range of pH values. This study provides new insights and perspectives into enhancing peroxymonosulfate activation coupled with metal oxides catalysts through the use of reducing agents.
Collapse
Affiliation(s)
- Shuo Wang
- School of Urban Construction, Yangtze University, Jingzhou, 434000, PR China
| | - Ying Zhang
- School of Urban Construction, Yangtze University, Jingzhou, 434000, PR China.
| | - Xiangyang Huang
- School of Urban Construction, Yangtze University, Jingzhou, 434000, PR China
| |
Collapse
|
5
|
Zhao X, Liang X, Li Q, Xie W, Liu Q, Tang Y, Li Y, Zuo X, Yang H. Interface Structure Strengthening of a Mesoporous Silicon/Expanded Perlite Microevaporator for Efficient Solar-Driven Interfacial Evaporation. J Phys Chem Lett 2024; 15:8964-8972. [PMID: 39185946 DOI: 10.1021/acs.jpclett.4c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Solar-driven interfacial evaporation is one of the cutting-edge technologies for seawater desalination and wastewater purification. Herein, a floating carbon-coated silica microsphere/expanded perlite integrated interfacial microevaporator (HEPCL) is reported. The carbon nanolayer allows the HEPCL to have better broadband light absorption performance than natural graphite and graphene oxide. Through the low density of expanded perlite, HEPCL particles can self-float on the water surface and self-aggregate into an integrated whole under surface tension, which enhances the heat collection capacity. The hierarchical porous structure of the HEPCL has a continuous water absorption capacity. Notably, water molecules adsorbed in the HEPCL have a high desorption energy, which reduces the water evaporation enthalpy (1621 kJ/kg), making it easy to remove with external energy. Thanks to the design merits, the HEPCL achieves a water evaporation rate of 1.551 kg m-2 h-1 (efficiency of 94.85%) under 1 sun irradiation and may inspire a practicable solution of water scarcity.
Collapse
Affiliation(s)
- Xiaoguang Zhao
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Xiaozheng Liang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Quan Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
| | - Weimin Xie
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Qianqian Liu
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Yili Tang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Yihang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
| | - Xiaochao Zuo
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, People's Republic of China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
6
|
Sharma M, Sajwan D, Gouda A, Sharma A, Krishnan V. Recent progress in defect-engineered metal oxides for photocatalytic environmental remediation. Photochem Photobiol 2024; 100:830-896. [PMID: 38757336 DOI: 10.1111/php.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Rapid industrial advancement over the last few decades has led to an alarming increase in pollution levels in the ecosystem. Among the primary pollutants, harmful organic dyes and pharmaceutical drugs are directly released by industries into the water bodies which serves as a major cause of environmental deterioration. This warns of a severe need to find some sustainable strategies to overcome these increasing levels of water pollution and eliminate the pollutants before being exposed to the environment. Photocatalysis is a well-established strategy in the field of pollutant degradation and various metal oxides have been proven to exhibit excellent physicochemical properties which makes them a potential candidate for environmental remediation. Further, with the aim of rapid industrialization of photocatalytic pollutant degradation technology, constant efforts have been made to increase the photocatalytic activity of various metal oxides. One such strategy is the introduction of defects into the lattice of the parent catalyst through doping or vacancy which plays a major role in enhancing the catalytic activity and achieving excellent degradation rates. This review provides a comprehensive analysis of defects and their role in altering the photocatalytic activity of the material. Various defect-rich metal oxides like binary oxides, perovskite oxides, and spinel oxides have been summarized for their application in pollutant degradation. Finally, a summary of existing research, followed by the existing challenges along with the potential countermeasures has been provided to pave a path for the future studies and industrialization of this promising field.
