1
|
Zheng X, Wang Y, Jiang Y, Mao W, Li M, Guan Y. Enhanced and sustainable advanced nitrogen removal in mixotrophic systems using pyrite and solid carbon source. ENVIRONMENTAL RESEARCH 2025; 275:121379. [PMID: 40081648 DOI: 10.1016/j.envres.2025.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Utilizing widespread minerals/solid wastes as electron donors for denitrification is conducive to sustainable wastewater treatment. The current denitrification technologies based on single pyrite/solid carbon sources have problems of limited removal efficiency or unstable carbon release. In this study, two continuous biofilters, pyrite-corncob mixotrophic system (RPCM) and pyrite-polybutylene succinate mixotrophic system (RPPM), were conducted and operated steadily for a long period (>326 d). The mixotrophic systems achieved advanced removal of NO3--N (18 mg L-1) and a small amount of NH4+-N (2.5 mg L-1), with stabilized effluent TIN less than 2 mg L-1 at HRT of 4 h. Additionally, the systems demonstrated several distinct advantages, including no additional alkalinity requirement and a low risk of secondary contamination. RPCM could achieve advanced nitrogen removal at a higher nitrogen loading rate (93.6 mg L-1 d-1) but demanded periodic replenishment of corncob. In contrast, the organic matter release and nitrogen removal performance of RPPM exhibited stability throughout the operation. The increased abundance of functional microorganisms related to C, N, S, and Fe metabolism was essential for advanced nitrogen removal through synergistic effects. This study will provide implications for developing novel wastewater treatment processes emphasizing both nitrogen removal and waste valorization.
Collapse
Affiliation(s)
- Xiaona Zheng
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yanfei Wang
- Nanjing Historical City Protection & Construction (Group) Co., Ltd., Nanjing, 210000, PR China
| | - Yanbo Jiang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Nanning Engineering Technology Research Center for Water Safety, Guangxi Beitou Environmental Protection &Water Group Co., Ltd., Nanning, 530022, PR China
| | - Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Minlong Li
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
2
|
Zhu J, Li X, Wang Y, Gu X, Wang H, Ma J, Huang Y. Organic sulfur-driven denitrification pretreatment for enhancing autotrophic nitrogen removals from thiourea-containing wastewater: performance and microbial mechanisms. WATER RESEARCH 2025; 282:123753. [PMID: 40319779 DOI: 10.1016/j.watres.2025.123753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Thiourea (CH4N2S) is a widely used industrial reagent and is frequently detected in both sewage and industrial wastewater. However, treating thiourea-containing wastewater remains challenging due to its toxicity, high ammonium concentration, and low C/N ratio. In this study, a novel integrated autotrophic-heterotrophic denitrification (IAHD)- completely autotrophic nitrogen removal over nitrite (CANON) process was developed. The degradation pathway of toxic compounds, nitrogen, and sulfur release and transformation, as well as variations in functional genes were comprehensively examined. The results show that by incorporating an IAHD unit, prior to CANON, toxic thiourea was effectively degraded by the recycled nitrate from CANON. The released sulfur and organic carbon served as electron donors facilitating efficient NO3--N reduction. The optimal thiourea/NO3--N ratio for IAHD operation was determined to be 4:1 (m:m), achieving NO3- and thiourea removal efficiencies of 90 % and 99 %, respectively. Additionally, NH4+-N and SO42--S concentrations increased by 199.9 mg/L and 201.9 mg/L, respectively. Approximately 53.3 % of thiourea was converted into high-molecular-weight biological metabolites in the IAHD unit, which were subsequently and completely degraded in the CANON unit, where a robust nitrite-shunt and anammox process occurred. 16S rRNA amplicon sequencing revealed that Thiobacillus (with a relative abundance of 39.9 %) was the dominant genera in the IAHD unit, followed by Arenimonas (10.8 %) and norank_o_1013-28-CG33 (12.4 %), indicating that sulfur autotrophic denitrification was the primary pathway for thiourea degradation. Metagenomic analysis further confirmed that thiourea, acting as an electron donor, stimulated the expression of key functional genes involved in denitrification, sulfur oxidation, dissimilatory nitrate reduction, hydrolytic oxidation, and amino acid synthesis and transport pathways. These processes contributed to the active biological transformation of carbon, nitrogen and sulfur in the IAHD unit. This study demonstrates that implementing a prior autotrophic-heterotrophic denitrification unit effectively degrades toxic thiourea, thereby ensuring the subsequent nitrogen removal performance of CANON. This approach offers a new paradigm for the treatment of thiourea-containing wastewater, promoting a more efficient and low-carbon process.
Collapse
Affiliation(s)
- Jiheng Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
3
|
Zhou Q, Wang J. Sulfur-based mixotrophic denitrification: A promising approach for nitrogen removal from low C/N ratio wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177419. [PMID: 39542261 DOI: 10.1016/j.scitotenv.2024.177419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Sulfur-based mixotrophic denitrification has significant potential as a promising denitrification technology for treating low ratio of carbon-to‑nitrogen (C/N) wastewater. This paper provided an in-depth and comprehensive overview of the sulfur-based mixotrophic denitrification process and discussed the underlying mechanisms and functional microorganisms. Possible electron transfer pathways involved in the sulfur-based mixotrophic denitrification process are also analyzed in detail. This review focused on the various sulfur-based electron donors used in the sulfur-based mixotrophic denitrification process, including S0, S2-, S2O32-, and pyrite (FeS2), and their performances when combined with various carbon sources (such as methanol, ethanol, glucose, and woodchips) were also explored. The analysis of the contribution proportion between autotrophic and heterotrophic denitrification suggested an appropriate C/N ratio can emphasize the dominance of autotrophs, thus exerting synergistic effects and reducing the consumption of carbon sources. Additionally, three strategies, including developing new composites, new bioreactors, and new sulfur sources, were proposed to improve the performance and stability of the sulfur-based mixotrophic denitrification process. Finally, the applications (such as secondary effluent, groundwater, and agricultural/urban storm water runoff), challenges, and perspectives of the sulfur-based mixotrophic denitrification were highlighted. This review provided an in-depth insight into the coupling mechanism of sulfur-based autotrophic and heterotrophic denitrification and guidance for the future implementation of the sulfur-based mixotrophic denitrification process.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Wu T, Li J, Cao R, Chen X, Wang B, Huang T, Wen G. Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176614. [PMID: 39357767 DOI: 10.1016/j.scitotenv.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Reducing nitrate contamination in drinking water has become a critical issue in urban water resource management. Here a novel oligotrophic aerobic denitrifying bacterium, Pelomonas puraquae WJ1, was isolated and purified from artificial lake sediments. For the first time, excellent aerobic denitrification capabilities were demonstrated. At a carbon-to‑nitrogen ratio of 5.0, strain WJ1 achieved 100.0 % nitrate removal and 84.92 % total nitrogen removal within 24 h, with no nitrite accumulation. PCR amplification and sequencing confirmed the presence of the denitrification genes napA, nirS, and nosZ in the strain. The nitrogen balance demonstrated that approximately 74.95 % of the initial nitrogen was eliminated as gaseous products under aerobic conditions. Furthermore, carbon balance analysis showed that most electron donors from strain WJ1 were directed towards oxygen, with limited availability for nitrate reduction. A combination of bio-ECO analysis and network modeling indicated that strain WJ1 has robust metabolic capabilities for diverse carbon sources and exhibits high adaptability to complex carbon environments. Overall, Pelomonas puraquae WJ1 removed approximately 45.89 % of the nitrates in raw water, demonstrating significant potential for practical applications in oligotrophic denitrification.
Collapse
Affiliation(s)
- Tianhua Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxin Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaojie Chen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Tan S, Huang Y, Yang H, Zhang S, Tang X. Microbial communities and denitrification mechanisms of pyrite autotrophic denitrification coupled with three-dimensional biofilm electrode reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11107. [PMID: 39155705 DOI: 10.1002/wer.11107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Denitrification is of great significance for low C/N wastewater treatment. In this study, pyrite autotrophic denitrification (PAD) was coupled with a three-dimensional biofilm electrode reactor (BER) to enhance denitrification. The effect of current on denitrification was extensively studied. The nitrate removal of the PAD-BER increased by 14.90% and 74.64% compared to the BER and the PAD, respectively. In addition, the electron utilization, extracellular polymeric substances secretion, and denitrification enzyme activity (NaR and NiR) were enhanced in the PAD-BER. The microbial communities study displayed that Dokdonella, Hydrogenophaga, Nitrospira, and Terrimonas became the main genera for denitrification. Compared with the PAD and the BER, the abundance of the key denitrification genes narG, nirK, nirS, and nosZ were all boosted in the PAD-BER. This study indicated that the enhanced autotrophic denitrifiers and denitrification genes were responsible for the improved denitrification in the PAD-BER. PRACTITIONER POINTS: PAD-BER displayed higher nitrate removal, EPS, NAR, and NIR activity. The three types of denitrification (HD, HAD, and PAD) and their contribution percentage in the PAD-BER were analyzed. HAD was dominant among the three denitrification processes in PAD-BER. Microbial community composition and key denitrification genes were tested to reveal the denitrification mechanisms.
