1
|
Li P, Meng X, Lu T, Sun C, Song G. Synergistic Effect of ROS and p38 MAPK in Apoptosis of TM4 Cells Induced by Titanium Dioxide Nanoparticles. J Appl Toxicol 2025. [PMID: 40229128 DOI: 10.1002/jat.4789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
The adverse effects of titanium dioxide nanoparticles (TiO2 NPs) on the integrity of the blood-testis barrier (BTB) are widely recognized. However, the underlying mechanisms remain incompletely understood. The integrity of the BTB is imperative for the preservation of male reproductive health. TM4 cells, which are major component of the BTB, play a critical role in its integrity. The apoptosis of TM4 cells is closely associated with the disruption of the BTB. Therefore, we selected TM4 cells as experimental models to investigate the apoptosis induced by TiO2 NPs and the underlying mechanisms. Cell viability, excessive production of reactive oxygen species (ROS), activation of p38 mitogen-activated protein kinase (MAPK) pathway, and apoptosis-related protein expression levels were determined under various concentrations (50, 100, 150, and 200 μg/mL) of TiO2 NPs exposure. The results indicate that TiO2 NPs induced the overproduction of ROS and activated the p38 MAPK signaling pathway, which subsequently led to apoptosis. The ROS scavenger N-acetylcysteine (NAC) was able to suppress the activation of p38 MAPK pathway induced by TiO2 NPs, while the p38 MAPK inhibitor SB203580 mitigated TiO2 NPs-induced ROS overproduction and subsequent apoptosis, suggesting an interplay between ROS overproduction and p38 MAPK pathway activation. In summary, TiO2 NPs induced mitochondrial apoptosis via the ROS-p38 MAPK axis. A positive feedback regulatory mechanism exists between the two processes, promoting apoptosis in TM4 cells through a synergistic effect.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianjiao Lu
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
- Beidaihe Rest and Recuperation Center of PLA, Qinhuangdao, China
| | - Chenhao Sun
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Zhao LX, Fan YG, Zhang X, Li C, Cheng XY, Guo F, Wang ZY. Graphdiyne biomaterials: from characterization to properties and applications. J Nanobiotechnology 2025; 23:169. [PMID: 40038692 PMCID: PMC11881411 DOI: 10.1186/s12951-025-03227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
Graphdiyne (GDY), the sole synthetic carbon allotrope with sp-hybridized carbon atoms, has been extensively researched that benefit from its pore structure, fully conjugated surfaces, wide band gaps, and more reactive C≡C bonds. In addition to the intrinsic features of GDY, engineering at the nanoscale, including metal/transition metal ion modification, chemical elemental doping, and other biomolecular modifications, endowed GDY with a broader functionality. This has led to its involvement in biomedical applications, including enzyme catalysis, molecular assays, targeted drug delivery, antitumor, and sensors. These promising research developments have been made possible by the rational design and critical characterization of GDY biomaterials. In contrast to other research areas, GDY biomaterials research has led to the development of characterization techniques and methods with specific patterns and some innovations based on the integration of materials science and biology, which are crucial for the biomedical applications of GDY. The objective of this review is to provide a comprehensive overview of the biomedical applications of GDY and the characterization techniques and methods that are essential in this process. Additionally, a general strategy for the biomedical research of GDY will be proposed, which will be of limited help to researchers in the field of GDY or nanomedicine.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Chan Li
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Xue-Yan Cheng
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Feng Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China.
| |
Collapse
|
3
|
Callegari A, Tucci M, Aulenta F, Cruz Viggi C, Capodaglio AG. Anaerobic sludge digestion enhancement with bioelectrochemical and electrically conductive materials augmentation: A state of the art review. CHEMOSPHERE 2025; 372:144101. [PMID: 39798721 DOI: 10.1016/j.chemosphere.2025.144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilization of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment. As for in-process amendments, iron, micro and macro-nutrients, ashes from waste incineration and nanoparticles addition have been studied for the improvement of enzymatic reactions. Recently, use of electrically conductive materials has been credited with the possibility to accelerate and stabilize the conversion of organic substrates to methane. The possibility of increasing both biogas generation and its relative biomethane content by interfacing anaerobic digestion with bioelectrochemical systems was also postulated. This review addresses the research gap surrounding the integration of anaerobic digestion with novel technologies, particularly bioelectrochemical systems, to enhance biogas production and methane enrichment. While existing studies focus on pre-treatment and in-process amendments, the feasibility, mechanisms, and benefits of such integration remain underexplored. By critically evaluating the current state of the art, this review identifies the potential of bioelectrochemical integration to improve energy recovery and process stability, while highlighting key challenges and research needs for advancing these technologies toward practical implementation.
Collapse
Affiliation(s)
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy; National Biodiversity Future Center, Palermo, 90133, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy
| | | |
Collapse
|
4
|
Nikšić V, Pirković A, Spremo-Potparević B, Živković L, Topalović D, Nedeljković JM, Lazić V. Bioactivity Assessment of Functionalized TiO 2 Powder with Dihydroquercetin. Int J Mol Sci 2025; 26:1475. [PMID: 40003940 PMCID: PMC11855565 DOI: 10.3390/ijms26041475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Biological activities, including cell viability, oxidative stress, genotoxicity/antigenotoxicity, and antimicrobial activity, were evaluated for a visible-light-responsive TiO2-based ICT complex with dihydroquercetin (DHQ) and compared with pristine TiO2, its inorganic component. Pristine TiO2 did not induce cytotoxicity in MRC-5 or HeLa cells within the tested concentration range (1-20 mg/mL), while TiO2/DHQ displayed a significant reduction in cell viability in both cell lines at higher concentrations (≥10 mg/mL). The analysis of reactive oxygen species (ROS) production revealed that TiO2/DHQ significantly reduced ROS levels in both cell types (MRC-5 and HeLa), with HeLa cells showing a more substantial reduction at lower concentrations. Genotoxicity assessment using the comet assay demonstrated that TiO2 induced DNA damage in MRC-5 cells, while TiO2/DHQ did not, indicating that DHQ mitigates the genotoxic potential of TiO2. Furthermore, TiO2/DHQ exhibited antigenotoxic effects by reducing H2O2-induced DNA damage in MRC-5 cells, supporting its protective role against oxidative stress. Preliminary antimicrobial tests revealed that TiO2/DHQ exhibits antimicrobial activity against E. coli under visible-light excitation, while TiO2 does not. These findings suggest that the TiO2-based ICT complex with DHQ with enhanced antioxidant properties can potentially serve as a safe, non-toxic biocide agent.
Collapse
Affiliation(s)
- Valentina Nikšić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Centre of Excellence for Photoconversion, University of Belgrade, 11351 Belgrade, Serbia; (V.N.); (J.M.N.)
| | - Andrea Pirković
- Department for Biology of Reproduction, INEP Institute for Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia;
| | - Biljana Spremo-Potparević
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.S.-P.); (L.Ž.)
