1
|
Ma JY, Liu JH, Chen CZ, Zhang YZ, Guo ZS, Song MP, Jiang F, Chai ZT, Li Z, Lv SX, Zhen YJ, Wang L, Liang ZL, Jiang ZY. Characteristics of microbial carbon pump in the sediment of kelp aquaculture zone and its contribution to recalcitrant dissolved organic carbon turnover: insights into metabolic patterns and ecological functions. ENVIRONMENTAL RESEARCH 2025; 277:121559. [PMID: 40228693 DOI: 10.1016/j.envres.2025.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
The study delves into the microbial carbon pump (MCP) within the sediments of kelp aquaculture zones, focusing on its influence on the turnover of recalcitrant dissolved organic carbon (RDOC). Following kelp harvest, significant alterations in the microbial community structure were noted, with a decrease in complexity and heterogeneity within co-occurrence networks potentially impacting RDOC production efficiency. Metabolic models constructed identified four key microbial lineages crucial for RDOC turnover, with their abundance observed to decrease post-harvest. Analysis of metabolic complementarity revealed that RDOC-degrading microorganisms exhibit broad substrate diversity and are engaged in specific resource exchange patterns, with cross-feeding interactions possibly enhancing the ecological efficiency of the MCP. Notably, the degradation of RDOC was found not to deplete the RDOC pool; as aromatic compounds break down, new ones are released into the environment, thus supporting the renewal of the RDOC pool. The research highlights the pivotal role of microbial communities in RDOC turnover and offers fresh insights into their cross-feeding behavior related to RDOC cycling, providing valuable data to support the future development and application of MCP theory.
Collapse
Affiliation(s)
- Jun-Yang Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China; Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Ji-Hua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Yi-Ze Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Zhan-Sheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Min-Peng Song
- Yantai Vocational College, Yantai, 264670, Shandong, PR China
| | - Feng Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zi-Tong Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhu Li
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Su-Xian Lv
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Yu-Jiao Zhen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhen-Lin Liang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhao-Yang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China.
| |
Collapse
|
2
|
Magyari EK, Szabó Z, Falus G, Móra A, Szalai Z, Hamerlik L, Tóth M, Farkas Á, Pomogyi P, Somogyi B, Vörös L, Korponai J. Large shallow lake response to anthropogenic stressors and climate change: Missing macroinvertebrate recovery after oligotrophication (Lake Balaton, East-Central Europe). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174191. [PMID: 38945249 DOI: 10.1016/j.scitotenv.2024.174191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
East-Central Europe's largest shallow lake, Balaton, experienced strong eutrophication in the 1970-80s, followed by water quality improvement and oligotrophication by 2010 CE. Recently however, repeated cyanobacterial blooms occurred and warned that internal P-recycling can act similarly to external P load, therefore we need a better understanding of past water level (WL) and trophic changes in the lake. In this study we discuss the last 500-yr trophic, WL and habitat changes of the lake using paleoecological (chironomids, pollen) and geochemical (sediment chlorophyll, TOC, TS, TN, C/H ratio, major and trace element) methods. We demonstrate that the most intensive and irreversible change in the macroinvertebrate fauna occurred during the period of economic boom between the First and Second World War (∼1925-1940 CE), when large-scale built-in and leisure use of the lake has intensified. At that time, the Procladius-Microchironomus-Stempellina dominated community transformed to Procladius-Chironomus plumosus-type-Microchironomus community that coincided with land use changes, intensified erosion and water-level regulation in the lake with the maintenance of year-round high WL. This was followed by the impoverishment and population size decrease of the chironomid fauna and Procladius dominance since 1940 CE, without any recovery after 1994 CE despite the ongoing oligotrophication. Accelerated rate of change and turnover of the fauna was connected to an increase in the benthivorous fish biomass and eutrophication. The basin lost almost completely its once characteristic Stempellina species between 1927 and 1940 CE due to trophic level increase and seasonal anoxia in the Szemes Basin. Reference conditions for ecosystem improvement were assigned to 1740-1900 CE. We conclude that in spite of the ongoing oligotrophication, the re-establishment of the Procladius-Microchironomus-Stempellina assemblage is hampered, and requires fish population regulation.