Collapse
Affiliation(s)
- Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Anitya Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| |
Collapse
|
7
|
Wang C, Chang L, Zhang X, Chai H, Huang Y. Promoting oxygen vacancies utility for tetracycline degradation via peroxymonosulfate activation by reduced Mg-doped Co 3O 4: Kinetics and key role of electron transfer pathway. ENVIRONMENTAL RESEARCH 2024; 252:118892. [PMID: 38599451 DOI: 10.1016/j.envres.2024.118892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Developing cobalt-based catalysts with a high abundance of oxygen vacancies (Vo) and exceptional Vo utility efficiency for the prompt removal of stubborn contaminants through peroxymonosulfate (PMS) activation poses a significant challenge. Herein, we reported the synthesis of the reduced Mg-doped Co3O4 nanosheets, i.e. Mg-doped Co3O4-r, via Mg doping and followed by NaBH4 reduction, aiming to degrade tetracycline (TC). Various characterization results illustrated that NaBH4 reduction imparted higher Vo utility efficiency to Mg-doped Co3O4-r, along with an ample presence of reduced Co2+ species and an increased surface area, thereby substantially elevating PMS activation capability. Notably, Mg-doped Co3O4-r achieved more than 97.9% degradation of 20 mg/L TC within 10 min, showing an over 8-fold increase in reaction rate relative to the Mg-doped Co3O4 (kobs: 0.3285 min-1 vs 0.0399 min-1). The high removal efficiency of TC was sustained across a broad pH range of 3-11, even in the presence of common anions and humic acid. Radical quenching trials, EPR outcomes, and electrochemical analysis indicated that neither radicals nor 1O2 were the primary active species. Instead, electron transfer pathway played a dominant role in TC degradation. The Mg-doped Co3O4-r displayed excellent recyclability and versatility. Even after the fifth cycle, it maintained an impressive 83.0% removal of TC. Furthermore, it exhibited rapid degradation capabilities for various pollutants, including levofloxacin, pefloxacin, ciprofloxacin, malachite green, and rhodamine B. The TC degradation pathway was proposed based on LC-MS determination of its degradation intermediates. This study showcases an innovative strategy for the rational design of an efficient cobalt-based activator, leveraging electron transfer pathways through PMS activation to degrade antibiotics effectively.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Lian Chang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing University, Chongqing, 400045, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Seifikar F, Habibi-Yangjeh A. Floating photocatalysts as promising materials for environmental detoxification and energy production: A review. CHEMOSPHERE 2024; 355:141686. [PMID: 38513952 DOI: 10.1016/j.chemosphere.2024.141686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The oxygenation process of the catalyst surface, the incident-light harvesting capability, and facile recycling of utilized photocatalysts play key role in the outstanding photocatalytic performances. The typical existing photocatalysts in powder form have many drawbacks, such as difficult separation from the treated water, insufficient surface oxygenation, poor active surface area, low incident-light harvesting ability, and secondary pollution of the environment. A great number of scientific works introduced novel and fresh ideas related to designing floating photocatalytic systems by immobilizing highly active photocatalysts onto a floatable substrate. Thanks to direct contact with the illuminated light and oxygen molecules in the interface of water/air, the photocatalytic performance is maximized through production of more reactive species, employed in the photocatalytic reactions. Furthermore, facile recovering of the utilized photocatalysts for next processes avoids secondary pollution as well as diminishes the process's price. This review highlights the performance of developed floating photocatalysts for diverse applications. Furthermore, different floating substrates and possible mechanisms in floating photocatalysts are briefly mentioned. In addition, several emerging self-floating photocatalytic systems are taken attention and discussed. Specially, coupling photo-thermal and photocatalytic effects seems to be a good strategy for introducing a new class of floating photocatalyst to utilize the free, abundant, and green sunlight energy for the aims of water desalination and purification. Despite of a large number of attempts about the floating photocatalysts, there are still plenty of rooms for more in-depth research to be carried out for attaining the required characteristics of the large scale utilizations of these materials.