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.S.-P.); (L.Ž.)
| | - Dijana Topalović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.S.-P.); (L.Ž.)
| | - Jovan M. Nedeljković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Centre of Excellence for Photoconversion, University of Belgrade, 11351 Belgrade, Serbia; (V.N.); (J.M.N.)
| | - Vesna Lazić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Centre of Excellence for Photoconversion, University of Belgrade, 11351 Belgrade, Serbia; (V.N.); (J.M.N.)
| |
Collapse
|
5
|
Dokania P, Roy D, Banerjee R, Sarkar A. Green synthesis of nanoparticles for waste water treatment. BIO REFINERY OF WASTEWATER TREATMENT 2025:171-202. [DOI: 10.1016/b978-0-323-95670-3.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Bui DXM, Nguyen UTP, Nguyen TTT, Nguyen DTD, Nguyen DTC, Tran TV. Biosynthesis of green CuO@C nanocomposite using Combretum indicum flower extract for organic dye removal: adsorption performance, modeling, and recyclability studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67613-67632. [PMID: 37740802 DOI: 10.1007/s11356-023-29707-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
Water contamination becomes one of the most high-priority environmental concerns, calling for the efficient treatment techniques. Bionanocomposites can be robust adsorbents, but the synthesis requires toxic chemicals or energy consuming and cause the secondary pollution. Green nanocomposites can be biogenically synthesized using the plant extract to end up with a critically safe strategy. Herein, we used the flower extract of Combretum indicum plant as a bio-based reductant and carbonaceous source for the green CuO@C nanocomposite. This green nanoadsorbent obtained a specific surface area of 17.33 m2/g, good crystallinity, and functional group-containing surface, i.e., -OH and -CONH-. We also conducted the optimization of parameters, i.e., concentration, CuO@C dose, pH, time, and temperature, and reached removal efficiencies towards malachite green (MG, 83.23%), Congo red (CR, 84.60%), brilliant blue (BB, 71.39%), and methylene blue (MB, 23.67%). The maximum adsorption capacities were found as ordered, MG (46.387 mg/g) > MB (23.154 mg/g) > BB (22.8 mg/g) > CR dye (11.063 mg/g). Through the intra-particle diffusion kinetic model, MG and BB adsorption endured a three-step process, while CR and MB adsorption was a two-step process. The recyclability of the green CuO@C nanocomposite was three cycles with 67.54% for the final cycle of BB removal. Moreover, the nanoadsorbent displayed a high stability, checked by X-ray diffraction, FT-IR analysis, EDX spectra, and SEM images. It is recommended that the green CuO@C nanocomposite biosynthesized using the Combretum indicum flower extract can be a good alternative for the dye treatment from wastewater.
Collapse
Affiliation(s)
- Duyen Xuan My Bui
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Vietnam
| | - Uyen Thi Phuong Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| | - Dinh Tien Dung Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.
| |
Collapse
|
7
|
Rasool A, Sri S, Zulfajri M, Sri Herwahyu Krismastuti F. Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. INORG CHEM COMMUN 2024; 169:112954. [DOI: 10.1016/j.inoche.2024.112954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Colleselli L, Mutschlechner M, Spruck M, Albrecht F, Strube OI, Vrabl P, Zeilinger S, Schöbel H. Light-mediated biosynthesis of size-tuned silver nanoparticles using Saccharomyces cerevisiae extract. Bioprocess Biosyst Eng 2024; 47:1669-1682. [PMID: 39003678 PMCID: PMC11399185 DOI: 10.1007/s00449-024-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Bio-based production of silver nanoparticles represents a sustainable alternative to commercially applied physicochemical manufacturing approaches and provides qualitatively highly valuable nanomaterials due to their narrow size dispersity, high stability and biocompatibility with broad application potentials. The intrinsic features of nanoparticles depend on size and shape, whereby the controlled synthesis is a challenging necessity. In the present study, the biosynthesis of size-tuned silver nanoparticles based on cell-free extracts of Saccharomyces cerevisiae DSM 1333 was investigated. Single parameter optimization strategies in phases of cultivation, extraction, and synthesis were performed to modify the nanoparticle scale and yield. Visible light was exploited as a tool in nanoparticle production. The influence of white light on the biosynthesis of silver nanoparticles was determined by using novel LED systems with the exposition of varying irradiation intensities and simultaneous performance of control experiments in the dark. Characterization of the resulting nanomaterials by spectrophotometric analysis, dynamic light scattering, scanning electron microscopy, and energy dispersive X-ray spectroscopy, revealed spherical silver nanoparticles with controlled, light-mediated size shifts in markedly increased quantities. Matching of irradiated and non-irradiated reaction mixtures mirrored the enormous functionality of photon input and the high sensitivity of the biosynthesis process. The silver nanoparticle yields increased by more than 90% with irradiation at 1.0 ± 0.2 mW cm - 2 and the reduction of particle dimensions was achieved with significant shifts of size-specific absorption maxima from 440 to 410 nm, corresponding to particle sizes of 130 nm and 100 nm, respectively. White light emerged as an excellent tool for nano-manufacturing with advantageous effects for modulating unique particle properties.
Collapse
Affiliation(s)
- Lucia Colleselli
- Department of Biotechnology and Food Engineering, MCI - The Entrepreneurial School, Maximilianstrasse 2, 6020, Innsbruck, Austria
| | - Mira Mutschlechner
- Department of Biotechnology and Food Engineering, MCI - The Entrepreneurial School, Maximilianstrasse 2, 6020, Innsbruck, Austria
| | - Martin Spruck
- Department of Environmental, Process and Energy Engineering, MCI - The Entrepreneurial School, Maximilianstrasse 2, 6020, Innsbruck, Austria
| | - Florian Albrecht
- Institute for Chemical Engineering, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Oliver I Strube
- Institute for Chemical Engineering, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Pamela Vrabl
- Institute for Microbiology, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Susanne Zeilinger
- Institute for Microbiology, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Harald Schöbel
- Department of Biotechnology and Food Engineering, MCI - The Entrepreneurial School, Maximilianstrasse 2, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Dasauni K, Nailwal TK, Nenavathu BPN. Plant extract-mediated biosynthesis of sulphur nanoparticles and their antibacterial and plant growth-promoting activity. Heliyon 2024; 10:e37797. [PMID: 39315212 PMCID: PMC11417562 DOI: 10.1016/j.heliyon.2024.e37797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
This study reports green synthesis of sulphur nanoparticles using sodium thiosulfate pentahydrate (Na2S2O35H2O) and Cannabis sativa leaf extracts. X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) was employed to examine the crystallinity of the particles and morphological characteristics, proved both spherical and rod-shaped morphology of the S NPs having porous nature. The FTIR spectra revealed the interaction of the synthesized SNPs with the biomolecules present in the leaf extract. UV-VIS spectral investigations confirmed the production of SNPs from C. sativa leaf extract and that these SNPs can be used for visible region photocatalysis for the removal of pollutants from wastewater. Energy dispersive X-ray (EDX) spectrum of the SNP shows a single peak around 2.4 keV, confirmed S NPs purity. TEM image revealed the formation of mainly nanorods having a width of ∼20-25 nm and a length of 50-100 nm. Furthermore, some spherical particles (∼20-30 nm) were also formed. HRTEM image of the rod-shaped particles clearly shows the crystal fringe spacing of 0.38 nm. Further, disc diffusion method (DDM) was used to check the antibacterial activity of S NPs against gram-positive S. aureus (MTCC737) 18 ± 0.12 mm and gram-negative bacteria against E. coli (MTCC443) 21.5 ± 0.12 mm, A. salmonicida (MTCC1522) 19.1 ± 0.12 mm, K. pneumoniae (MTCC3384) 17.8 ± 0.10 mm. Among all the strains of bacteria, E. coli (MTCC443) showed a maximum zone of inhibition of 21.5 ± 0.12 mm and its antibacterial activity is somewhat like streptomycin sulfate. These SNPs also promote growth of C. sativa in pot experiment, resulting in a 30 % increase in biomass, 90 cm in shoot length and 28 cm in root length and higher fresh and dry weight (50g and 20g, respectively) with 1.0 mg mL-1 NPs treatment. In addition, SEM-EDX confirmed the accumulation of nanomaterial in plant leaves. This environmentally friendly approach to SNP synthesis using C. sativa extracts demonstrates both potent antibacterial properties and plant growth-promoting effects, making it a promising solution for agriculture and biomedicine.