Collapse
Affiliation(s)
- E K Magyari
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter str. 1/C, Budapest H-1117, Hungary; HUN-REN-MTM-ELTE Research group for Palaeontology, Pázmány Péter str. 1/C, Budapest H-1117, Hungary.
| | - Z Szabó
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter str. 1/C, Budapest H-1117, Hungary
| | - Gy Falus
- Mining and Geological Survey of Hungary, Columbus str. 17-23., Budapest H-1145, Hungary
| | - A Móra
- University of Pécs, Department of Hydrobiology, Ifjúság útja 6, Pécs H-7624, Hungary
| | - Z Szalai
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter str. 1/C, Budapest H-1117, Hungary; Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary
| | - L Hamerlik
- Matej Bel University, Faculty of Natural Sciences, Tajovskeho 40, 97401 Banská Bystrica, Slovakia; Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - M Tóth
- Balaton Limnological Research Institute, Klebelsberg Kuno utca 3., Tihany H-8237, Hungary
| | - Á Farkas
- HUN-REN ATOMKI, Bem tér 18/c, Debrecen H-4026, Hungary
| | - P Pomogyi
- Mid-Transdanubian Water Directorate, Balatoni út 6, Székesfehérvár H-8000, Hungary
| | - B Somogyi
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, Tihany H-8237, Hungary
| | - L Vörös
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, Tihany H-8237, Hungary
| | - J Korponai
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter str. 1/C, Budapest H-1117, Hungary; University of Public Service, Faculty of Water Sciences, Department of Water Supply and Sewerage, Bajcsy-Zsilinszky utca 12-14, Baja H-6500, Hungary; Department of Environmental Science, Sapientia Hungarian University of Transylvania, Calea Turzii 4, 400193 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Ren H, Shen X, Shen D, Wang K, Jiang X, Qadeer A. Regional differences in lead (Pb) and tetracycline (TC) binding behavior of sediment dissolved organic matter (SDOM): Effects of DOM heterogeneity and microbial degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134785. [PMID: 38843634 DOI: 10.1016/j.jhazmat.2024.134785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
Lake Nansi, primarily dominated by macrophytes, faces threats from heavy metals and antibiotics due to human activity. This study investigated sediment dissolved organic matter (SDOM) characteristics and complexation of lead (Pb) and tetracycline (TC) in barren zone (BZ) and submerged macrophytes zone (PZ). Additionally, a microbial degradation experiment was conducted to examine its impact on the regional variations in complexation. SDOM abundance and protein-like materials in PZ was significantly greater than in BZ, indicating a probable contribution from the metabolism and decomposition of submerged macrophytes. Both zones exhibited a higher affinity of SDOM for Pb compared to TC, with all four components participating in Pb complexation. Protein-like materials in PZ had a higher binding ability (LogKPb=4.19 ± 1.07, LogKTC=3.89 ± 0.67) than in BZ (LogKPb=3.98 ± 0.61, LogKTC=3.69 ± 0.13), suggesting a potential presence of organically bound Pb and TC due to the higher abundance of protein-like materials in PZ. Although microbial communities differed noticeably, the degradation patterns of SDOM were similar in both zones, affecting the binding ability of SDOM in each. Notably, the fulvic-like component C4 emerged as the dominant binding material for both Pb and TC in both zones. Degradation might increase the amount of organically bound TC due to the increase in the LogKTC.