Collapse
Affiliation(s)
- Fatemeh Seifikar
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
9
|
Sabariselvan L, Okla MK, Brindha B, Kokilavani S, A Abdel-Maksoud M, El-Tayeb MA, Al-Ghamdi AA, Alatar AA, Sivaranjani PR, Sudheer Khan S. Interfacial coupling of CuFe 2O 4 induced hotspots over self-assembled g-C 3N 4 nanosheets as an efficient photocatalytic bacterial disinfectant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123076. [PMID: 38048873 DOI: 10.1016/j.envpol.2023.123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Most bacterial disinfectants contain high levels of extremely toxic and environmental hazardous chemicals, which pose a significant threat to the ecosystem. Semiconductor photocatalysis exhibits attractive prospects as an emerging greener technology for waste water disinfection. However, the fast recombination of charge carriers limits its practical application. Herein, self-assembled polymeric feather-like g-C3N4 (GCN) nanosheets modified with ferromagnetic CuFe2O4 (CFO) nanospheres were successfully applied as a reusable visible light photocatalytic disinfectant. As expected, the g-C3N4/CuFe2O4 (GCF) nanohybrid displayed superior photocatalytic inactivation efficiency of 0.157log within 120 min towards Escherichia coli DH5α (E. coli) compared with pristine GCN and CFO. The characterization results revealed the synergistic heterostructure interfaces, high surface area, and the transformative self-assembly of GCN to feather-like structure providing a rich active site for improved charge separation efficiency, and wide spectral response, therefore the superior performance of GCF. The radical trapping assay proclaimed that both O2•- and •OH radical played major role in the photocatalytic inactivation among the other reactive oxygen species (ROS). Furthermore, the chemical oxygen demand (COD), protein estimation, and DNA estimation assay results validated the cell damage caused by the photocatalyst. Besides that, GCN showed applicability in real-time wastewater samples with improved efficiency than in the saline solution. The excellent magnetic characteristics facilitated the recycling of the catalyst with insignificant leaching, magnetic induction, and distinguished separation. The results of this work signify the well-designed GCF as a high-performance and reusable photocatalyst for real-world pathogenic bacterial disinfection operations.
Collapse
Affiliation(s)
- L Sabariselvan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - B Brindha
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - P R Sivaranjani
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
10
|
Zhang W, Tan Q, Liu T, He Y, Chen G, Chen K, Han D, Qin D, Niu L. Fabrication of water-floating litchi-like polystyrene-sphere-supported TiO 2/Bi 2O 3 S-scheme heterojunction for efficient photocatalytic degradation of tetracycline. MATERIALS HORIZONS 2023; 10:5869-5880. [PMID: 37861418 DOI: 10.1039/d3mh01348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The exploration of advanced photocatalysts for antibiotic degradation is critical, but it remains a challenge due to the lack of rational structural design and in-depth insights into molecular oxygen activation. Water-floating photocatalysts could be one of the best choices owing to their technical features in terms of reasonability and efficiency involving a high oxygenation of photocatalyst surface, fully solar irradiation, and simple recycling and reuse. Herein, a floatable litchi-like architecture of a polystyrene-sphere-supported TiO2/Bi2O3 (PS@TiO2/Bi2O3) S-scheme heterojunction was skillfully constructed and evaluated for photodegradation of model tetracycline (TC) antibiotics. By integrating the advantages of floatability and S-scheme, the TC removal rate of the optimal PS@TiO2/Bi2O3-0.4 catalyst can reach 88.4% under 1 h illumination, which is higher than that of pristine Bi2O3 (60.8%) and PS@TiO2 (40.1%). Moreover, PS@TiO2/Bi2O3-0.4 exhibits high recyclability and stability, and there is no significant loss of activity after five cycles of repeated use. With the aid of liquid chromatography-mass spectrometry analysis and density functional theory calculations, a reasonable degradation pathway for TC was proposed. The present work provides a recyclable and efficient approach for the photodegradation of TC, expecting to guide the innovative exploitation of other environmental systems.
Collapse
Affiliation(s)
- Wensheng Zhang
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Qingmei Tan
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Tianren Liu
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ying He
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Gang Chen
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Ke Chen
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Dongxue Han
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongdong Qin
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- School of Civil Engineering c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
11
|
Shanavas S, Mohammad AH. Effective removal of azithromycin by novel g-C 3N 4/CdS/CuFe 2O 4 nanocomposite under visible light irradiation. CHEMOSPHERE 2023:139372. [PMID: 37391079 DOI: 10.1016/j.chemosphere.2023.139372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
In this study, the visible light active pristine, binary and ternary g-C3N4/CdS/CuFe2O4 nanocomposite is prepared through a coprecipitation-assisted hydrothermal technique. The characterization of the as-synthesized catalysts was conducted using various analytical techniques. When compared with pristine and binary nanocomposites, the ternary g-C3N4/CdS/CuFe2O4 nanocomposite exhibits higher photocatalytic degradation of azithromycin (AZ) under a visible light source. Ternary nanocomposite exhibits high AZ removal efficiency of about 85% within 90 min of the photocatalytic degradation experiment. Enhanced the visible light absorption ability and the suppression of photoexcited charge carriers is also achieved by forming heterojunctions between pristine materials. The ternary nanocomposite exhibited ∼2 times higher degradation efficiency than CdS/CuFe2O4 nanoparticles and ∼3 times higher degradation efficiency than CuFe2O4. The trapping experiments were conducted and it shows superoxide radicals (O2•-) are the predominant reactive species involved in the photocatalytic degradation reaction. This study provided a promising approach for the treatment of contaminated water using g-C3N4/CdS/CuFe2O4 as a photocatalyst.
Collapse
Affiliation(s)
- Shajahan Shanavas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Abu Haija Mohammad
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Sarkar P, Neogi S, De S. Accelerated radical generation from visible light driven peroxymonosulfate activation by Bi 2MoO 6/doped gCN S-scheme heterojunction towards Amoxicillin mineralization: Elucidation of the degradation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131102. [PMID: 36870125 DOI: 10.1016/j.jhazmat.2023.131102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
A novel S-scheme photocatalyst Bi2MoO6 @doped gCN (BMO@CN) was prepared through a facile microwave (MW) assisted hydrothermal process and further employed to degrade Amoxicillin (AMOX), by peroxymonosulfate (PMS) activation with visible light (Vis) irradiation. The reduction in electronic work functions of the primary components and strong PMS dissociation generate abundant electron/hole (e-/h+) pairs and SO4*-,*OH,O2*-reactive species, inducing remarkable degeneration capacity. Optimized doping of Bi2MoO6 on doped gCN (upto 10 wt%) generates excellent heterojunction interface with facile charge delocalization and e-/h+ separation, as a combined effect of induced polarization, layered hierarchical structure oriented visible light harvesting and formation of S-scheme configuration. The synergistic action of 0.25 g/L BMO(10)@CN and 1.75 g/L PMS dosage can degrade 99.9% of AMOX in less than 30 min of Vis irradiation, with a rate constant (kobs) of 0.176 min-1. The mechanism of charge transfer, heterojunction formation and the AMOX degradation pathway was thoroughly demonstrated. The catalyst/PMS pair showed a remarkable capacity to remediate AMOX-contaminated real-water matrix. The catalyst removed 90.1% of AMOX after five regeneration cycles. Overall, the focus of this study is on the synthesis, illustration and applicability of n-n type S-scheme heterojunction photocatalyst to the photodegradation and mineralization of typical emerging pollutants in the water matrix.
