1
|
Lindfors S, Österlund H, Lorenz C, Vianello A, Nordqvist K, Gopinath K, Lykkemark J, Lundy L, Vollertsen J, Viklander M. Microplastics and tyre wear particles in urban runoff from different urban surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179527. [PMID: 40306079 DOI: 10.1016/j.scitotenv.2025.179527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/12/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Urban runoff is an important conveyor of microplastics (MPs) and tyre wear particles (TWP) to receiving waters. However, knowledge of contributions by surfaces within land use type/activities is currently limited. To address this knowledge gap, runoff samples were collected simultaneously during three rainfall events in October and November 2020 at three locations in Luleå, Sweden, with different urban surfaces (parking lot, road and roof). The occurrence of MPs (by number and estimated mass) and TWP (mass) were determined using μ-FTIR and Pyr-GC/MS, respectively. MPs and TWP were found at all sites in all events, with large variations between events and sites. The highest concentrations of MPs (number) and TWP were found in road runoff followed by parking lot runoff and roof runoff. The mass concentrations of MPs did not follow the same pattern and were generally highest at the parking lot, highlighting the importance of reporting data as both mass and particle numbers to derive a complete overview of MPs and TWP behaviour. Polypropylene, polyethylene, and polyester accounted, on average, for 99 % of MP polymers (by mass and number) at all sites with common sources, including traffic (vehicle wear and tear) and littering. MPs in the <75 μm fraction contributed >50 % of the total number of MPs in parking lot runoff, >58 % in roof runoff and > 90 % in road runoff.
Collapse
Affiliation(s)
- Sarah Lindfors
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Claudia Lorenz
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark
| | - Alvise Vianello
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark
| | - Kerstin Nordqvist
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Kalpana Gopinath
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jeanette Lykkemark
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark
| | - Lian Lundy
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
2
|
Martinmäki T, Saarikoski S, Timonen H, Niemi JV, Sillanpää M. Plastic and rubber polymers in urban PM 10 by pyrolysis-gas chromatography-mass spectrometry. Anal Bioanal Chem 2025:10.1007/s00216-025-05906-z. [PMID: 40358735 DOI: 10.1007/s00216-025-05906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Microplastics, including tyre and road wear particles, have been detected in every environmental compartment in both urban and remote areas. However, their contribution to atmospheric particulate matter is still sparsely explored. These airborne micro- and nanosized particles are continuously inhaled and pose risks to the environment and public health. The objectives of this study were to develop and validate a thermoanalytical method for the quantification of microplastics in urban particulate matter. Aerosol particles smaller than 10 µm in aerodynamic diameter (PM10) were sampled at the kerbside in Helsinki, Finland, during spring 2024. The samples were pretreated by homogenization and thermal desorption prior to chemical analysis by micro-furnace pyrolysis-gas chromatography-mass spectrometry. The developed method was validated in terms of selectivity, limits of quantification, linear range, trueness, precision, and measurement uncertainty. Instrument quantification levels were 8-270 ng. Expanded measurement uncertainties were 25-30% and 50-70% for the studied tyre wear rubbers and thermoplastics, respectively. Polyethylene, polyethylene terephthalate, polypropylene, polystyrene, and tyre and road wear particles were detected in urban PM10 samples, and their sum accounts for 1-3% of total PM10. These results represent the level of airborne microplastic particles to which people can be exposed in urban environments.
Collapse
Affiliation(s)
- Tatu Martinmäki
- Finnish Environment Institute, Research Infrastructure, Mustialankatu 3, 00790, Helsinki, Finland.
- Department of Chemistry, University of Helsinki, P.O. BOX 55, 00014, Helsinki, Finland.
| | | | - Hilkka Timonen
- Finnish Meteorological Institute, 00560, Helsinki, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority, 00240, Helsinki, Finland
| | - Markus Sillanpää
- Finnish Environment Institute, Research Infrastructure, Mustialankatu 3, 00790, Helsinki, Finland.
| |
Collapse
|
3
|
Ma J, Zhao S, He K, Tian L, Zhong G, Jones KC, Sweetman AJ, Li J, Zhou Q, Chen D, Chen K, Zhang G. Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137292. [PMID: 39869978 DOI: 10.1016/j.jhazmat.2025.137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/29/2025]
Abstract
The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM2.5). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO3 digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM2.5. The optimized HNO3 digestion method using high-pressure oxidation conditions effectively removed organic matter within two hours, giving recovery rates of 64 %-110 % for eight target MNPs. The chromatographic peak reconstruction procedure minimized interferences caused by similar polymers and achieved high accuracy (101 % ± 10 %) for polyvinyl chloride, polyethylene terephthalate, and polystyrene, whose concentrations are often overestimated due to overlapping pyrolysis products. Quantification uncertainties for MNPs in real PM2.5 samples were up to 52 % lower using the new method than using previous methods. The method was validated using PM2.5 from urban Guangzhou. The total concentrations of the eight target MNPs in the PM2.5 samples were 100-990 ng/m3 (median 277 ng/m3) and the dominant MNPs were polyethylene, polyethylene terephthalate, and polyvinyl chloride, which contributed > 90 % of the MNPs. The new method allows the robust and accurate quantification of MNPs in atmospheric fine particles and will be useful in future studies on the environmental behaviors of MNPs and risks they pose.
Collapse
Affiliation(s)
- Jianchu Ma
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Zhao
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Kun He
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Tian
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangcai Zhong
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jun Li
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Qisheng Zhou
- Frontier Laboratories Ltd, 4-16-20 Saikon, Koriyama, Fukushima 9638862, Japan
| | - Duohong Chen
- Environmental Key Laboratory of Regional Air Quality Monitoring, Ministry of Ecology and Environment, Guangdong Ecological Environment Monitoring Center, Guangzhou 510308, China
| | - Kewei Chen
- Evertech Instrument Technology Ltd, Guangzhou 510320, China
| | - Gan Zhang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
4
|
Aradhana K, Moorchilot VS, Joo T, Aravindakumar CT, Aravind UK. Spider Webs as Passive Monitors of Microplastic and Its Copollutants in Indoor Environments. ACS OMEGA 2025; 10:4418-4426. [PMID: 39959050 PMCID: PMC11822485 DOI: 10.1021/acsomega.4c07373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 02/18/2025]
Abstract
Indoor environments are particularly vulnerable to microplastics (MPs) and associated copollutants due to limited air circulation and particulate matter accumulation. Continuous monitoring is essential to evaluate exposure levels and health risks. We propose using indoor spider webs as passive monitors for MPs and their copollutants. MPs were found in both web and dust samples with nonuniform distribution (p < 0.05), indicating contamination hotspots. Web samples had significantly higher MP levels (138-33,570 MPs/g) compared to dust samples (59-9324 MPs/g). A strong positive correlation (r = 0.93, p < 0.05) between MPs in dust and webs suggests that spider webs are effective bioindicators of indoor MP contamination. The study also revealed the presence of Bisphenol A and various phthalic acid esters (PAEs). Co-pollutant concentrations ranged from 52.02-1971.78 μg/kg in webs and 43.18-518.42 μg/kg in dust. Diethyl phthalate (DEP) was more common in webs, while Dibutyl phthalate (DBP) predominated in dust. These findings highlight spider webs' potential as both effective biomonitoring tools and significant sinks for MPs and their cocontaminants in indoor environments.
Collapse
Affiliation(s)
| | - Vishnu S. Moorchilot
- School
of Environmental Sciences, Mahatma Gandhi
University, Kottayam 686560, India
| | - Taiha Joo
- Department
of Chemistry, Pohang University of Science
and Technology, 77 Cheongam-ro, Pohang 37673, South Korea
| | | | - Usha K. Aravind
- School
of Environmental Studies, Cochin University
of Science and Technology, Kochi 682022, India
| |
Collapse
|
5
|
Öborn L, Österlund H, Lorenz C, Vianello A, Lykkemark J, Vollertsen J, Viklander M. Composition and concentrations of microplastics including tyre wear particles in stormwater retention pond sediments. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2857-2869. [PMID: 39612178 DOI: 10.2166/wst.2024.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
Stormwater is recognised as a vector for microplastics (MPs), including tyre wear particles (TWPs) from land-based sources to receiving waterbodies. Before reaching the waterbodies, the stormwater may be treated. In this study, sediments from six treatment facilities (five retention ponds and a subsurface sedimentation tank) were analysed to understand MP occurrence, concentrations, sizes, polymer types and distribution between inlet and outlet. The concentrations of MPs showed large variations between and within different facilities with MP concentrations of 1,440-72,209 items/kg (analysed by μFTIR) corresponding to 120-2,950 μg/kg and TWP concentrations from
Collapse
Affiliation(s)
- Lisa Öborn
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; Environment and Health Administration, City of Stockholm, Fleminggatan 4, Box 8136, Stockholm SE-104 20, Sweden
| | - Heléne Österlund
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden E-mail:
| | - Claudia Lorenz
- Division of Civil and Environmental Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23 Aalborg Øst, 9220 Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark
| | - Alvise Vianello
- Division of Civil and Environmental Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23 Aalborg Øst, 9220 Denmark
| | - Jeanette Lykkemark
- Division of Civil and Environmental Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23 Aalborg Øst, 9220 Denmark
| | - Jes Vollertsen
- Division of Civil and Environmental Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23 Aalborg Øst, 9220 Denmark
| | - Maria Viklander
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
6
|
Costa MBD, Schuab JM, Sad CMDS, Ocaris ERY, Otegui MBP, Motta DG, Menezes KM, Caniçali FB, Marins AAL, Dalbó GZ, Marçal M, Paqueli BF, Zamprogno GC. Microplastic atmospheric pollution in an urban Southern Brazil region: What can spider webs tell us? JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135190. [PMID: 39053063 DOI: 10.1016/j.jhazmat.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The World Health Organization categorizes air pollution as the presence of one or more contaminants in the atmosphere such as smoke, dust, and particulate matter like microplastics, which are considered a priority pollutant. However, only a few studies have been developed on atmospheric pollution, and knowledge about MPs in the atmosphere is still limited. Spider webs have been tested and used as a passive sampling approach to study anthropogenic pollution. