1
|
Fedorov N, Shirokikh P, Zhigunova S, Baisheva E, Komissarov M, Muldashev A, Gabbasova D, Akhmetova M, Tuktamyshev I, Bikbaev I, Shendel G, Gulov D, Aivazyan M, Gimazetdinov V, Martynenko V. Productivity, carbon sequestration and species diversity in virgin and secondary meadow steppes of the Bashkir Cis-Urals. Sci Rep 2025; 15:17268. [PMID: 40389707 PMCID: PMC12089524 DOI: 10.1038/s41598-025-02493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/13/2025] [Indexed: 05/21/2025] Open
Abstract
Steppes are of great importance for the global biogeochemical cycle and are characterized by high economic value. Carbon stocks in the soil of flat steppe landscapes are about one-fourth of the total carbon deposited in global soils. However, improper methods of pasture management, especially overgrazing, have a serious negative impact on the structure and functioning of steppes. The aim of this study is to analyze carbon accumulation in virgin and secondary meadow steppes in the Bashkir Cis-Urals (Russia) depending on various methods of agricultural use. The data were collected on 10 sample plots laid on cropland, as well as in secondary and virgin meadow steppes. It was found that secondary meadow steppes on fallow lands abandoned for about 20-45 years are close to virgin steppes in terms of the dominant species composition but differ by low floristic diversity, a different proportion of steppe specialist species and lower root phytomass (60-100% lower than in the virgin steppe). The phytomass of all fractions of plant matter was the highest in virgin steppe. Under moderate agricultural use (occasional and moderate haymaking or grazing), the succession goes towards the restoration of steppe community structure and soil organic carbon content. Intensive grazing slows down the restorative succession and reduces the organic carbon content in the soil. Compared with the meadow steppes located at the foot and the lower part of the hill, the steppes of upper and middle parts of the same slope have a high stock of above-ground phytomass but contain less carbon in the soil due to water erosion.
Collapse
Affiliation(s)
- Nikolay Fedorov
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Ufa State Petroleum Technological University, Ufa, 450062, Russia
| | - Pavel Shirokikh
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia.
- Ufa State Petroleum Technological University, Ufa, 450062, Russia.
| | - Svetlana Zhigunova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Ufa State Petroleum Technological University, Ufa, 450062, Russia
| | - Elvira Baisheva
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Mikhail Komissarov
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Albert Muldashev
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Dilara Gabbasova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Milyausha Akhmetova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Ilshat Tuktamyshev
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Ufa State Petroleum Technological University, Ufa, 450062, Russia
| | - Ilnur Bikbaev
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Ufa State Petroleum Technological University, Ufa, 450062, Russia
| | - Galina Shendel
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Davut Gulov
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Mikhail Aivazyan
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Vazir Gimazetdinov
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Vasiliy Martynenko
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| |
Collapse
|
2
|
Ma H, Jia X, Chen W, Yang J, Liu J, Zhang X, Cui K, Shangguan Z, Yan W. Impact of warming and nitrogen addition on soil greenhouse gas fluxes: A global perspective. J Environ Sci (China) 2025; 151:88-99. [PMID: 39481979 DOI: 10.1016/j.jes.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 11/03/2024]
Abstract
Global warming and nitrogen (N) deposition have a profound impact on greenhouse gas (GHG) fluxes and consequently, they also affect climate change. However, the global combined effects of warming and N addition on GHG fluxes remain to be fully understood. To address this knowledge gap, a global meta-analysis of 197 datasets was performed to assess the response of GHG fluxes to warming and N addition and their interactions under various climate and experimental conditions. The results indicate that warming significantly increased CO2 emissions, while N addition and the combined warming and N addition treatments had no impact on CO2 emissions. Moreover, both warming and N addition and their interactions exhibited positive effects on N2O emissions. Under the combined warming and N addition treatments, warming was observed to exert a positive main effect on CO2 emissions, while N addition had a positive main effect on N2O emissions. The interactive effects of warming and N addition exhibited antagonistic effects on CO2, N2O, and CH4 emissions, with CH4 uptake dominated by additive effects. Furthermore, we identified biome and climate factors as the two treatments. These findings indicate that both warming and N addition substantially impact soil GHG fluxes and highlight the urgent need to investigate the influence of the combination of warming and N addition on terrestrial carbon and N cycling under ongoing global change.