Collapse
Affiliation(s)
- Poulomi Sarkar
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudarsan Neogi
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
13
|
Serna-Galvis EA, Mendoza-Merlano C, Torres-Palma RA, Echavarría-Isaza A, Hoyos-Ayala DA. Materials Based on Co, Cu, and Cr as Activators of PMS for Degrading a Representative Antibiotic-The Strategy for Utilization in Water Treatment and Warnings on Metal Leaching. Molecules 2023; 28:molecules28114536. [PMID: 37299012 DOI: 10.3390/molecules28114536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
A chromate of copper and cobalt (Φy) was synthesized and characterized. Φy activated peroxymonosulfate (PMS) to degrade ciprofloxacin (CIP) in water. The Φy/PMS combination showed a high degrading capability toward CIP (~100% elimination in 15 min). However, Φy leached cobalt (1.6 mg L-1), limiting its use for water treatment. To avoid leaching, Φy was calcinated, forming a mixed metal oxide (MMO). In the combination of MMO/PMS, no metals leached, the CIP adsorption was low (<20%), and the action of SO4•- dominated, leading to a synergistic effect on pollutant elimination (>95% after 15 min of treatment). MMO/PMS promoted the opening and oxidation of the piperazyl ring, plus the hydroxylation of the quinolone moiety on CIP, which potentially decreased the biological activity. After three reuse cycles, the MMO still presented with a high activation of PMS toward CIP degradation (90% in 15 min of action). Additionally, the CIP degradation by the MMO/PMS system in simulated hospital wastewater was close to that obtained in distilled water. This work provides relevant information on the stability of Co-, Cu-, and Cr-based materials under interaction with PMS and the strategies to obtain a proper catalyst to degrade CIP.
Collapse
Affiliation(s)
- Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Carlos Mendoza-Merlano
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Adriana Echavarría-Isaza
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Dora A Hoyos-Ayala
- Grupo de Ingeniería y Gestión Ambiental (GIGA), Facultad de Ingeniería, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| |
Collapse
|
14
|
Tan M, Shi W, Wang H, Di G, Xie Z, Fan S, Tang J, Dong F. Effective photodegradation of antibiotics by guest-host synergy between photosensitizer and bismuth vanadate: Underlying mechanism and toxicity assessment. CHEMOSPHERE 2023; 325:138362. [PMID: 36905996 DOI: 10.1016/j.chemosphere.2023.138362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The removal of antibiotics in wastewater has attracted increasing attention. Herein, a superior photosensitized photocatalytic system was developed with acetophenone (ACP) as the guest photosensitizer, bismuth vanadate (BiVO4) as the host catalyst and poly dimethyl diallyl ammonium chloride (PDDA) as the bridging complex, and used for the removal of sulfamerazine (SMR), sulfadiazine (SDZ) and sulfamethazine (SMZ) in water under simulated visible light (λ > 420 nm). The obtained ACP-PDDA-BiVO4 nanoplates attained a removal efficiency of 88.9%-98.2% for SMR, SDZ and SMZ after 60 min reaction and achieved kinetic rate constant approximately 10, 4.7 and 13 times of BiVO4, PDDA-BiVO4 and ACP-BiVO4, respectively, for SMZ degradation. In the guest-host photocatalytic system, ACP photosensitizer was found to have a great superiority in enhancing the light absorption, promoting the surface charge separation-transfer and efficient generation of holes (h+) and superoxide radical (·O2-), greatly contributing to the photoactivity. The SMZ degradation pathways were proposed based on the identified degradation intermediates, involving three main pathways of rearrangement, desulfonation and oxidation. The toxicity of intermediates was evaluated and the results demonstrated that the overall toxicity was reduced compared with parent SMZ. This catalyst maintained 92% photocatalytic oxidation performance after five cyclic experiments and displayed a co-photodegradation ability to others antibiotics (e.g., roxithromycin, ciprofloxacin et al.) in effluent water. Therefore, this work provides a facile photosensitized strategy for developing guest-host photocatalysts, which enabling the simultaneous antibiotics removal and effectively reduce the ecological risks in wastewater.
Collapse
Affiliation(s)
- Meihong Tan
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Wanping Shi
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Haifeng Wang
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Guanglan Di
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengxin Xie
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Tang
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| |
Collapse
|
15
|
Golshan M, Tian N, Mamba G, Kakavandi B. Synergetic Photocatalytic Peroxymonosulfate Oxidation of Benzotriazole by Copper Ferrite Spinel: Factors and Mechanism Analysis. TOXICS 2023; 11:toxics11050429. [PMID: 37235244 DOI: 10.3390/toxics11050429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
The development of oxidation processes with the efficient generation of powerful radicals is the most interesting and thought-provoking dimension of peroxymonosulfate (PMS) activation. This study reports the successful preparation of a magnetic spinel of CuFe2O4 using a facile, non-toxic, and cost-efficient co-precipitation method. The prepared material exhibited a synergetic effect with photocatalytic PMS oxidation, which was effective in degrading the recalcitrant benzotriazole (BTA). Moreover, central composite design (CCD) analysis confirmed that the highest BTA degradation rate reached 81.4% after 70 min of irradiation time under the optimum operating conditions of CuFe2O4 = 0.4 g L-1, PMS = 2 mM, and BTA = 20 mg L-1. Furthermore, the active species capture experiments conducted in this study revealed the influence of various species, including •OH, SO4•-, O2•-, and h+ in the CuFe2O4/UV/PMS system. The results showed that SO4•- played a predominant role in BTA photodegradation. The combination of photocatalysis and PMS activation enhanced the consumption of metal ions in the redox cycle reactions, thus minimizing metal ion leaching. Additionally, this maintained the reusability of the catalyst with reasonable mineralization efficiency, which reached more than 40% total organic carbon removal after four batch experiments. The presence of common inorganic anions was found to have a retardant effect on BTA oxidation, with the order of retardation following: HCO3- > Cl- > NO3- > SO42-. Overall, this work demonstrated a simple and environmentally benign strategy to exploit the synergy between the photocatalytic activity of CuFe2O4 and PMS activation for the treatment of wastewater contaminated with widely used industrial chemicals such as BTA.
Collapse
Affiliation(s)
- Masoumeh Golshan
- Department of Environmental Health Engineering, Faculty of Health, Zabol University of Medical Sciences, Zabol 9861615881, Iran
| | - Na Tian
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Unidad Docente Ingeniería Sanitaria, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, s/n, 28040 Madrid, Spain
| | - Gcina Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, Florida, South Africa
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj 3149779453, Iran
- Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| |
Collapse
|
16
|
Nguyen AQK, Kim K, Ahn YY, Kim M, Kim G, Lee JT, Kim S, Kim J. Ice-templated synthesis of tungsten oxide nanosheets and their application in arsenite oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161104. [PMID: 36586697 DOI: 10.1016/j.scitotenv.2022.161104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Tungsten oxide (WO3) nanosheets were prepared as catalysts to activate hydrogen peroxide (H2O2) in arsenite (As(III)) oxidation. Ice particles were employed as templates to synthesize the WO3 nanosheets, enabling easy template removal via melting. Transmission electron microscopy and atomic force microscopy revealed that the obtained WO3 nanosheets were plate-like, with lateral sizes ranging from dozens of nanometers to hundreds of nanometers and thicknesses of <10 nm. Compared to that of the WO3 nanoparticle/H2O2 system, a higher efficiency of As(III) oxidation was observed in the WO3 nanosheet/H2O2 system. Electron spin resonance spectroscopy, radical quenching studies, and As(III) oxidation experiments under anoxic conditions suggested that the hydroperoxyl radical (HO2●) acted as the primary oxidant. The WO3 nanosheets possessed numerous surface hydroxyl groups and electrophilic metal centers, enhancing the production of HO2● via H2O2 activation. Various anions commonly present in As(III)-contaminated water exhibited little effect on As(III) oxidation in the WO3 nanosheet/H2O2 system. The high oxidation efficiency was maintained by adding H2O2 when it was depleted, suggesting that the catalytic activity of the WO3 nanosheets did not deteriorate after multiple catalytic cycles.