Collapse
Affiliation(s)
- Shenyu Tan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Yu Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Heng Yang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
6
|
Wu P, Yang F, Lian J, Chen B, Wang Y, Meng G, Shen M, Wu H. Elucidating distinct roles of chemical reduction and autotrophic denitrification driven by three iron-based materials in nitrate removal from low carbon-to-nitrogen ratio wastewater. CHEMOSPHERE 2024; 361:142470. [PMID: 38810802 DOI: 10.1016/j.chemosphere.2024.142470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Effective nitrate removal is a key challenge when treating low carbon-to-nitrogen ratio wastewater. How to select an effective inorganic electron donor to improve the autotrophic denitrification of nitrate nitrogen has become an area of intense research. In this study, the nitrate removal mechanism of three iron-based materials in the presence and absence of microorganisms was investigated with Fe2+/Fe0 as an electron donor and nitrate as an electron acceptor, and the relationship between the iron materials and denitrifying microorganisms was explored. The results indicated that the nitrogen removal efficiency of each iron-based material coupled sludge systems was higher than that of iron-based material. Furthermore, compared with the sponge iron coupled sludge system (60.6%-70.4%) and magnetite coupled sludge (56.1%-65.3%), the pyrite coupled sludge system had the highest removal efficiency of TN, and the removal efficiency increased from 62.5% to 82.1% with time. The test results of scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction indicated that iron-based materials promoted the attachment of microorganisms and the chemical reduction of nitrate in three iron-based material coupled sludge systems. Furthermore, the pyrite coupled sludge system had the highest nitrite reductase activity and can induce microorganisms to secrete more extracellular polymer substances. Combined with high-throughput sequencing and PICRUSt2 functional predictive analysis software, the total relative abundance of the dominant bacterial in pyrite coupled sludge system was the highest (72.06%) compared with the other iron-based material systems, and the abundance of Blastocatellaceae was relatively high. Overall, these results suggest that the pyrite coupled sludge system was more conducive to long-term stable nitrate removal.
Collapse
Affiliation(s)
- Pei Wu
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Bo Chen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Yulai Wang
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Guanhua Meng
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Maocai Shen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
7
|
Xing W, Gao D, Wang Y, Li B, Zhang Z, Zuliani P, Yao H, Curtis TP. Cooperation between autotrophic and heterotrophic denitrifiers under low C/N ratios revealed by individual-based modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171091. [PMID: 38387566 DOI: 10.1016/j.scitotenv.2024.171091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Denitrifying biofilms, in which autotrophic denitrifiers (AD) and heterotrophic denitrifiers (HD) coexist, play a crucial role in removing nitrate from water or wastewater. However, it is difficult to elucidate the interactions between HD and AD through sequencing-based experimental methods. Here, we developed an individual-based model to describe the interspecies dynamics and priority effects between sulfur-based AD (Thiobacillus denitrificans) and HD (Thauera phenylcarboxya) under different C/N ratios. In test I (coexistence simulation), AD and HD were initially inoculated at a ratio of 1:1. The simulation results showed excellent denitrification performance and a coaggregation pattern of denitrifiers, indicating that cooperation was the predominant interaction at a C/N ratio of 0.25 to 1.5. In test II (invasion simulation), in which only one type of denitrifier was initially inoculated and the other was added at the invasion time, denitrifiers exhibited a stratification pattern in biofilms. When HD invaded AD, the final HD abundance decreased with increasing invasion time, indicating an enhanced priority effect. When AD invaded HD, insufficient organic carbon sources weakened the priority effect by limiting the growth of HD populations. This study reveals the interaction between autotrophic and heterotrophic denitrifiers, providing guidance for optimizing wastewater treatment process.
Collapse
Affiliation(s)
- Wei Xing
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China; Tangshan Research Institute of Beijing Jiaotong University, Hebei 063000, PR China.
| | - Daoqing Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Yan Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Bowen Li
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, United Kingdom
| | - Zexi Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Paolo Zuliani
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, United Kingdom; Dipartimento di Informatica Università di Roma "La Sapienza", Rome 00198, Italy
| | - Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China; Tangshan Research Institute of Beijing Jiaotong University, Hebei 063000, PR China.
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne NE4 5TG, United Kingdom
| |
Collapse
|
8
|
Yu W, Zheng T, Guo B, Tao Y, Liu L, Yan N, Zheng X. Coupling of polyhydroxybutyrate and zero-valent iron for enhanced treatment of nitrate pollution within the Permeable Reactive Barrier and its downgradient aquifer. WATER RESEARCH 2024; 250:121060. [PMID: 38181646 DOI: 10.1016/j.watres.2023.121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Permeable Reactive Barriers (PRBs) have been utilized for mitigating nitrate pollution in groundwater systems through the use of solid carbon and iron fillers that release diverse nutrients to enhance denitrification efficiency. We conduct laboratory column tests to evaluate the effectiveness of PRBs in remediating nitrate pollution both within the PRB and in the downgradient aquifer. We use an iron-carbon hydrogel (ICH) as PRB filler, which has different weight ratios of polyhydroxybutyrate (PHB) and microscale zero-valent iron (mZVI). Results reveal that denitrification in the downgradient aquifer accounts for at least 19.5 % to 32.5 % of the total nitrate removal. In the ICH, a higher ratio of PHB to mZVI leads to higher contribution of the downgradient aquifer to nitrate removal, while a lower ratio results in smaller contribution. Microbial community analysis further reveals that heterotrophic and mixotrophic bacteria dominate in the downgradient aquifer of the PRB, and their relative abundance increases with a higher ratio of PHB to mZVI in the ICH. Within the PRB, autotrophic and iron-reducing bacteria are more prevalent, and their abundance increases as the ratio of PHB to mZVI in the ICH decreases. These findings emphasize the downgradient aquifer's substantial role in nitrate removal, particularly driven by dissolved organic carbon provided by PHB. This research holds significant implications for nutrient waste management, including the prevention of secondary pollution, and the development of cost-effective PRBs.
Collapse
Affiliation(s)
- Wenhao Yu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA.
| | - Yiheng Tao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544, USA
| | - Lecheng Liu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Ni Yan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
9
|
Yuan S, Zhong Q, Zhang H, Zhu W, Wang W, Zhang S. Deciphering the influencing mechanism of hydraulic retention time on purification performance of a mixotrophic system from the perspective of reaction kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12933-12947. [PMID: 38236564 DOI: 10.1007/s11356-023-31305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024]
Abstract
At present, eutrophication is increasingly serious, so it is necessary to effectively reduce nitrogen and phosphorus in water bodies. In this study, a pyrite/polycaprolactone-based mixotrophic denitrification (PPMD) system using pyrite and polycaprolactone (PCL) as electron donors was developed and compared with pyrite-based autotrophic denitrification (PAD) system and PCL-based heterotrophic denitrification (PHD) system through continuous flow experiment. The removal efficiency of NO3--N (NRE) and PO43--P (PRE) and the contribution proportion of PAD in the PPMD system were significantly increased by prolonging hydraulic retention time (HRT, from 1 to 48 h). When HRT was equal to 24 h, the PPMD system conformed to the zero-order kinetic model, so NRE and PRE were mainly limited by the PAD process. When HRT was equal to 48 h, the PPMD system met the first-order kinetic model with NRE and PRE reaching 98.9 ± 1.1% and 91.8 ± 4.5%, respectively. When HRT = 48 h, the NRE and PRE by PAD system were 82.7 ± 9.1% and 88.5 ± 4.7%, respectively, but the effluent SO42- concentration was as high as 152.1 ± 13.7 mg/L (the influent SO42- concentration was 49.2 ± 3.3 mg/L); the NRE by PHD system was 98.5 ± 1.7%, but the PO43--P could not be removed ideally. The concentrations of NO3--N, total nitrogen, PO43--P, and SO42- in the PPMD system also showed distinct changes along the reactor column. In addition, the microbial diversity analysis showed that prolonging HRT (from 24 to 48 h) increased the abundance of autotrophic denitrifying microorganisms in the PPMD system, ultimately increasing the contribution proportion of PAD.
Collapse
Affiliation(s)
- Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Qingbo Zhong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Hongjun Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Weibo Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Miao X, Xu J, Yang B, Luo J, Zhi Y, Li W, He Q, Li H. Indigenous mixotrophic aerobic denitrifiers stimulated by oxygen micro/nanobubble-loaded microporous biochar. BIORESOURCE TECHNOLOGY 2024; 391:129997. [PMID: 37952594 DOI: 10.1016/j.biortech.2023.129997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The prevalence of hypoxia in surface sediment inhibits the growth of aerobic denitrifiers in natural waters. A novel oxygen micro/nanobubble-loaded microporous biochar (OMB) was developed to activate indigenous aerobic denitrifiers in this study. The results indicate a thin-layer OMB capping mitigates hypoxia effectively. Following a 30-day microcosm-based incubation, a 60 % decrease in total nitrogen concentration was observed, and the oxygen penetration depth in the sediment was increased from <4.0 mm to 38.4 mm. High-throughput sequencing revealed the stimulation of indigenous mixotrophic aerobic denitrifiers, including autotrophic denitrifiers such as Hydrogenophaga and Thiobacillus, heterotrophic denitrifiers like Limnobacter and unclassified_f_Methylophilaceae, and heterotrophic nitrification aerobic denitrification bacteria, including Shinella and Acidovorax, with total relative abundance reaching up to 38.1 %. Further analysis showed OMB enhanced the overall collaborative relationships among microorganisms and promoted the expression of nitrification- and denitrification-related genes. This study introduces an innovative strategy for stimulating indigenous aerobic denitrifiers in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaojun Miao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiani Xu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Bing Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Junxiao Luo
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Wei Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
11
|
Jian C, Hao Y, Liu R, Qi X, Chen M, Liu N. Mixotrophic denitrification process driven by lime sulfur and butanediol: Denitrification performance and metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166654. [PMID: 37647948 DOI: 10.1016/j.scitotenv.2023.166654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Heterotrophic sulfur-based autotrophic denitrification is a promising biological denitrification technology for low COD/TN (C/N) wastewater due to its high efficiency and low cost. Compared to the conventional autotrophic denitrification process driven by elemental sulfur, the presence of polysulfide in the system can promote high-speed nitrogen removal. However, autotrophic denitrification mediated by polysulfide has not been reported. This study investigated the denitrification performance and microbial metabolic mechanism of heterotrophic denitrification, sulfur-based autotrophic denitrification, and mixotrophic denitrification using lime sulfur and butanediol as electron donors. When the influent C/N was 1, the total nitrogen removal efficiency of the mixotrophic denitrification process was 1.67 and 1.14 times higher than that of the heterotrophic and sulfur-based autotrophic denitrification processes, respectively. Microbial community alpha diversity and principal component analysis indicated different electron donors lead to different evolutionary directions in microbial communities. Metagenomic analysis showed the enriched denitrifying bacteria (Thauera, Pseudomonas, and Pseudoxanthomonas), dissimilatory nitrate reduction to ammonia bacteria (Hydrogenophaga), and sulfur oxidizing bacteria (Thiobacillus) can stably support nitrate reduction. Analysis of metabolic pathways revealed that complete denitrification, dissimilatory nitrate reduction to ammonia, and sulfur disproportionation are the main pathways of the N and S cycle. This study demonstrates the feasibility of a mixotrophic denitrification process driven by a combination of lime sulfur and butanediol as a cost-effective solution for treating nitrogen pollution in low C/N wastewater and elucidates the N and S metabolic pathways involved.
Collapse
Affiliation(s)
- Chuanqi Jian
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaochen Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, Guangdong, China
| | - Minmin Chen
- Guangdong Environmental Protection Engineering Vocational College, Guangzhou 510655, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
12
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
13
|
Yuan S, Zhong Q, Zhang H, Zhu W, Wang W, Li M, Tang X, Zhang S. The enrichment of more functional microbes induced by the increasing hydraulic retention time accounts for the increment of autotrophic denitrification performance. ENVIRONMENTAL RESEARCH 2023; 236:116848. [PMID: 37558114 DOI: 10.1016/j.envres.2023.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
With pyrite (FeS2) and polycaprolactone (PCL) as electron donors, three denitrification systems, namely FeS2-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system and split-mixotrophic denitrification (PPMD) system, were constructed and operated under varying hydraulic retention times (HRT, 1-48 h). Compared with PAD or PHD, the PPMD system could achieve higher removals of NO3--N and PO43--P, and the effluent SO42- concentration was greatly reduced to 7.28 mg/L. Similarly, the abundance of the dominant genera involved in the PAD (Thiobacillus, Sulfurimonas, and Ferritrophicum, etc.) or PHD (Syntrophomonas, Desulfomicrobium, and Desulfovibrio, etc.) process all increased in the PPMD system. Gene prediction completed by PICRUSt2 showed that the abundance of the functional genes involved in denitrification and sulfur oxidation all increased with the increase of HRT. This also accounted for the increased contribution of autotrophic denitrification to total nitrogen removal in the PPMD system. In addition, the analysis of metabolic pathways disclosed the specific conversion mechanisms of nitrogen and sulfur inside the reactor.
Collapse
Affiliation(s)
- Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qingbo Zhong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Hongjun Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weibo Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
14
|
Huang S, Fu Y, Zhang H, Wang C, Zou C, Lu X. Research progress of novel bio-denitrification technology in deep wastewater treatment. Front Microbiol 2023; 14:1284369. [PMID: 37860138 PMCID: PMC10582329 DOI: 10.3389/fmicb.2023.1284369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Excessive nitrogen emissions are a major contributor to water pollution, posing a threat not only to the environment but also to human health. Therefore, achieving deep denitrification of wastewater is of significant importance. Traditional biological denitrification methods have some drawbacks, including long processing times, substantial land requirements, high energy consumption, and high investment and operational costs. In contrast, the novel bio-denitrification technology reduces the traditional processing time and lowers operational and maintenance costs while improving denitrification efficiency. This technology falls within the category of environmentally friendly, low-energy deep denitrification methods. This paper introduces several innovative bio-denitrification technologies and their combinations, conducts a comparative analysis of their denitrification efficiency across various wastewater types, and concludes by outlining the future prospects for the development of these novel bio-denitrification technologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuguo Lu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, China
| |
Collapse
|
15
|
Chen Z, Pang C, Wen Q. Coupled pyrite and sulfur autotrophic denitrification for simultaneous removal of nitrogen and phosphorus from secondary effluent: feasibility, performance and mechanisms. WATER RESEARCH 2023; 243:120422. [PMID: 37523921 DOI: 10.1016/j.watres.2023.120422] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
The discharge standards of nitrogen (N) and phosphorus (P) in wastewater treatment plants (WWTPs) have become increasingly strict to reduce water eutrophication. Further reducing N and P in effluent from municipal WWTPs need to be achieved effectively and eco-friendly. In this study, a carbon independent pyrite and sulfur autotrophic denitrification (PSAD) system using pyrite and sulfur as electron donor was developed and compared with pyrite autotrophic denitrification (PAD) and sulfur autotrophic denitrification (SAD) systems through batch and continuous flow biofilter experiments. Compare to PAD and SAD, PSAD was more effective in simultaneous removal in N and P. At hydraulic retention time (HRT) 3 h, average effluent concentrations of total nitrogen (TN) and total phosphate (TP) of 1.40 ± 0.03 and 0.19 ± 0.02 mg/L were achieved when treating real secondary effluent with 20.65 ± 0.24 mg/L TN and 1.00 ± 0.24 mg/L TP. The improvement in simultaneous removal of N and P was attributed to the coupling of PAD and SAD in enhancing the transformation of sulfur and iron and enlarging the reaction zone in the pyrite and sulfur autotrophic denitrification biofilter (PSADB) system. Therefore, more biomass was accumulated and the microbial denitrification functional stability, including electrons transfer and consumption was enhanced on the surface of pyrite and sulfur particles in the PSADB system. Moreover, autotrophic denitrifiers (Thiobacillus and Ferritrophicum), sulfate-reducing bacteria (Desulfocapsa) and iron reducing bacteria (Geothrix), acting as contributors to microbial nitrogen, sulfur and iron cycle, were specially enriched. In addition, the leaching of iron ions was promoted, which facilitated the removal of phosphate in the form of Fe3(PO4)2·8H2O and Fe3PO4. PSADB has proven to be an efficient technology for simultaneous removal of N and P, which could meet increasingly stringent discharge standards effectively and eco-friendly.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chao Pang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
When nitrate treatment wins the battle against microbial reservoir souring but loses the war. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
17
|
Zhu W, Chen J, Zhang H, Yuan S, Guo W, Zhang Q, Zhang S. Start-up phase optimization of pyrite-intensified hybrid sequencing batch biofilm reactor (PIHSBBR): Mixotrophic denitrification performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117232. [PMID: 36610197 DOI: 10.1016/j.jenvman.2023.117232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Pyrite-based autotrophic denitrification (PAD) is an emerging biological process to diminish nitrate pollution, but the relatively low NO3--N removal rate limits its practical application. In this research, a pyrite-intensified hybrid sequencing batch biofilm reactor (PIHSBBR) was designed to treat low C/N ratio domestic wastewater. The results showed that PIHSBBR could achieve optimal removal of COD, NH4+-N, and TN under the aeration rate of 1.0 L/L∙min and the hydraulic retention time (HRT) of 8 h, with removal rates of 69.67 ± 4.37%, 77.04 ± 4.84%, and 63.92 ± 6.66%, respectively. The PAD efficiency in PIHSBBR during the stable operation was not high (13.05-31.01%), and the main nitrogen removal pathway in PIHSBBR, especially in the aerobic zone, was simultaneous nitrification and denitrification (SND). High-throughput sequencing analysis unraveled that Planctomycetota (3.65%) had a high abundance in the anoxic zone of PIHSBBR, implying that anaerobic ammonium oxidation (anammox) might have occurred in the anoxic zone. In addition, the nitrogen cycle function gene with the highest abundance was nirBD, indicating the possible presence of dissimilatory nitrate reduction to ammonium (DNRA) within the system (aerobic and anoxic zones). Our research can provide useful information for the improvement and future application of PIHSBBR.
Collapse
Affiliation(s)
- Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongjun Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Weijie Guo
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
18
|
Zhang J, Fan C, Zhao M, Wang Z, Jiang S, Jin Z, Bei K, Zheng X, Wu S, Lin P, Miu H. A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal. CHEMOSPHERE 2023; 313:137474. [PMID: 36493890 DOI: 10.1016/j.chemosphere.2022.137474] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification is the most widely used method for nitrogen removal in water treatment. Compared with heterotrophic and autotrophic denitrification, mixotrophic denitrification is later studied and used. Because mixotrophic denitrification can overcome some shortcomings of heterotrophic and autotrophic denitrification, such as a high carbon source demand for heterotrophic denitrification and a long start-up time for autotrophic denitrification. It has attracted extensive attention of researchers and is increasingly used in biological nitrogen removal processes. However, so far, a comprehensive review is lacking. This paper aims to review the current research status of mixotrophic denitrification and provide guidance for future research in this field. It is shown that mixotrophic denitrification processes can be divided into three main kinds based on different kinds of electron donors, mainly including sulfur-, hydrogen-, and iron-based reducing substances. Among them, sulfur-based mixotrophic denitrification is the most widely studied. The most concerned influencing factors of mixotrophic denitrification processes are hydraulic retention times (HRT) and ratio of chemical oxygen demand (COD) to total inorganic nitrogen (C/N). The dominant functional bacteria of sulfur-based mixotrophic denitrification system are Thiobacillus, Azoarcus, Pseudomonas, and Thauera. At present, mixotrophic denitrification processes are mainly applied for nitrogen removal in drinking water, groundwater, and wastewater treatment. Finally, challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Jintao Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Chunzhen Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Zhiquan Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Zhan Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Suqing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Ping Lin
- Wenzhou Drainage Co., Ltd, Wenzhou, Zhejiang, 325000, PR China
| | - Huanyi Miu
- Wenzhou Ecological Park Development and Construction Investment Group Co., Ltd, Wenzhou, Zhejiang, 325000, PR China
| |
Collapse
|
19
|
Chen D, Li Y, Jiang Q, Chen C, Xiao Z. Biogenic ferrihydrite-humin coprecipitate as an electron donor for the enhancement of microbial denitrification by Pseudomonas stutzeri. ENVIRONMENTAL RESEARCH 2023; 216:114837. [PMID: 36400223 DOI: 10.1016/j.envres.2022.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nitrate pollution of groundwater has become an increasingly serious environmental problem that poses a great threat to aquatic ecosystems and to human health. Previous studies have shown that solid-phase humin (HM) can act as an additional electron donor to support microbial denitrification in the bioremediation of nitrate-contaminated groundwater where electron donor is deficient. However, the electron-donating capacities of HMs vary widely. In this study, we introduced ferrihydrite and prepared ferrihydrite-humin (Fh-HM) coprecipitates via biotic means to strengthen their electron-donating capacities. The spectroscopic results showed that the crystal phase of Fh did not change after coprecipitation with HM in the presence of Shewanella oneidensis MR-1, and iron may have complexed with the organic groups of HM. The Fh-HM coprecipitate prepared with an optimal initial Fh-HM mass ratio of 14:1 enhanced the microbial denitrification of Pseudomonas stutzeri with an electron-donating capacity 2.4-fold higher than that of HM alone, and the enhancement was not caused by greater bacterial growth. The alginate bead embedding assay indicated that the oxidation pathway of Fh-HM coprecipitate was mainly through direct contact between P. stutzeri and the coprecipitate. Further analyses suggested that quinone and organic-complexed Fe were the main electron-donating fractions of the coprecipitate. The results of the column experiments demonstrated that the column filled with Fh-HM-coated quartz sand exhibited a higher denitrification rate than the one filled with quartz sand, indicating its potential for practical applications.
Collapse
Affiliation(s)
- Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yi Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Qitao Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Chuang Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
20
|
Wang JH, Zhao XL, Hu Q, Gao X, Qu B, Cheng Y, Feng D, Shi LF, Chen WH, Shen Y, Chen YP. Effects mechanism of bio-carrier filling rate on rotating biofilms and the reactor performance optimization method. CHEMOSPHERE 2022; 308:136176. [PMID: 36030945 DOI: 10.1016/j.chemosphere.2022.136176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Benefited from the massive filling bio-carriers, the packed cage rotating biological contactors (RBCs) have better performance and application potentiality in wastewater treatment. Investigating the effects mechanism of bio-carrier filling rate is crucial for such reactors management. In this study, the pollutants removal performance, biofilms physical characteristics, and microbial communities of the biofilms under a series of bio-carrier filling rates were analyzed. The results shown, the pollutant removal rate and amount were quite different under different filling rates, and biofilms structure and microbial composition were the main factors affecting the pollutants removal performance. With the increasing filling rates, the biofilms were more mass increased (dry weight from 0.066 to 0.148 g/per carrier), thicker (from 340.30 to 850.84 μm) and lower dense (from 0.068 to 0.060 g/cm3). The microbial community composition of those biofilms was also quite different at the genus level. The effects mechanism of bio-carrier filling rate can be summarized: the filling rates affect the physical and biological characteristics of biofilms, which will further affect the microenvironment and microbial distribution in biofilms, and then determines the pollutant metabolic rate and metabolic pathway. This study will contribute to design better bio-carrier filling rate according to different wastewater treatment scenario, and promote the performance optimization of packed cage RBCs.
Collapse
Affiliation(s)
- Jian-Hui Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Xiao-Long Zhao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Qing Hu
- Chongqing Water Group Co., Ltd., Chongqing, 400015, China
| | - Xu Gao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Water Group Co., Ltd., Chongqing, 400015, China; Chongqing Sino French Environmental Excellence R&D Centre, Chongqing, 400010, China
| | - Bin Qu
- Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Yin Cheng
- Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Dong Feng
- Chongqing Sino French Environmental Excellence R&D Centre, Chongqing, 400010, China
| | - Long-Fei Shi
- Chongqing Endurance Automation Solutions Co., Ltd, 401120, China
| | - Wen-Hao Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
21
|
Xu Z, Li Y, Zhou P, Song X, Wang Y. New insights on simultaneous nitrate and phosphorus removal in pyrite-involved mixotrophic denitrification biofilter for a long-term operation: Performance change and its underlying mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157403. [PMID: 35850339 DOI: 10.1016/j.scitotenv.2022.157403] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous nitrate and phosphorus removal can be completed by pyrite- and influent organics-involved mixotrophic denitrification and chemical phosphorus removal via iron precipitation. However, so far, how their removal performances change with iron precipitation accumulation remains unclear. In this study, the differences in nitrate and phosphorus removal from municipal tailwater between volcanic and pyrite supported biofilters (V-BF, P-BF) for a long-term operation were investigated, as well as the underlying mechanism for these differences. The nitrate removal efficiencies (NREs) in P-BF were greater than those in V-BF due to the synergistic effect of influent organic and pyrite, as evidenced by comparable TOC consumption and Fe2+/SO42- production. The NREs in P-BF were gradually lower than in V-BF as a result of bacterial cell-iron encrustation observed in TEM images, which would deteriorate microbial activity. However, the phosphorus removal efficiencies (PREs) in P-BF remained consistently higher than in V-BF, resulting from chemical phosphorus removal which was confirmed that P, Fe and O elements dominated on the pyrite surface after use by SEM-EDS. The dominant denitrifying bacteria differed significantly, autotrophic and heterotrophic denitrifying microorganisms coexisted in P-BF. The relative abundances of the narG coding gene in P-BF were higher than that in V-BF, which was consistent with the total relative abundances of identified denitrifying bacteria. Besides, the mechanism of simultaneous nitrogen and phosphorus removal in the pyrite-involved mixotrophic denitrification process has been deduced. This work has significant implications for the practical application of a pyrite-involved mixotrophic denitrification process for low C/N wastewater treatment.