Collapse
Affiliation(s)
- Hongze Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiguang Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyi Yang
- Shaanxi Institute of Geo-Environment Monitoring, Xi'an 710000, China
| | - Jin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoshan Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ke Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiming Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhu G, Wang Y, Huang A, Qin Y. Research Status and Development Trend of Greenhouse Gas in Wetlands: A Bibliometric Visualization Analysis. Ecol Evol 2025; 15:e70938. [PMID: 39916801 PMCID: PMC11799593 DOI: 10.1002/ece3.70938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
With the intensification of global warming, wetland greenhouse gas (GHG) emissions have attracted worldwide attention. However, the scientific understanding of wetland GHGs is still limited. To gain a comprehensive and systematic understanding of the current research status and development trends in wetland GHGs. We selected 1627 papers related to wetland GHG research from the Web of Science Core Collection database and used the bibliometric visualization analysis method to reveal the annual publication, main core research forces, research hotspots, and trends in this field. The results showed that the research in this field shows a steady upward trend. United States research institutions and scholars play a key role in this field. The research on "climate change" based on three major wetland GHGs (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) has been continuously gaining popularity. In recent years, "water" has become an emerging core topic. More and more studies have focused on enhancing wetland pollutant treatment capacity, improving wetland ecosystem productivity, maintaining water level stability, strengthening blue carbon sink function, exploring remote sensing applications in wetlands, and promoting wetland restoration to reduce GHG emissions. Furthermore, we discussed the influencing factors of the emission of CO2, CH4, and N2O in wetlands and summarized the potential methods to reduce GHG emissions. The findings provide scientific guidance and reference on wetland sustainable development and GHG emission reduction.
Collapse
Affiliation(s)
- Gege Zhu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
- University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, GuangxiGuilinChina
| | - Yan Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Anshu Huang
- Forest Resources and Ecological Environment Monitoring Center of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yingying Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
- University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, GuangxiGuilinChina
| |
Collapse
|
4
|
Wang Y, Yu D, Li J, Huang T. Modeling the carbon dynamics of ecosystem in a typical permafrost area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173204. [PMID: 38750735 DOI: 10.1016/j.scitotenv.2024.173204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Climate change poses mounting threats to fragile alpine ecosystem worldwide. Quantifying changes in carbon stocks in response to the shifting climate was important for developing climate change mitigation and adaptation strategies. This study utilized a process-based land model (Community Land Model 5.0) to analyze spatiotemporal variations in vegetation carbon stock (VCS) and soil organic carbon stock (SOCS) across a typical permafrost area - Qinghai Province, China, from 2000 to 2018. Multiple potential factors influencing carbon stocks dynamics were analyzed, including climate, vegetation, soil hydrothermal status, and soil properties. The results indicated that provincial vegetation carbon storage was 0.22 PgC (0.32 kg/m2) and soil organic carbon pool was 9.12 PgC (13.03 kg/m2). VCS showed a mild increase while SOCS exhibited fluctuating uptrends during this period. Higher carbon stocks were observed in forest (21.74 kg/m2) and alpine meadow (18.08 kg/m2) compared to alpine steppes (9.63 kg/m2). Over 90 % of the carbon was stored in the 0-30 cm topsoil layer. The contribution rates of soil carbon in the 30-60 cm and 60-100 cm soil layers were significantly small, despite increasing stocks across all depths. Solar radiation, temperature, and NDVI emerged as primary influential factors for overall carbon stocks, exhibiting noticeable spatial variability. For SOCS at different depths, the normalized differential vegetation index (NDVI) was the foremost predictor of landscape-level carbon distributions, which explained 52.8 % of SOCS variability in shallow layers (0-30 cm) but dropped to just 12.97 % at the depth of 30-60 cm. However, the dominance of NDVI diminished along the soil depth gradients, superseded by radiation and precipitation. Additionally, with an increase in soil depth, the influence of inherent soil properties also increased. This simulation provided crucial insights for landscape-scale carbon responses to climate change, and offered valuable reference for other climate change-sensitive areas in terms of ecosystem carbon management.