Collapse
Affiliation(s)
- Anh Quoc Khuong Nguyen
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Minsun Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Gonu Kim
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan 47162, Republic of Korea
| | - Jeong Tae Lee
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Soonhyun Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jungwon Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.
| |
Collapse
|
17
|
Qi L, Zhang H, Xiao C, Ni L, Chen S, Qi J, Zhou Y, Zhu Z, Li J. Improvement of peroxymonosulfate utilization efficiency for sulfamethazine degradation by photo-electron activating peroxymonosulfate: Performance and mechanism. J Colloid Interface Sci 2023; 633:411-423. [PMID: 36459944 DOI: 10.1016/j.jcis.2022.11.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Enhancing the utilization efficiency of oxidant is of great importance for advanced oxidation processes (AOPs). Herein, nitrogen-doped titania dioxide/carbon (NTC7) catalyst was fabricated via pyrolyzing NH2-MIL-125 under nitrogen atmosphere at 700 °C. Excitation of NTC7 under visible light can successfully achieve efficient activation of peroxymonosulfate (PMS) (NTC7 + PMS + Vis). Degradation performance and PMS activation mechanism were systematically investigated using sulfamethazine (SMT) as the target pollutant. It was found that the photo-generated electrons excited from NTC7 under visible light played the dominant role in enhancing the productive consumption of PMS. Its utilization increased by 66 % (Δ[PMS]/Δ[SMT] = 7.0) in NTC7 + PMS + Vis process and the degradation rate was 2.14 times higher than that of NTC7 + PMS process. The ketonic CO groups and structural defects were responsible for the generation of 1O2 in dark activation while radicals (•OH, O2•-) were more inclined to be continuously produced in NTC7 + PMS + Vis process. The involved degradation pathways, intermediates, and toxicity assessment have been studied in detail. This work provides an effective approach to enhance the utilization efficiency of oxidant for pollutant degradation by AOPs.
Collapse
Affiliation(s)
- Lanyue Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Linhan Ni
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Saisai Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|
18
|
Coordination-driven boron and copper on carbon nitride for peroxymonosulfate activation to efficiently degrade organic contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Liu Y, Wang X, Sun Q, Yuan M, Sun Z, Chen L, Zhang Y, Xia S, Zhao J. Enhanced activation of peroxymonosulfate by a floating FeMo 3O x/C 3N 4 photocatalyst under visible-light assistance for oxytetracycline degradation: Performance, mechanisms and comparison with H 2O 2 activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120668. [PMID: 36400139 DOI: 10.1016/j.envpol.2022.120668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In this study, a floating FeMo3Ox/C3N4-EP (FM-C-P) composite with highly stability and reusability was synthesized by an impregnation/calcination process and used to activate peroxymonosulfate (PMS) for oxytetracycline (OTC) degradation under visible light irradiation. The results demonstrated that 98.1% of OTC (50 mg/L) removal can be achieved by the activation of PMS (5 mM) using FM-C-P (1 g/L) in 30 min under visible light irradiation. The pseudo-first-order rate constant was calculated to be 0.181 min-1. The degradation process with PMS was hardly affected by pH (3-11) and co-existing substance. ·SO4-, ·OH, ·O2- and 1O2 were produced in the Vis/PMS/FM-C-P system and 1O2 was determined to be the main reactive oxygen species (ROSs). The high efficiency of ROSs production mainly contributed to two mechanisms. Firstly, via the combination of ≡Fe (II)-·SO5- and free state ·SO5-, 1O2 could be generated on the Fe-Nx site. Secondly, photo-induced electrons in the FeMo3Ox/g-C3N4 heterojunction could react with Fe (III) and Mo (VI) to form catalytically active species Fe (II) and Mo (IV). Moreover, the proposed degradation pathway and the toxicity of intermediated products was analyzed. Overall, this study was expected to deepen the understanding of the photo-assisted PMS activation and the generation of 1O2 with the presence of metal-oxide/C3N4 heterojunction.