Collapse
Affiliation(s)
- Khushboo Dasauni
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Bhimtal-263136, Kumaun University Nainital, Uttarakhand-India
| | - Tapan K. Nailwal
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Bhimtal-263136, Kumaun University Nainital, Uttarakhand-India
| | - Bhavani Prasad Naik Nenavathu
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi-110006-India
| |
Collapse
|
10
|
Fouad MS, Mustafa EF, Hellal MS, Mwaheb MA. A comprehensive assessment of water quality in Fayoum depression, Egypt: identifying contaminants, antibiotic pollution, and adsorption treatability study for remediation. Sci Rep 2024; 14:18849. [PMID: 39143112 PMCID: PMC11324722 DOI: 10.1038/s41598-024-68990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
This study aimed to assess the current water quality status across various regions within the Fayoum depression by examining water canals, drains, and potential contaminants impacting public health and the local ecosystem. Additionally, an adsorption treatability investigation was conducted on various antibiotics identified during the assessment. Fifteen sampling points were selected across the Fayoum depression, covering surface water bodies and agricultural drainage systems during both winter and summer seasons. Physico-chemical, microbiological, and antibiotic analyses were performed on collected water samples. The water quality parameters investigated included pH, electrical conductivity, total dissolved solids (TDS), total coliforms, fecal coliforms, and concentrations of antibiotics such as ciprofloxacin and tetracycline. The findings revealed significant variations in water quality parameters among different water sources, categorizing them into three types: irrigation canals, polluted canals, and drains. High contamination levels were observed in certain water canals and drains due to untreated sewage and agricultural drainage discharge. Notably, elevated TDS levels (exceeding 1200 mg/L), microbial indicators count (with total coliforms reaching up to 2.3 × 106 CFU/100 mL), and antibiotics (with concentrations of ciprofloxacin and tetracycline exceeding 4.6 µg/L) were detected. To mitigate antibiotic contamination, a Phyto-adsorption treatability study using magnetite nanoparticles prepared with Phragmites australis plant extract demonstrated promising results, achieving complete removal of high antibiotic concentrations with an adsorption capacity of up to 67 mg/g. This study provides updated insights into water quality in the Fayoum depression and proposes a novel approach for addressing antibiotic contamination, potentially safeguarding human and environmental health.
Collapse
Affiliation(s)
- Mai Sayed Fouad
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Emad Fawzy Mustafa
- Water Management Research Institute, National Water Research Center NWRC, Shubra El Kheima, Egypt
| | - Mohamed Saad Hellal
- Water Pollution Research Department, National Research Centre, Cairo, 12622, Egypt.
| | - Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
11
|
Lou J, Wang L, Huang Y, Xing J, Yang X. Boosting Photocatalytic Performance of ZnO Nanowires via Building Heterojunction with Conjugated 2,4,6-Triaminopyrimidine-g-C 3N 4. Molecules 2024; 29:3716. [PMID: 39202796 PMCID: PMC11356989 DOI: 10.3390/molecules29163716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Photocatalysis is one of the most effective ways to solve environmental problems by solving pollutants. This article designed and prepared a conjugated system of 2,4,6-triaminopyrimidine-g-C3N4 (TAP-CN) to modify ZnO NWs. We systematically studied the photocatalytic performance of ZnO NWs modified with different ratios of TAP-CN. The results showed that 9 wt% TAP-CN-30/ZnO NWs had the best degradation effect on Rhodamine B dye. The degradation rate was 99.36% in 80 min. The excellent degradation performance was attributed to the TAP-CN conjugated system promoting photo-generated charge transfer. This work provided guidance for designing efficient composite catalysts for application in other renewable energy fields.
Collapse
Affiliation(s)
- Jiahui Lou
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lihong Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Yaqiong Huang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jun Xing
- School of Biomedical Engineering and Imaging, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
12
|
Nguyen DTC, Nguyen NTT, Nguyen TTT, Tran TV. Recent advances in the biosynthesis of ZnO nanoparticles using floral waste extract for water treatment, agriculture and biomedical engineering. NANOSCALE ADVANCES 2024; 6:4047-4061. [PMID: 39114141 PMCID: PMC11302053 DOI: 10.1039/d4na00133h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Flowers are often discarded after cultural and religious events, making it worthwhile to explore the utilization of this floral waste for material production. Floral extracts contain a diverse array of phytochemicals such as polyphenols, flavonoids, and reducing sugars, which play a significant role in the formation and influencing the properties of zinc oxide (ZnO) nanoparticles. In this review, we delve into the importance of floral extract, methodology, mechanism, and influencing factors in the production of ZnO nanoparticles. Additionally, the role of green ZnO nanoparticles as an adsorbent and photocatalyst for water treatment is discussed. These floral extract-mediated ZnO nanoparticles exhibit advantages in agricultural and biomedical applications, including promoting seed germination and demonstrating antibacterial, anticancer, and antifungal properties. Cost analysis reveals that while various expenses are associated with ZnO production, scaling up processes can help reduce these costs. This review underscores the potential of floral waste extract for the synthesis of green ZnO nanoparticles, thereby contributing to waste-to-wealth strategies and adhering to green chemistry principles.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
- Nong Lam University - Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | | | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| |
Collapse
|
13
|
Kumari S, Chowdhry J, Kumar M, Garg MC. Machine learning (ML): An emerging tool to access the production and application of biochar in the treatment of contaminated water and wastewater. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT 2024; 26:101243. [DOI: 10.1016/j.gsd.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
14
|
Zaragosa GP, Ilem CND, Conde BIC, Garcia J. Plant-mediated synthesis of Mn 3O 4nanoparticles: challenges and applications. NANOTECHNOLOGY 2024; 35:342001. [PMID: 38754375 DOI: 10.1088/1361-6528/ad4c71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
This review focuses on the green synthesis methods, challenges, and applications of manganese oxide (Mn3O4) nanoparticles investigated in the past five years. Mn3O4nanoparticles offer some unique properties that are attributed in part to the presence of mixed oxidation states of manganese (i.e. +2 and +3) in the particle, which can be utilized in a wide range of redox-sensitive applications, such as in developing supercapacitive energy storage materials. In addition, the green synthesis of Mn3O4nanoparticles through plant extracts has potential uses in sustainable nanotechnology. Various plant extract-mediated synthesis techniques for Mn3O4nanoparticles have been investigated and presented. By comparing the size and structure of the synthesized Mn3O4nanoparticles, we have observed a consistent pattern of obtaining spherical particles with a size ranging from 16 to 50 nm. The morphology of the generated Mn3O4nanoparticles can be influenced by the annealing temperature and the composition of the plant extract used during the nanoparticle synthesis. Additionally, numerous applications for the greenly produced Mn3O4nanoparticles have been demonstrated. Mn3O4nanoparticles derived from plant extracts have been found to possess antimicrobial properties, supercapacitive and electrochemical capabilities, and excellent pollutant degradation efficiency. However, the magnetic properties of these nanoparticles synthesized by plant extracts are yet to be explored for potential biomedical applications. Finally, challenges to existing synthetic methods and future perspectives on the potential applications of these green synthesized Mn3O4nanoparticles are highlighted.
