1
|
Uwanibe JN, Olawoye IB, Happi CT, Folarin OA. Genomic Characterization of Multidrug-Resistant Pathogenic Enteric Bacteria from Healthy Children in Osun State, Nigeria. Microorganisms 2024; 12:505. [PMID: 38543556 PMCID: PMC10974654 DOI: 10.3390/microorganisms12030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/01/2024] Open
Abstract
Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control.
Collapse
Affiliation(s)
- Jessica N. Uwanibe
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Oshogbo 232102, Osun State, Nigeria; (J.N.U.); (I.B.O.); (C.T.H.)
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Oshogbo 232102, Osun State, Nigeria
| | - Idowu B. Olawoye
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Oshogbo 232102, Osun State, Nigeria; (J.N.U.); (I.B.O.); (C.T.H.)
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Oshogbo 232102, Osun State, Nigeria
| | - Christian T. Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Oshogbo 232102, Osun State, Nigeria; (J.N.U.); (I.B.O.); (C.T.H.)
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Oshogbo 232102, Osun State, Nigeria
| | - Onikepe A. Folarin
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Oshogbo 232102, Osun State, Nigeria; (J.N.U.); (I.B.O.); (C.T.H.)
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Oshogbo 232102, Osun State, Nigeria
| |
Collapse
|
2
|
Lin H, Peddada SD. Multigroup analysis of compositions of microbiomes with covariate adjustments and repeated measures. Nat Methods 2024; 21:83-91. [PMID: 38158428 PMCID: PMC10776411 DOI: 10.1038/s41592-023-02092-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024]
Abstract
Microbiome differential abundance analysis methods for two groups are well-established in the literature. However, many microbiome studies involve more than two groups, sometimes even ordered groups such as stages of a disease, and require different types of comparison. Standard pairwise comparisons are inefficient in terms of power and false discovery rates. In this Article, we propose a general framework, ANCOM-BC2, for performing a wide range of multigroup analyses with covariate adjustments and repeated measures. We illustrate our methodology through two real datasets. The first example explores the effects of aridity on the soil microbiome, and the second example investigates the effects of surgical interventions on the microbiome of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Huang Lin
- Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park, NC, USA
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD, USA
| | - Shyamal Das Peddada
- Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Khan FM, Chen JH, Zhang R, Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol 2023; 14:1259210. [PMID: 37869651 PMCID: PMC10588457 DOI: 10.3389/fmicb.2023.1259210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Foodborne diseases are caused by food contaminated by pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Campylobacter, and Clostridium, a critical threat to human health. As a novel antibacterial agent against foodborne pathogens, endolysins are peptidoglycan hydrolases encoded by bacteriophages that lyse bacterial cells by targeting their cell wall, notably in Gram-positive bacteria due to their naturally exposed peptidoglycan layer. These lytic enzymes have gained scientists' interest in recent years due to their selectivity, mode of action, engineering potential, and lack of resistance mechanisms. The use of endolysins for food safety has undergone significant improvements, which are summarized and discussed in this review. Endolysins can remove bacterial biofilms of foodborne pathogens and their cell wall-binding domain can be employed as a tool for quick detection of foodborne pathogens. We explained the applications of endolysin for eliminating pathogenic bacteria in livestock and various food matrices, as well as the limitations and challenges in use as a dietary supplement. We also highlight the novel techniques of the development of engineering endolysin for targeting Gram-negative bacterial pathogens. In conclusion, endolysin is safe and effective against foodborne pathogens and has no adverse effect on human cells and beneficial microbiota. As a result, endolysin could be employed as a functional bio-preservative agent to improve food stability and safety and maintain the natural taste of food quality.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jie-Hua Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Uwanibe JN, O1awoye IB, Happi CT, Folarin OA. Genomic Characterisation of Multidrug-Resistant Pathogenic Enteric Bacteria from healthy children in Osun State, Nigeria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549742. [PMID: 37503211 PMCID: PMC10370152 DOI: 10.1101/2023.07.19.549742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Antimicrobial resistance (AMR) has been established to be a significant driver for the persistence and spread of bacterial infections. It is, therefore, essential to conduct epidemiological surveillance of AMR in healthy individuals to understand the actual dynamics of AMR in Nigeria. Multi-drug resistant Klebsiella quasivariicola (n=1), Enterobacter hormaechei (n=1), and Escherichia coli (n=3) from stool samples of healthy children were subjected to whole genome sequencing using Illumina Nextseq1000/2000 and Oxford nanopore. Bioinformatics analysis reveals antimicrobial resistance, virulence genes, and plasmids. This pathogenic enteric bacteria harbored more than three plasmid replicons of either Col and/or Inc type associated with outbreaks and AMR resistant gene pmrB responsible for colistin resistance. Plasmid reconstruction revealed an integrated tetA gene responsible for tetracycline resistance, and caa gene responsible for toxin production in two of the E.coli isolates, and a cusC gene known to induce neonatal meningitis in the K. quasivariicola ST3879. The global spread of MDR pathogenic enteric bacteria is a worrying phenomenon, and close surveillance of healthy individuals, especially children, is strongly recommended to prevent the continuous spread and achieve the elimination and eradication of these infections. Molecular epidemiological surveillance using whole genome sequencing (WGS) will improve the detection of MDR pathogens in Nigeria.
Collapse
Affiliation(s)
- Jessica N. Uwanibe
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| | - Idowu B. O1awoye
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| | - Christian T. Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| | - Onikepe A. Folarin
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| |
Collapse
|
5
|
Mehmood Khan F, Manohar P, Singh Gondil V, Mehra N, Kayode Oyejobi G, Odiwuor N, Ahmad T, Huang G. The applications of animal models in phage therapy: An update. Hum Vaccin Immunother 2023; 19:2175519. [PMID: 36935353 PMCID: PMC10072079 DOI: 10.1080/21645515.2023.2175519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.,Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Prasanth Manohar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vijay Singh Gondil
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nancy Mehra
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nelson Odiwuor
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Microbiology, Sino-Africa Joint Research Centre, Nairobi, Kenya
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|