Collapse
Affiliation(s)
- Yiyang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Qiunan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Meng Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zhenhua Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Liuyu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yanan Zhang
- College of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
20
|
Wang Q, Xiao M, Peng Z, Zhang C, Du X, Wang Z, Wang W. Visible LED photocatalysis combined with ultrafiltration driven by metal-free oxygen-doped graphitic carbon nitride for sulfamethazine degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129632. [PMID: 35872449 DOI: 10.1016/j.jhazmat.2022.129632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
A novel visible light emitting diode (LED) photocatalysis combined ultrafiltration (UF) system driven by metal-free O-doped C3N4 was established for sulfamethazine (SMZ) removal in environmental remediation. Among different O-doping ratios, 8%O-C3N4 exhibited the optimal SMZ degradation efficiency (89.36%) and the flux of 8%O-C3N4/LED/UF system could reach up to 38.92 L/m2/h. Benefitting from the O-doping, the synergetic effect of the expansion of visible-light absorption, enhancement of electron redox capacity, and improvement of e--h+ separation efficiency could produce the intensified photoactivity. Superoxide radical (O2•-) and single oxygen (1O2) were proved to be the primary active species by EPR and quenching tests. Moreover, the influence of several parameters such as photocatalyst dosage, SMZ concentration, raw turbidity and humic acid concentration in 8%O-C3N4/LED/UF system on SMZ removal were systematically studied. Under simulated surface water matrix, 8%O-C3N4/LED/UF system could also remove 96.88% SMZ and stable membrane flux stabilized as high as 33.36 L/m2/h. This study makes a demonstration for applying highly-effective powdery photocatalysts in the actual wastewater treatment and designing future photocatalytic reactors.
Collapse
Affiliation(s)
- Qiao Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mengyao Xiao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhitian Peng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chao Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
21
|
Guo P, Hu X. Co, Fe co-doped g-C3N4 composites as peroxymonosulfate activators under visible light irradiation for levofloxacin degradation: Characterization, performance and synergy mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Hollow Nanospheres Organized by Ultra-Small CuFe2O4/C Subunits with Efficient Photo-Fenton-like Performance for Antibiotic Degradation and Cr(VI) Reduction. Catalysts 2022. [DOI: 10.3390/catal12070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Hollow transition metal oxides have important applications in the degradation of organic pollutants by a photo-Fenton-like process. Herein, uniform, highly dispersible hollow CuFe2O4/C nanospheres (denoted as CFO/C-PNSs) were prepared by a one-pot approach. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images verified that the CFO/C-PNS catalyst mainly presents hollow nanosphere morphology with a diameter of 250 ± 30 nm. Surprisingly, the photodegradation test results revealed that CFO/C-PNSs had an excellent photocatalytic performance in the elimination of various organic contaminants under visible light through the efficient Fenton catalytic process. Due to the unique hollow structure formed by the assembly of ultra-small CFO/C subunits, the catalyst exposes more reaction sites, improving its photocatalytic activity. More importantly, the resulting magnetically separable CFO/C-PNSs exhibited excellent stability. Finally, the possible photocatalytic reaction mechanism of the CFO/C-PNSs was proposed, which enables us to have a clearer understanding of the photo-Fenton mechanism. Through a series of characterization and analysis of degradation behavior of CFO/C-PNS samples over antibiotic degradation and Cr(VI) reduction, •OH radicals generated from H2O2 decomposition played an essential role in enhancing the reaction efficiency. The present work offered a convenient method to fabricate hollow transition metal oxides, which provided impetus for further development in environmental and energy applications. Highlights: Novel hollow CuFe2O4/C nanospheres were prepared by a facile and cost-effective method. CuFe2O4/C exhibited excellent photo-Fenton-like performance for antibiotic degradation. Outstanding photocatalytic performance was attributed to the specific hollow cavity-porous structure. A possible mechanism for H2O2 activation over hollow CuFe2O4/C nanospheres was detailed and discussed.
Collapse
|