Collapse
Affiliation(s)
- Gelo P Zaragosa
- Department of Chemistry, De La Salle University, Manila, The Philippines
| | | | | | - Joel Garcia
- Department of Chemistry, De La Salle University, Manila, The Philippines
| |
Collapse
|
15
|
Jin X, Pan J, Zhang C, Cao X, Wang C, Yue L, Li X, Liu Y, Wang Z. Toxic mechanism in Daphnia magna due to phthalic acid esters and CuO nanoparticles co-exposure: The insight of physiological, microbiomic and metabolomic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116338. [PMID: 38640799 DOI: 10.1016/j.ecoenv.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/31/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 μg/L) for 21 days significantly enhanced the toxicity of DBP (100 μg/L) and BBP (100 μg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junlan Pan
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yinglin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Dai K, Chen L, Aryee AA, Yang P, Han R, Qu L. Adsorption studies of tetracycline hydrochloride and diclofenac sodium on NH 2-MIL-53(Al/Zr) sodium alginate gel spheres. Int J Biol Macromol 2024; 271:132637. [PMID: 38795565 DOI: 10.1016/j.ijbiomac.2024.132637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Metal-organic frameworks are emerging inorganic-organic hybrid materials that can be self-assembled from metal ions and organic ligands via coordination bonds. These materials possess large specific surface area, tunable pore structure, abundant active center, diversity of functional groups as well as high mechanical and thermal stability which promote their applications in adsorption and catalysis studies. In this study, NH2-MIL-53(Al/Zr) was prepared and embedded into sodium alginate gel spheres (NH2-MIL-53(Al/Zr)-SA) and its adsorption properties towards TC and DCF in solution were investigated. According to XRD and FTIR analysis, the structure of the raw material was not changed after making the gel spheres. The maximum adsorption towards TC (pH =3) and DCF (pH =5) reached 98.5 mg·g-1 and 192 mg·g-1, respectively. The process was consistent with Langmuir and Freundlich, suggesting that there was both monolayer and multilayer adsorption which infers the presence of physical adsorption (intra-particle diffusion) and non-homogeneous chemical adsorption. The thermodynamic parameters showed that the adsorption process was a spontaneous entropy increasing reaction. The regeneration rate of spent NH2-MIL-53(Al/Zr)-SA could still reach 99.1 % after three cycles, indicating good regeneration performance. This study can provide a basis for the application of NH2-MIL-53(Al/Zr)-SA in wastewater treatment.
Collapse
Affiliation(s)
- Kailu Dai
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Lihui Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Peifeng Yang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Ran M, Wu J, Jiao Y, Li J. Biosynthetic selenium nanoparticles (Bio-SeNPs) mitigate the toxicity of antimony (Sb) in rice (Oryza sativa L.) by limiting Sb uptake, improving antioxidant defense system and regulating stress-related gene expression. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134263. [PMID: 38613951 DOI: 10.1016/j.jhazmat.2024.134263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 μM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
18
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
19
|
Rocha V, Ferreira-Santos P, Aguiar C, Neves IC, Tavares T. Valorization of plant by-products in the biosynthesis of silver nanoparticles with antimicrobial and catalytic properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14191-14207. [PMID: 38278998 PMCID: PMC10881659 DOI: 10.1007/s11356-024-32180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Biosynthesis based on natural compounds has emerged as a sustainable approach for the production of metallic nanoparticles (MNP). The main objective of this study was to biosynthesize stable and multifunctional silver nanoparticles (AgNP) using different plant by-products as reducers and capping agents. Extracts obtained from Eucalyptus globulus, Pinus pinaster, Citrus sinensis, Cedrus atlantica and Camellia sinensis by-products, were evaluated. From all plant by-products tested, aqueous extract of eucalyptus leaves (EL), green tea (GT) and black tea (BT) were selected due to their higher antioxidant phenolic content and were individually employed as reducers and capping agents to biosynthesize AgNP. The green AgNP showed zeta potential values of -31.8 to -36.3 mV, with a wide range of particle sizes (40.6 to 86.4 nm), depending on the plant extract used. Green AgNP exhibited an inhibitory effect against various pathogenic bacteria, including Gram-negative (P. putida, E. coli, Vibrio spp.) and Gram-positive (B. megaterium, S. aureus, S. equisimilis) bacteria with EL-AgNP being the nanostructure with the greatest antimicrobial action. EL-AgNP showed an excellent photodegradation of indigo carmine (IC) dye under direct sunlight, with a removal percentage of up to 100% after 75 min. A complete cost analysis revealed a competitive total cost range of 8.0-9.0 €/g for the biosynthesis of AgNP.
Collapse
Affiliation(s)
- Verónica Rocha
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, As Lagoas, 32004, Ourense, Spain
| | - Cristina Aguiar
- CBMA-Centre of Molecular and Environmental Biology, University of Minho, 4710-057, Braga, Portugal
| | - Isabel C Neves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CQ-UM - Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Teresa Tavares
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Liu L, Yu C, Ahmad S, Ri C, Tang J. Preferential role of distinct phytochemicals in biosynthesis and antibacterial activity of silver nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118546. [PMID: 37418916 DOI: 10.1016/j.jenvman.2023.118546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) by plant extracts and its antibacterial utilization has attracted great attention due to the spontaneous reducing and capping capacities of phytochemicals. However, the preferential role and mechanisms of the functional phytochemicals from different plants on AgNPs synthesis, and its catalytic and antibacterial performance remain largely unknown. This study used three widespread arbor species, including Eriobotrya japonica (EJ), Cupressus funebris (CF) and Populus (PL), as the precursors and their leaf extracts as reducing and stabilizing agents for the biosynthesis of AgNPs. A total of 18 phytochemicals in leaf extracts were identified by ultra-high liquid-phase mass spectrometer. For EJ extracts, most kinds of flavonoids participated in the generation of AgNPs by a reduced content of 5∼10%, while for CF extracts, about 15∼40% of the polyphenols were consumed to reduce Ag+ to Ag0. Notably, the more stable and homogeneous spherical AgNPs with smaller size (≈38 nm) and high catalytic capacity on Methylene blue were obtained from EJ extracts rather than CF extracts, and no AgNPs were synthesized from PL extracts, indicating that flavonoids are superior than polyphenols to act as reducer and stabilizer in AgNPs biosynthesis. The antibacterial activities against Gram-positive (Staphylococcus aureus and Bacillus mycoides) and Gram-negative bacteria (Pseudomonas putida and Escherichia coli) were higher in EJ-AgNPs than that in CF-AgNPs, which confirmed the synergistic antibacterial effects of flavonoids combined with AgNPs in EJ-AgNPs. This study provides a significant reference on the biosynthesis of AgNPs with efficient antibacterial utilization underlying effect of abundant flavonoids in plant extracts.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China
| | - Chen Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shakeel Ahmad
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China
| | - Cholnam Ri
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
21
|
Tran GT, Nguyen NTH, Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Formation, properties and applications of microalgae-based ZnO nanoparticles: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110939. [DOI: 10.1016/j.jece.2023.110939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Nguyen NTH, Tran GT, Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. A critical review on the biosynthesis, properties, applications and future outlook of green MnO 2 nanoparticles. ENVIRONMENTAL RESEARCH 2023; 231:116262. [PMID: 37247653 DOI: 10.1016/j.envres.2023.116262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
MnO2 nanoparticles have played a vital role in biomedical, catalysis, electrochemical and energy storage fields, but requiring toxic chemicals in the fabrication intercepts their applications. There is an increasing demand for biosynthesis of MnO2 nanoparticles using green sources such as plant species in accordance with the purposes of environmental mitigation and production cost reduction. Here, we review recent advancements on the use of natural compounds such as polyphenols, reducing sugars, quercetins, etc. Extracted directly from low-cost and available plants for biogenic synthesis of MnO2 nanoparticles. Role of these phytochemicals and formation mechanism of bio-medicated MnO2 nanoparticles are shed light on. MnO2 nanoparticles own small particle size, high crystallinity, diverse morphology, high surface area and stability. Thanks to higher biocompatibility, bio-mediated synthesized MnO2 nanoparticles exhibited better antibacterial, antifungal, and anticancer activity than chemically synthesized ones. In terms of wastewater treatment and energy storage, they also served as efficient adsorbents and catalyst. Moreover, several aspects of limitation and future outlook of bio-mediated MnO2 nanoparticles in the fields are analyzed. It is expected that the present work not only expands systematic understandings of synthesis methods, properties and applications MnO2 nanoparticles but also pave the way for the nanotechnology revolution in combination with green chemistry and sustainable development.
Collapse
Affiliation(s)
- Nhu Thi Huynh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
23
|
Abraham B, Syamnath VL, Arun KB, Fathima Zahra PM, Anjusha P, Kothakotta A, Chen YH, Ponnusamy VK, Nisha P. Lignin-based nanomaterials for food and pharmaceutical applications: Recent trends and future outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163316. [PMID: 37028661 DOI: 10.1016/j.scitotenv.2023.163316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Small particles of size ranging from 1 to 100 nm are referred to as nanoparticles. Nanoparticles have tremendous applications in various sectors, including the areas of food and pharmaceutics. They are being prepared from multiple natural sources widely. Lignin is one such source that deserves special mention due to its ecological compatibility, accessibility, abundance, and low cost. This amorphous heterogeneous phenolic polymer is the second most abundant molecule in nature after cellulose. Apart from being used as a biofuel source, lignin is less explored for its potential at a nano-level. In plants, lignin exhibits cross-linking structures with cellulose and hemicellulose. Numerous advancements have taken place in synthesizing nanolignins for manufacturing lignin-based materials to benefit from the untapped potential of lignin in high-value-added applications. Lignin and lignin-based nanoparticles have numerous applications, but in this review, we are mainly focusing on the applications in the food and pharmaceutical sectors. The exercise we undertake has great relevance as it helps scientists and industries gain valuable insights into lignin's capabilities and exploit its physical and chemical properties to facilitate the development of future lignin-based materials. We have summarized the available lignin resources and their potential in the food and pharmaceutical industries at various levels. This review attempts to understand various methods adopted for the preparation of nanolignin. Furthermore, the unique properties of nano-lignin-based materials and their applications in fields including the packaging industry, emulsions, nutrient delivery, drug delivery hydrogels, tissue engineering, and biomedical applications were well-discussed.
Collapse
Affiliation(s)
- Billu Abraham
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - V L Syamnath
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India
| | - K B Arun
- Department of Life Sciences, Christ (Deemed to be University), Bangalore 29, India
| | - P M Fathima Zahra
- College of Agriculture, Vellayani, Kerala Agricultural University, India
| | - P Anjusha
- College of Agriculture, Vellayani, Kerala Agricultural University, India
| | - Anjhinaeyulu Kothakotta
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Ph.D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan.
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Barabadi H, Mobaraki K, Jounaki K, Sadeghian-Abadi S, Vahidi H, Jahani R, Noqani H, Hosseini O, Ashouri F, Amidi S. Exploring the biological application of Penicillium fimorum-derived silver nanoparticles: In vitro physicochemical, antifungal, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic performance. Heliyon 2023; 9:e16853. [PMID: 37313153 PMCID: PMC10258451 DOI: 10.1016/j.heliyon.2023.e16853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
This study showed the anti-candida, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic properties of biogenic silver nanoparticles (AgNPs) fabricated by using the supernatant of Penicillium fimorum (GenBank accession number OQ568180) isolated from soil. The biogenic AgNPs were characterized by using different analytical techniques. A sharp surface plasmon resonance (SPR) peak of the colloidal AgNPs at 429.5 nm in the UV-vis spectrum confirmed the fabrication of nanosized silver particles. The broth microdilution assay confirmed the anti-candida properties of AgNPs with a minimum inhibitory concentration (MIC) of 4 μg mL-1. In the next step, the protein and DNA leakage assays as well as reactive oxygen species (ROS) assay were performed to evaluate the possible anti-candida mechanisms of AgNPs representing an increase in the total protein and DNA of supernatant along with a climb-up in ROS levels in AgNPs-treated samples. Flow cytometry also confirmed a dose-dependent cell death in the AgNPs-treated samples. Further studies also confirmed the biofilm inhibitory performance of AgNPs against Candia albicans. The AgNPs at the concentrations of MIC and 4*MIC inhibited 79.68 ± 14.38% and 83.57 ± 3.41% of biofilm formation in C. albicans, respectively. Moreover, this study showed that the intrinsic pathway may play a significant role in the anticoagulant properties of AgNPs. In addition, the AgNPs at the concentration of 500 μg mL-1, represented 49.27%, and 73.96 ± 2.59% thrombolytic and DPPH radical scavenging potential, respectively. Promising biological performance of AgNPs suggests these nanomaterials as a good candidate for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Sadeghian-Abadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jahani
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salimeh Amidi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
McGinley J, Healy MG, Ryan PC, O'Driscoll H, Mellander PE, Morrison L, Siggins A. Impact of historical legacy pesticides on achieving legislative goals in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162312. [PMID: 36805066 DOI: 10.1016/j.scitotenv.2023.162312] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture to optimise food production. However, the movement of pesticides into water bodies negatively impacts aquatic environments. The European Union (EU) aims to make food systems fair, healthy and environmentally friendly through its current Farm to Fork strategy. As part of this strategy, the EU plans to reduce the overall use and risk of chemical pesticides by 50 % by 2030. The attainment of this target may be compromised by the prevalence of legacy pesticides arising from historical applications to land, which can persist in the environment for several decades. The current EU Farm to Fork policy overlooks the potential challenges of legacy pesticides and requirements for their remediation. In this review, the current knowledge regarding pesticide use in Europe, as well as pathways of pesticide movement to waterways, are investigated. The issues of legacy pesticides, including exceedances, are examined, and existing and emerging methods of pesticide remediation, particularly of legacy pesticides, are discussed. The fact that some legacy pesticides can be detected in water samples, more than twenty-five years after they were prohibited, highlights the need for improved EU strategies and policies aimed at targeting legacy pesticides in order to meet future targets.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - M G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - P-E Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - A Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
26
|
Tran TG, Ly NH, Nguyen TT, Son SJ, Vasseghian Y, Joo SW, Luque R. Subppb level monitoring and UV degradation of triclosan pollutants using ZnO multipod and Ag nanocomposites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121441. [PMID: 36921660 DOI: 10.1016/j.envpol.2023.121441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
A unique nanomaterial platform was developed for trace detection and efficient degradation of triclosan (TCS). A facile spectroscopic technique for surface-enhanced Raman scattering (SERS)-supported identification and ultraviolet (UV) degradation of TCS using a SERS template based on silver spherical nanoparticle (AgNP)-modified ZnO multipods (ZnO@Ag) is reported. Core-shell composite materials of ZnO multipods with a dimension of around 3 μm and AgNPs with an average diameter of ∼27 nm was designed not only as a substrate for TCS degradation up to ∼92% upon UV irradiation (λ = 365 mm, 300 μW/cm2) but also as a monitoring platform sensitive to TCS at a detection limit as low as 10-9 M (≈0.3 ppb). Herein, the first investigation into ZnO@Ag bimetallic composites is established for both the SERS-based detection and UV-assisted degradation of environmental TCS pollutants. The calibration curve was estimated to be linear at R2 > 0.97. The validated technology was successfully used to determine the antibacterial agent and TCS in distilled or river water. The advantages of the ZnO@Ag template are highlighted over conventional detection and excellent degradation.