Collapse
Affiliation(s)
- Haoyu Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xian Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongbo Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Barbosa M, Lefler FW, Berthold DE, Gettys LA, Leary JK, Laughinghouse HD. Macrophyte coverage drives microbial community structure and interactions in a shallow sub-tropical lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171414. [PMID: 38442760 DOI: 10.1016/j.scitotenv.2024.171414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Shallow lakes are typically dominated by macrophytes, which have important functional roles regulating trophic conditions and creating biological habitat. Macrophytes have been shown to strongly influence water chemistry and shape microbial communities in shallow lakes. In Florida, many large, shallow lakes are dominated by alien invasive, submersed macrophytes, such as hydrilla (Hydrilla verticillata [L.F.] Royle) and are intensively managed to reduce infestations and contain the spread of these alien invasive macrophytes. In this study, we investigated the effects of large (40 ha) herbicidal and mechanical control treatments on a large lake located in Central Florida that resulted in the reduction of Hydrilla and concomitant changes in water chemistry and microbial communities (both bacteria and protists [microbial eukaryotes]). We observed a considerable decrease in macrophyte coverage associated with plant control treatments as well as a temporal change in macrophyte coverage in Lake Tohopekaliga. We found that changes in macrophyte coverage, regardless of treatment type, significantly affected the water chemistry of the lake, resulting in a sharp increase of chlorophyll a concentration as well as an increase in turbidity with the decrease of macrophyte coverage. Moreover, the decline in macrophytes led to decreases in microbial community diversity with over-representation of phototrophic functional groups. Specifically, we observed an increase in cyanobacteria with the decrease in macrophyte coverage. Our study highlights the advantages and disadvantages of macrophyte control. Although there was an initial decrease in macrophyte coverage associated with the chemical and mechanical control of aquatic plants, after a few months, we found a considerable increase in coverage. In addition, the increase of cyanobacterial relative abundance demonstrates the possible consequences of aquatic plant control such as cyanobacterial blooms if there is a continued decline of macrophytes.
Collapse
Affiliation(s)
- Maximiliano Barbosa
- Agronomy Department, Ft. Lauderdale Research and Education Center, University of Florida, IFAS, 3205 College Avenue, Davie, FL 33314, USA
| | - Forrest W Lefler
- Agronomy Department, Ft. Lauderdale Research and Education Center, University of Florida, IFAS, 3205 College Avenue, Davie, FL 33314, USA
| | - David E Berthold
- Agronomy Department, Ft. Lauderdale Research and Education Center, University of Florida, IFAS, 3205 College Avenue, Davie, FL 33314, USA
| | - Lyn A Gettys
- Agronomy Department, Ft. Lauderdale Research and Education Center, University of Florida, IFAS, 3205 College Avenue, Davie, FL 33314, USA
| | - James K Leary
- UF/IFAS Center of Aquatic and Invasive Plants, University of Florida, 7922 NW 71 St, Gainesville, FL 32653, USA
| | - H Dail Laughinghouse
- Agronomy Department, Ft. Lauderdale Research and Education Center, University of Florida, IFAS, 3205 College Avenue, Davie, FL 33314, USA.
| |
Collapse
|
5
|
Ren H, Wang G, Ding W, Li H, Shen X, Shen D, Jiang X, Qadeer A. Response of dissolved organic matter (DOM) and microbial community to submerged macrophytes restoration in lakes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116185. [PMID: 37207736 DOI: 10.1016/j.envres.2023.116185] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microorganisms play a crucial role in the biogeochemical processes of Dissolved Organic Matter (DOM), and the properties of DOM also significantly influence changes in microbial community characteristics. This interdependent relationship is vital for the flow of matter and energy within aquatic ecosystems. The presence, growth state, and community characteristics of submerged macrophytes determine the susceptibility of lakes to eutrophication, and restoring a healthy submerged macrophyte community is an effective way to address this issue. However, the transition from eutrophic lakes dominated by planktic algae to medium or low trophic lakes dominated by submerged macrophytes involves significant changes. Changes in aquatic vegetation have greatly affected the source, composition, and bioavailability of DOM. The adsorption and fixation functions of submerged macrophytes determine the migration and storage of DOM and other substances from water to sediment. Submerged macrophytes regulate the characteristics and distribution of microbial communities by controlling the distribution of carbon sources and nutrients in the lake. They further affect the characteristics of the microbial community in the lake environment through their unique epiphytic microorganisms. The unique process of submerged macrophyte recession or restoration can alter the DOM-microbial interaction pattern in lakes through its dual effects on DOM and microbial commu-----nities, ultimately changing the stability of carbon and mineralization pathways in lakes, such as the release of methane and other greenhouse gases. This review provides a fresh perspective on the dynamic changes of DOM and the role of the microbiome in the future of lake ecosystems.
Collapse
Affiliation(s)
- Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guoxi Wang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wanchang Ding
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - He Li
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongbo Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xia Jiang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Abdul Qadeer
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
6
|
Modeling Patterns and Controls of Food Web Structure in Saline Wetlands of a Rocky Mountain Basin. Ecosystems 2022. [DOI: 10.1007/s10021-022-00768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|