Collapse
Affiliation(s)
- Zhongshuo Xu
- Donghua University, College of Environmental Science and Engineering, Shanghai 201600, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yanan Li
- Donghua University, College of Environmental Science and Engineering, Shanghai 201600, China
| | - Panpan Zhou
- Donghua University, College of Environmental Science and Engineering, Shanghai 201600, China
| | - Xinshan Song
- Donghua University, College of Environmental Science and Engineering, Shanghai 201600, China
| | - Yuhui Wang
- Donghua University, College of Environmental Science and Engineering, Shanghai 201600, China.
| |
Collapse
|
22
|
Xu B, Yang X, Li Y, Yang K, Xiong Y, Yuan N. Pyrite-Based Autotrophic Denitrifying Microorganisms Derived from Paddy Soils: Effects of Organic Co-Substrate Addition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11763. [PMID: 36142037 PMCID: PMC9517464 DOI: 10.3390/ijerph191811763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The presence of organic co-substrate in groundwater and soils is inevitable, and much remains to be learned about the roles of organic co-substrates during pyrite-based denitrification. Herein, an organic co-substrate (acetate) was added to a pyrite-based denitrification system, and the impact of the organic co-substrate on the performance and bacterial community of pyrite-based denitrification processes was evaluated. The addition of organic co-substrate at concentrations higher than 48 mg L-1 inhibited pyrite-based autotrophic denitrification, as no sulfate was produced in treatments with high organic co-substrate addition. In contrast, both competition and promotion effects on pyrite-based autotrophic denitrification occurred with organic co-substrate addition at concentrations of 24 and 48 mg L-1. The subsequent validation experiments suggested that competition had a greater influence than promotion when organic co-substrate was added, even at a low concentration. Thiobacillus, a common chemolithoautotrophic sulfur-oxidizing denitrifier, dominated the system with a relative abundance of 13.04% when pyrite served as the sole electron donor. With the addition of organic co-substrate, Pseudomonas became the dominant genus, with 60.82%, 61.34%, 70.37%, 73.44%, and 35.46% abundance at organic matter concentrations of 24, 48, 120, 240, and 480 mg L-1, respectively. These findings provide an important theoretical basis for the cultivation of pyrite-based autotrophic denitrifying microorganisms for nitrate removal in soils and groundwater.
Collapse
Affiliation(s)
- Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Key Laboratory of River Regulation and Flood Control of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Xiaoxia Yang
- Chongqing Water Resources Bureau, Chongqing 401147, China
| | - Yalong Li
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Kejun Yang
- School of Law, Zhongnan University of Economics and Law, Wuhan 430073, China
- Agricultural and Rural Department of Hubei Province, Wuhan 430070, China
| | - Yujiang Xiong
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Niannian Yuan
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| |
Collapse
|
23
|
Yuan S, Zhu W, Guo W, Sang W, Zhang S. Effect of hydraulic retention time on performance of autotrophic, heterotrophic, and split-mixotrophic denitrification systems supported by polycaprolactone/pyrite: Difference and potential explanation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10820. [PMID: 36514302 DOI: 10.1002/wer.10820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification is still the most important pathway to purifying nitrate-containing wastewater. In this study, pyrite (FeS2 ) and polycaprolactone (PCL) were used as electron donors to construct sole or combined denitrification systems, that is, pyrite-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system, and split-mixotrophic denitrification system (combined PAD + PHD), all of which were operated under five different hydraulic retention times (HRTs) for 150 days. The results showed that the removal rates (RE) of nitrate (NO3 - -N) and inorganic phosphorus (PO4 3- -P) by PAD were 91% and 94%, respectively, but the effluent sulfate (SO4 2- ) concentration was as high as 168.2 mg/L; the removal rate of NO3 - -N by PHD was higher than 99%, but the PO4 3- -P could not be removed ideally; the removal rates of NO3 - -N and PO4 3- -P by PAD + PHD were higher than 95% and 99%, respectively, and the effluent SO4 2- concentration was only 7.2 mg/L. Through the analysis of the surface scanning electron microscope (SEM) images of the two kinds of media before and after use, it was found that the coupled mode of PAD + PHD was more favorable for biofilm formation than the sole PAD or PHD process, and the microorganisms in the PAD + PHD mode made more full use of electron donors. Moreover, the biomass of the PAD + PHD mode was lower than that of the PAD or PHD process, but the denitrification efficiency of the coupled mode was more efficient, indicating that the functional microorganisms in the PAD + PHD mode might have a certain synergistic effect. PRACTITIONER POINTS: Removal rates of NO3 -, PO4 3 -, and SO4 2 - by PAD were 91%, 94%, and -233%, respectively. Removal rate of NO3 - by PHD exceeded 99%, but PO4 3 - could not be removed ideally. Removal rates of NO3 -, PO4 3 -, and SO4 2 - by PAD + PHD were 95%, 99%, and 86%, respectively. The coupled mode was more favorable for biofilm formation than the sole PAD or PHD. The coupled mode had lower biomass but got more excellent denitrification efficiency.
Collapse
Affiliation(s)
- Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Weijie Guo
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Changjiang River Scientific Research Institute, Wuhan, China
| | - Wenjiao Sang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| |
Collapse
|