Collapse
Affiliation(s)
- Thi-Giang Tran
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Thi Trang Nguyen
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., 117198, Moscow, Russia; Universidad ECOTEC, Km 13.5 Samborondon, Samborondon, EC092302, Ecuador
| |
Collapse
|
27
|
Jiang T, Huang J, Peng J, Wang Y, Du L. Characterization of Silver Nanoparticles Synthesized by the Aqueous Extract of Zanthoxylum nitidum and Its Herbicidal Activity against Bidens pilosa L. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101637. [PMID: 37242051 DOI: 10.3390/nano13101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Phytosynthesis of silver nanoparticles (Ag NPs) has been progressively acquiring attractiveness. In this study, the root of Zanthoxylum nitidum was used to synthesize Ag NPs, and its pre-emergence herbicidal activity was tested. The synthesized Ag NPs by the aqueous extract from Z. nitidum were characterized by visual inspection, ultraviolet-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The plant-mediated synthesis was completed within 180 min and the Ag NPs exhibited a characteristic peak at around 445 nm. The results of the DLS measurement showed that the average hydrodynamic diameter was 96 nm with a polydispersity index (PDI) of 0.232. XRD results indicated the crystalline nature of the phytogenic Ag NPs. A TEM analysis revealed that the nanoparticles were spherical with an average particle size of 17 nm. An EDX spectrum confirmed the presence of an elemental silver signal. Furthermore, the Ag NPs exhibited a herbicidal potential against the seed germination and seedling growth of Bidens Pilosa L. The present work indicates that Ag NPs synthesized by plant extract could have potential for the development of a new nanoherbicide for weed prevention and control.
Collapse
Affiliation(s)
- Tianying Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jinyan Huang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jieshi Peng
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Yanhui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Liangwei Du
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
28
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Green synthesis of ZnFe 2O 4 nanoparticles using plant extracts and their applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162212. [PMID: 36796693 DOI: 10.1016/j.scitotenv.2023.162212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Magnetic nanoparticles, particularly ZnFe2O4 are of enormous significance in biomedical and water treatment fields. However, chemical synthesis of ZnFe2O4 nanoparticles endures some major limitations, e.g., the use of toxic substances, unsafe procedure, and cost-ineffectiveness. Biological methods are more preferable approaches since they take advantages of biomolecules available in plant extract serving as reducing, capping, and stabilizing agents. Herein, we review plant-mediated synthesis and properties of ZnFe2O4 nanoparticles for multiple applications in catalytic and adsorption performance, biomedical, catalyst, and others. Effect of several factors such as Zn2+/Fe3+/extract ratio, and calcination temperature on morphology, surface chemistry, particle size, magnetism and bandgap energy of obtained ZnFe2O4 nanoparticles was discussed. The photocatalytic activity and adsorption for removal of toxic dyes, antibiotics, and pesticides were also evaluated. Main results of antibacterial, antifungal and anticancer activities for biomedical applications were summarized and compared. Several limitations and prospects of green ZnFe2O4 as an alternative to traditional luminescent powders have been proposed.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
29
|
Bala A, Rani G. Green synthesis of AgNPs using Delonix regia bark for potential catalytic and antioxidant applications. Microsc Res Tech 2023. [PMID: 36869861 DOI: 10.1002/jemt.24310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Nanoparticle synthesis from plant resources has recently gained significant impact due to its low cost, simple equipment requirements, and ease of availability. In this work, DR-AgNPs were synthesized using bark extract of Delonix regia (D. regia) plant under microwave irradiation. The formation of DR-AgNPs has been confirmed with UV-Vis, XRD, FTIR, FESEM, HRTEM, EDS, DLS, and zeta potential analysis. Catalytic and antioxidant activities were tested on synthesized spherical nanoparticles with a size range of 10-48 nm. The effects of pH and catalyst dosage on the methylene blue (MB) dye degradation were carried out. It was observed from the treatment results that 95% MB dye degradation efficiency was achieved within 4 min with a degradation rate constant of 0.772 min-1 . The synthesized nanoparticles showed a strong antioxidant property when analyzed by a 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The calculated IC50 value for DR-AgNPs was 37.1 ± 0.12 μg mL-1 . Therefore, DR-AgNPs are excellent in both catalytic and antioxidant activities when compared to previously reported works. HIGHLIGHTS: Green synthesis of silver nanoparticles (DR-AgNPs) using Delonix regia bark extract. The catalytic activity of DR-AgNPs is remarkable against Methylene Blue. DR-AgNPs also have a strong DPPH radical antioxidant effect. Short degradation time, high degradation rate constant, and a good scavenging activity are key features of this study compared to previously reported works.
Collapse
Affiliation(s)
- Anu Bala
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| | - Gita Rani
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| |
Collapse
|
30
|
Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159278. [PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
31
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen NH, Nguyen DH, Nguyen DTC, Tran TV. Green synthesis of ZnFe 2O 4@ZnO nanocomposites using Chrysanthemum spp. floral waste for photocatalytic dye degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116746. [PMID: 36399883 DOI: 10.1016/j.jenvman.2022.116746] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of textile dyeing wastewater discharged into the environment has been recently increasing, resulting in harmful effects on living organisms and human health. The use of green nanoparticles for water decontamination has received much attention. Floral waste can be extracted with the release of natural compounds, which act as reducing and stabilizing agents during the biosynthesis of nanoparticles. Herein, we report the utilization of Chrysanthemum spp. floral waste extract to synthesize green ZnFe2O4@ZnO (ZFOZx) nanocomposites for the photocatalytic degradation of Congo red under solar light irradiation. The various molar ratio of ZnFe2O4 (0-50%) was incorporated into ZnO nanoparticles. The surface area of green ZFOZx nanocomposites was found to increase (7.41-42.66 m2 g-1) while their band gap energy decreased from 1.98 eV to 1.92 eV. Moreover, the results exhibited the highest Congo red dye degradation efficiency of 94.85% at a concentration of 5.0 mg L-1, and a catalyst dosage of 0.33 g L-1. The •O2- reactive species played a vital role in the photocatalytic degradation of Congo red dye. Green ZFOZ3 nanocomposites had good recyclability with at least three cycles, and an excellent stability. The germination results showed that wastewater treated by ZFOZ3 was safe enough for bean seed germination. We expect that this work contributes significantly to developing novel green bio-based nanomaterials for environmental remediation as well as reducing the harm caused by flower wastes.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Hoi Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
32
|
Tran TV, Nguyen DTC, Nguyen TTT, Nguyen DH, Alhassan M, Jalil AA, Nabgan W, Lee T. A critical review on pineapple (Ananas comosus) wastes for water treatment, challenges and future prospects towards circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158817. [PMID: 36116641 DOI: 10.1016/j.scitotenv.2022.158817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Each year, nearly 30 million tons of pineapple fruit are harvested for food and drinking industries, along with the release of a huge amount of pineapple wastes. Without the proper treatment, pineapple wastes can cause adverse impacts on the environment, calling for new technologies to convert them into valuable products. Here, we review the production and application of adsorbents derived from pineapple wastes. The thermal processing or chemical modification improved the surface chemistry and porosity of these adsorbents. The specific surface areas of the pineapple wastes-based adsorbents were in range from 4.2 to at 522.9 m2·g-1. Almost adsorption systems followed the pseudo second order kinetic model, and Langmuir isotherm model. The adsorption mechanism was found with the major role of electrostatic attraction, complexation, chelation, and ion exchange. The pineapple wastes based adsorbents could be easily regenerated. We suggest the potential of the pineapple wastes towards circular economy.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
33
|
Tran TV, Jalil AA, Nguyen DTC, Alhassan M, Nabgan W, Cao ANT, Nguyen TM, Vo DVN. A critical review on the synthesis of NH 2-MIL-53(Al) based materials for detection and removal of hazardous pollutants. ENVIRONMENTAL RESEARCH 2023; 216:114422. [PMID: 36162476 DOI: 10.1016/j.envres.2022.114422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, emerging hazardous pollutants have caused many harmful effects on the environment and human health, calling for the state of the art methods for detection, qualification, and treatment. Metal-organic frameworks are porous, flexible, and versatile materials with unique structural properties, which can solve such problems. In this work, we reviewed the synthesis, activation, and characterization, and potential applications of NH2-MIL-53(Al). This material exhibited intriguing breathing effects, and obtained very high surface areas (182.3-1934 m2/g) with diverse morphologies. More importantly, NH2-MIL-53(Al) based materials could be used for the detection and removal of various toxic pollutants such as organic dyes, pharmaceuticals, herbicides, insecticides, phenols, heavy metals, and fluorides. We shed light on plausible adsorption mechanisms such as hydrogen bonds, π-π stacking interactions, and electrostatic interactions onto NH2-MIL-53(Al) adsorbents. Interestingly, NH2-MIL-53(Al) based adsorbents could be recycled for many cycles with high stability. This review also recommended that NH2-MIL-53(Al) based materials can be a good platform for the environmental remediation fields.
Collapse
Affiliation(s)
- Thuan Van Tran
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Duyen Thi Cam Nguyen
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB, 2134, Airport Road, Sokoto, Nigeria
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
| | - Anh Ngoc T Cao
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Tung M Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Dai-Viet N Vo
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
34
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Tran UPN, Nguyen DTC, Tran TV. A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles. CHEMOSPHERE 2023; 312:137301. [PMID: 36410506 DOI: 10.1016/j.chemosphere.2022.137301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, advancements in nanotechnology have efficiently solved many global problems, such as environmental pollution, climate change, and infectious diseases. Nano-scaled materials have played a central role in this evolution. Chemical synthesis of nanomaterials, however, required hazardous chemicals, unsafe, eco-unfriendly, and cost-ineffective, calling for green synthesis methods. Here, we review the green synthesis of MgO nanoparticles and their applications in biochemical, environmental remediation, catalysis, and energy production. Green MgO nanoparticles can be safely produced using biomolecules extracted from plants, fungus, bacteria, algae, and lichens. They exhibited fascinating and unique properties in morphology, surface area, particle size, and stabilization. Green MgO nanoparticles served as excellent antimicrobial agents, adsorbents, colorimetric sensors, and had enormous potential in biomedical therapies against cancers, oxidants, diseases, and the sensing detection of dopamine. In addition, green MgO nanoparticles are of great interests in plant pathogens, phytoremediation, plant cell and organ culture, and seed germination in the agricultural sector. This review also highlighted recent advances in using green MgO nanoparticles as nanocatalysts, nano-fertilizers, and nano-pesticides. Thanks to many emerging applications, green MgO nanoparticles can become a promising platform for future studies.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Uyen P N Tran
- Faculty of Engineering and Technology, Van Hien University, Ho Chi Minh City, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
35
|
Now and future: Development and perspectives of using polyphenol nanomaterials in environmental pollution control. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Xu VW, Nizami MZI, Yin IX, Lung CYK, Yu OY, Chu CH. Caries Management with Non-Metallic Nanomaterials: A Systematic Review. Int J Nanomedicine 2022; 17:5809-5824. [PMID: 36474525 PMCID: PMC9719741 DOI: 10.2147/ijn.s389038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/23/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-metallic nanomaterials do not stain enamel or dentin. Most have better biocompatibility than metallic nanomaterials do for management of dental caries. OBJECTIVE The objective of this study is to review the types, properties and potential uses of non-metallic nanomaterials systematically for managing dental caries. METHODS Two researchers independently performed a literature search of publications in English using PubMed, Scopus and Web of Science. The keywords used were (nanoparticles OR nanocomposites OR nanomaterials) AND (caries OR tooth decay). They screened the titles and abstracts to identify potentially eligible publications of original research reporting non-metallic nanomaterials for caries management. Then, they retrieved and studied the full text of the identified publications for inclusion in this study. RESULTS Out of 2497 resulting publications, this study included 75 of those. The non-metallic nanomaterials used in these publications were categorized as biological organic nanomaterials (n=45), synthetic organic nanomaterials (n=15), carbon-based nanomaterials (n=13) and selenium nanomaterials (n=2). They inhibited bacteria growth and/or promoted remineralization. They could be incorporated in topical agents (29/75, 39%), dental adhesives (11/75, 15%), restorative fillers (4/75, 5%), dental sealant (3/75, 4%), oral drugs (3/75, 4%), toothpastes (2/75, 3%) and functional candies (1/75, 1%). Other publications (22/75, 29%) do not mention specific applications. However, most publications (67/75, 89%) were in vitro studies. Six publications (6/75, 8%) were animal studies, and only two publications (2/75, 3%) were clinical studies. CONCLUSION The literature showed non-metallic nanomaterials have antibacterial and/or remineralising properties. The most common type of non-metallic nanomaterials for caries management is organic nanomaterials. Non-metallic nanomaterials can be incorporated into dental sealants, toothpaste, dental adhesives, topical agents and even candies and drugs. However, the majority of the publications are in vitro studies, and only two publications are clinical studies.
Collapse
Affiliation(s)
- Veena Wenqing Xu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | | | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Christie Ying Kei Lung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
37
|
Nguyen LTT, Nguyen HTT, Nguyen LTH, Duong ATT, Nguyen HQ, Bui ND, Ngo VTM, Nguyen DTC, Tran TV. Toward enhanced visible-light photocatalytic dye degradation and reusability of La 3+ substituted ZnFe 2O 4 nanostructures. ENVIRONMENTAL RESEARCH 2022; 214:114130. [PMID: 35998691 DOI: 10.1016/j.envres.2022.114130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The present work focused on the synthesis of novel ZnLaxFe2-xO4 catalysts (x = 0, 0.01, 0.03, 0.05) and their utilization for the photocatalytic degradation of Rhodamine B dye. Structurally, the band gap energy of the catalysts tended to decrease (1.94-1.70 eV) with increasing the amount of La3+ dopant. ZnLa0.05Fe1.95O4 had an average particle size (40 nm), high surface area (41.07 m2 g-1) and large pore volume (0.186 cm3 g-1). Moreover, the effect of doping ratio, reaction time, H2O2 concentration, catalyst loading on the treatment performance of La3+ substituted ZnFe2O4 nanocomposites was investigated. ZnLa0.05Fe1.95O4/H2O2 system exhibited the highest degradation efficiency of 99.5% and nonlinear pseudo first-order kinetic reaction rate (14.8 × 10-3 min-1) in the presence of visible light irradiation. The key role of reactive oxygen species involving •O2- and •OH radicals was well explained through the scavenger study. A plausible mechanism of the degradation of Rhodamine B dye was also proposed. Due to two advantageous points including high recyclability (up to 4 cycles) and stability, La3+ substituted ZnFe2O4 nanocomposites can be an effective and competitive catalyst for the visible light-driven photodegradation of toxic dyes in the real wastewaters.