Collapse
Affiliation(s)
- Yusheng Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Deyong Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810016, China.
| | - Jingwen Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
5
|
Chen Y, Qin W, Zhang Q, Wang X, Feng J, Han M, Hou Y, Zhao H, Zhang Z, He JS, Torn MS, Zhu B. Whole-soil warming leads to substantial soil carbon emission in an alpine grassland. Nat Commun 2024; 15:4489. [PMID: 38802385 PMCID: PMC11130387 DOI: 10.1038/s41467-024-48736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
The sensitivity of soil organic carbon (SOC) decomposition in seasonally frozen soils, such as alpine ecosystems, to climate warming is a major uncertainty in global carbon cycling. Here we measure soil CO2 emission during four years (2018-2021) from the whole-soil warming experiment (4 °C for the top 1 m) in an alpine grassland ecosystem. We find that whole-soil warming stimulates total and SOC-derived CO2 efflux by 26% and 37%, respectively, but has a minor effect on root-derived CO2 efflux. Moreover, experimental warming only promotes total soil CO2 efflux by 7-8% on average in the meta-analysis across all grasslands or alpine grasslands globally (none of these experiments were whole-soil warming). We show that whole-soil warming has a much stronger effect on soil carbon emission in the alpine grassland ecosystem than what was reported in previous warming experiments, most of which only heat surface soils.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wenkuan Qin
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qiufang Zhang
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xudong Wang
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jiguang Feng
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Mengguang Han
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yanhui Hou
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hongyang Zhao
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Jin-Sheng He
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Margaret S Torn
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Energy and Resources Group, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Biao Zhu
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Tu X, Wang J, Liu X, Liu Y, Zhang Y, Uwiragiye Y, Elrys AS, Zhang J, Cai Z, Cheng Y, Müller C. Warming-Induced Stimulation of Soil N 2O Emissions Counteracted by Elevated CO 2 from Nine-Year Agroecosystem Temperature and Free Air Carbon Dioxide Enrichment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6215-6225. [PMID: 38546713 DOI: 10.1021/acs.est.3c10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Globally, agricultural soils account for approximately one-third of anthropogenic emissions of the potent greenhouse gas and stratospheric ozone-depleting substance nitrous oxide (N2O). Emissions of N2O from agricultural soils are affected by a number of global change factors, such as elevated air temperatures and elevated atmospheric carbon dioxide (CO2). Yet, a mechanistic understanding of how these climatic factors affect N2O emissions in agricultural soils remains largely unresolved. Here, we investigate the soil N2O emission pathway using a 15N tracing approach in a nine-year field experiment using a combined temperature and free air carbon dioxide enrichment (T-FACE). We show that the effect of CO2 enrichment completely counteracts warming-induced stimulation of both nitrification- and denitrification-derived N2O emissions. The elevated CO2 induced decrease in pH and labile organic nitrogen (N) masked the stimulation of organic carbon and N by warming. Unexpectedly, both elevated CO2 and warming had little effect on the abundances of the nitrifying and denitrifying genes. Overall, our study confirms the importance of multifactorial experiments to understand N2O emission pathways from agricultural soils under climate change. This better understanding is a prerequisite for more accurate models and the development of effective options to combat climate change.
Collapse
Affiliation(s)
- Xiaoshun Tu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Agricultural and Climate Change, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Liu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yinghua Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yves Uwiragiye
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, POB 25 Byumba, Rwanda
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yi Cheng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
- Soil and Fertilizer & Resources and Environmental Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Christoph Müller
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield Dublin 4, Ireland
| |
Collapse
|
7
|
Guo G, Li X, Kuai J, Zhang X, Peng X, Xu Y, Zeng G, Liu J, Zhang C, Lin J. Estimation of annual soil CO 2 efflux under the erosion and deposition conditions by measuring and modeling its respiration rate in southern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119686. [PMID: 38043318 DOI: 10.1016/j.jenvman.2023.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/01/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Soil respiration (Rs) is a crucial ecological process of carbon (C) cycling in the terrestrial ecosystems, and soil erosion has a significant impact on its C budget and balance. However, the variations of Rs rate and their CO2 efflux induced by erosion are currently poorly understood. To this end, four landscape positions (top, up, middle and toe) with different erosional and depositional characteristics were selected on a typical eroded slope in southern China to conduct field experiments, aiming to explore the effects of erosion and deposition on Rs among various sites. From March 2021 to February 2022, the in-situ Rs were measured using an automated soil respiration system, together with soil temperature at 5 cm depth (Ts5) and water content at 10 cm depth (SWC10). We initially constructed various Rs models across a one-year period, based on its relationships with Ts5 and SWC10. Subsequently, the seasonal changes of Rs at different erosional sites were simulated by the optimum models, and their annual CO2 fluxes were further estimated. The results showed that Rs rates at all sites displayed a bimodal seasonal pattern, with the highest values in May and August. And the measured Rs of the eroding and depositional sites were 0.05-7.71 and 1.47-13.03 μmol m-2 s-1, respectively. Also, remarkably higher Ts5 and SWC10 were observed in depositional sites versus the eroding sites (P < 0.05). Additionally, Rs rates at all sites were positively correlated with SOC and Ts5, but negatively correlated with SWC10. Herein, Rs models to single- and double-variable were established at different positions, and we found that the fitted R2 and AIC differed on various sites, primarily in erosional and depositional sites. Furthermore, through the best-fitting models (higher R2 and lowest AIC) we screened, the average Rs values of 3.03 and 4.46 μmol m-2 s-1 were quantitatively estimated for the eroding and depositional sites, respectively. Finally, it could be further assessed that the mean annual soil CO2-C efflux of eroded site (1104.14 g m-2) was significantly lower than that of depositional site (1629.46 g m-2). These findings highlighted the effect of erosion and deposition on Rs, which will facilitate a better understanding of C cycling in terrestrial ecosystems.
Collapse
Affiliation(s)
- Geng Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, Jiangsu Province, China
| | - Xiao Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jie Kuai
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, Jiangsu Province, China
| | - Xiang Zhang
- Suzhou Water Conservatory Design and Research Co., Ltd., Suzhou, 215000, Jiangsu Province, China
| | - Xiaoying Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, Jiangsu Province, China
| | - Yanyin Xu
- Yunnan Institute of Tropical Crops, Jinghong, 666100, Yunnan Province, China
| | - Guangruo Zeng
- Academy of Forestry of Ji'an City, Ji'an, 343000, Jiangxi Province, China
| | - Jun Liu
- Soil and Water Conservation Center of Xingguo County, Ganzhou, 341000, Jiangxi Province, China
| | - Chen Zhang
- Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang, 330096, Jiangxi Province, China
| | - Jie Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, Jiangsu Province, China.
| |
Collapse
|
8
|
Gao D, Li F, Gao W, Zeng Q, Liang H. Greenhouse gas fluxes from different types of permafrost regions in the Daxing'an Mountains, Northeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97578-97590. [PMID: 37596475 DOI: 10.1007/s11356-023-29262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/06/2023] [Indexed: 08/20/2023]
Abstract
Global warming will increase the greenhouse gas (GHG) fluxes of permafrost regions. However, little is known about the difference in GHG fluxes among different types of permafrost regions. In this study, we used the static opaque chamber and gas chromatography techniques to determine the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in predominantly continuous permafrost (PCP), predominantly continuous and island permafrost (PCIP), and sparsely island permafrost (SIP) regions during the growing season. The main factors causing differences in GHG fluxes among three types of permafrost regions were also analyzed. The results showed mean CO2 fluxes in SIP were significantly higher than that in PCP and PCIP, which were 342.10 ± 11.46, 105.50 ± 10.65, and 127.15 ± 14.27 mg m-2 h-1, respectively. This difference was determined by soil temperature, soil moisture, total organic carbon (TOC), nitrate nitrogen (NO3--N), and ammonium nitrogen (NH4+-N) content. Mean CH4 fluxes were -26.47 ± 48.83 (PCP), 118.35 ± 46.93 (PCIP), and 95.52 ± 32.86 μg m-2 h-1 (SIP). Soil temperature, soil moisture, and TOC content were the key factors to determine whether permafrost regions were CH4 sources or sinks. Similarly, PCP behaved as the sink of N2O, PCIP and SIP behaved as the source of N2O. Mean N2O fluxes were -3.90 ± 1.71, 0.78 ± 1.55, and 3.78 ± 1.59 μg m-2 h-1, respectively. Soil moisture and TOC content were the main factors influencing the differences in N2O fluxes among the three permafrost regions. This study clarified and explained the differences in GHG fluxes among three types of permafrost regions, providing a data basis for such studies.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Feng Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Weifeng Gao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Qingbo Zeng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
9
|
Afianto D, Han Y, Yan P, Yang Y, Elbarghthi AFA, Wen C. Optimisation and Efficiency Improvement of Electric Vehicles Using Computational Fluid Dynamics Modelling. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1584. [PMID: 36359674 PMCID: PMC9689435 DOI: 10.3390/e24111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Due to the rise in awareness of global warming, many attempts to increase efficiency in the automotive industry are becoming prevalent. Design optimization can be used to increase the efficiency of electric vehicles by reducing aerodynamic drag and lift. The main focus of this paper is to analyse and optimise the aerodynamic characteristics of an electric vehicle to improve efficiency of using computational fluid dynamics modelling. Multiple part modifications were used to improve the drag and lift of the electric hatchback, testing various designs and dimensions. The numerical model of the study was validated using previous experimental results obtained from the literature. Simulation results are analysed in detail, including velocity magnitude, drag coefficient, drag force and lift coefficient. The modifications achieved in this research succeeded in reducing drag and were validated through some appropriate sources. The final model has been assembled with all modifications and is represented in this research. The results show that the base model attained an aerodynamic drag coefficient of 0.464, while the final design achieved a reasonably better overall performance by recording a 10% reduction in the drag coefficient. Moreover, within individual comparison with the final model, the second model with front spitter had an insignificant improvement, limited to 1.17%, compared with 11.18% when the rear diffuser was involved separately. In addition, the lift coefficient was significantly reduced to 73%, providing better stabilities and accounting for the safety measurements, especially at high velocity. The prediction of the airflow improvement was visualised, including the pathline contours consistent with the solutions. These research results provide a considerable transformation in the transportation field and help reduce fuel expenses and global emissions.
Collapse
Affiliation(s)
- Darryl Afianto
- Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK
| | - Yu Han
- School of Mechanical and Electrical Engineering, Suqian University, Suqian 223800, China
| | - Peiliang Yan
- School of Energy and Power Engineering, Beihang University, Beijing 100190, China
| | - Yan Yang
- School of Petroleum Engineering, Changzhou University, Changzhou 213164, China
| | - Anas F. A. Elbarghthi
- Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Chuang Wen
- Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|