Collapse
Affiliation(s)
- Loan T T Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Viet Nam
| | - Hang T T Nguyen
- Faculty of Fundamental Sciences, Thai Nguyen University of Technology, Thai Nguyen, 24000, Viet Nam
| | - Lan T H Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Viet Nam
| | - Anh T T Duong
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Viet Nam
| | - Hai Q Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Viet Nam
| | - Nguyen D Bui
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Viet Nam
| | - Viet T M Ngo
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
38
|
Xu N, Wang W, Zhu Z, Hu C, Liu B. Recent developments in photocatalytic water treatment technology with MXene material: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
39
|
Tran TV, Nguyen DTC, Kumar PS, Din ATM, Qazaq AS, Vo DVN. Green synthesis of Mn 3O 4 nanoparticles using Costus woodsonii flowers extract for effective removal of malachite green dye. ENVIRONMENTAL RESEARCH 2022; 214:113925. [PMID: 35868583 DOI: 10.1016/j.envres.2022.113925] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The pollution of organic dyes such as malachite green is one of the globally critical issues, calling for efficient mitigation methods. Herein, we developed green Mn3O4 nanoparticles synthesized using natural compounds extracted from Costus woodsonii flowers under an ultrasound-assisted mode. The materials were characterized using several physicochemical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, Energy-dispersive X-ray spectroscopy, scanning electron microscopy, Raman spectroscopy, and N2 adsorption desorption isotherm measurement. The X-ray diffraction and N2 isotherm plots confirmed the presence of tetragonal γ-Mn3O4 phase and mesoporous structure, respectively. Carbonyl groups derived from flavonoids or carboxylic compounds were found in the surface of green Mn3O4 nanoparticles. The effect of pH, contact time, dose, and concentration on the adsorption of malachite green over green Mn3O4 was carried out. The maximum malachite green adsorption capacity for green Mn3O4 nanoparticles was 101-162 mg g-1. Moreover, kinetic and isotherm adsorption of malachite green obeyed Langmuir (Radj.2 = 0.980-0.995) and pseudo first-order models (Radj.2 = 0.996-1.00), respectively. Adsorption of malachite green over green Mn3O4 was a thermodynamically spontaneous process due to negative Gibbs free energy values (ΔGο < 0). Green Mn3O4 nanoparticles offered a high stability through the FR-IR spectra analysis. With a good recyclability of 4 cycles, green Mn3O4 nanoparticles can be used as potential adsorbent for removing malachite green dye from water.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Azam Taufik Mohd Din
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Amjad Saleh Qazaq
- Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department, Al Kharj 16273, Saudi Arabia
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
40
|
Li CC, Jhou SM, Li YC, Ciou JW, Lin YY, Hung SC, Chang JH, Chang JC, Sun DS, Chou ML, Chang HH. Exposure to low levels of photocatalytic TiO 2 nanoparticles enhances seed germination and seedling growth of amaranth and cruciferous vegetables. Sci Rep 2022; 12:18228. [PMID: 36309586 PMCID: PMC9617883 DOI: 10.1038/s41598-022-23179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/26/2022] [Indexed: 12/31/2022] Open
Abstract
Titanium dioxide (TiO2) is one of the most common compounds on Earth, and it is used in natural forms or engineered bulks or nanoparticles (NPs) with increasing rates. However, the effect of TiO2 NPs on plants remains controversial. Previous studies demonstrated that TiO2 NPs are toxic to plants, because the photocatalytic property of TiO2 produces biohazardous reactive oxygen species. In contrast, another line of evidence suggested that TiO2 NPs are beneficial to plant growth. To verify this argument, in this study, we used seed germination of amaranth and cruciferous vegetables as a model system. Intriguingly, our data suggested that the controversy was due to the dosage effect. The photocatalytic activity of TiO2 NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm2), whereas overdosing (1 mg/cm2) induced tissue damage. Given that plants are the foundations of the ecosystem; these findings are useful for agricultural application, sustainable development and maintenance of healthy environments.
Collapse
Affiliation(s)
- Chi-Cheng Li
- grid.414692.c0000 0004 0572 899XDepartment of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan ,Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Sian-Ming Jhou
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - Yi-Chen Li
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - Jhih-Wei Ciou
- grid.411824.a0000 0004 0622 7222Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan
| | - You-Yen Lin
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Jen-Hsiang Chang
- grid.445052.20000 0004 0639 3773Department and Graduate School of Computer Science, National Pingtung University, Pingtung, Taiwan
| | | | - Der-Shan Sun
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Lun Chou
- grid.411824.a0000 0004 0622 7222Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- grid.411824.a0000 0004 0622 7222Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan ,grid.411824.a0000 0004 0622 7222Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
41
|
Foong SY, Chan YH, Chin BLF, Lock SSM, Yee CY, Yiin CL, Peng W, Lam SS. Production of biochar from rice straw and its application for wastewater remediation - An overview. BIORESOURCE TECHNOLOGY 2022; 360:127588. [PMID: 35809876 DOI: 10.1016/j.biortech.2022.127588] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The valorization of biochar as a green and low-cost adsorbent provides a sustainable alternative to commercial wastewater treatment technologies that are usually chemical intensive and expensive. This review presents an in-depth analysis focusing on the rice straw-derived biochar (RSB) for removal of various types of contaminants in wastewater remediation. Pyrolysis is to date the most established technology to produce biochar. Subsequently, biochar is upgraded via physical, chemical or hybrid activation/modification techniques to enhance its adsorption capacity and robustness. Thus far, acid-modified RSB is able to remove metal ions and organic compounds, while magnetic biochar and electrochemical deposition have emerged as potential biochar modification techniques. Besides, temperature and pH are the two main parameters that affect the efficiency of contaminants removal by RSB. Lastly, the limitations of RSB in wastewater remediation are elucidated based on the current advancements of the field, and future research directions are proposed.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Cia Yin Yee
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
42
|
Rajesh G, Akilandeswari S, Kumar PS, Shankar VU, Ramya M, Nirmala K. The consequence of Mg and Mn doping on the structure, photoluminescence, morphology, and photocatalytic performance properties of t,m-ZrO2 nanoparticles fabricated by the co-precipitation method. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
43
|
Cui Z, Xu G, Ormeci B, Liu H, Zhang Z. Transformation and stabilization of heavy metals during pyrolysis of organic and inorganic-dominated sewage sludges and their mechanisms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:57-65. [PMID: 35803157 DOI: 10.1016/j.wasman.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Improperdisposal of sludge will release heavy metals contained in sludge into soils or waters which could further move through the food chain, posing a risk to human health. Understanding the transformation and stabilization of heavy metals (HMs) during pyrolysis is of great value for safe disposal of sludge. Herein, municipal sewage sludge (MSS, organic-dominated) and pharmacy sludge (PS, inorganic-dominated) were pyrolyzed to investigate the effects of organic and inorganic components and temperature on the stabilization of HMs in sludges. The results showed that pyrolysis can promote the transition of HMs from mobile fractions to stable fractions. Compared to MSS and PS, the potential ecological risk index of biochar derived from MSS and PS decreased by 95.51% and 85.05%, respectively, after pyrolysis at 800 °C. The stabilization of HMs in MSS was mainly due to the complexation reactions between metals and amide functional groups (-CO-NH-) during pyrolysis. Moreover, the mechanism of HMs stabilization in PS lied in the formation of a stable crystal-structure such as copper iron oxide (Cu6Fe3O7) and copper iron phosphate (Cu2Fe5(PO4)6, Cu3Fe4(PO4)6) with iron-containing minerals after high-temperature pyrolysis. The results of this study indicated that the organic and inorganic components of sludge play different roles in the stabilization and transformation of HMs during pyrolysis, which provided a scientific basis for the ecotoxicity reduction of HMs and safe disposal of sludge.
Collapse
Affiliation(s)
- Zhiliang Cui
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Harbin Institute of Technology, Harbin, 150090, China
| | - Banu Ormeci
- Department of Civil and Environmental Engineering, Carleton University, Canada
| | - Hongwei Liu
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Zhao Zhang
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| |
Collapse
|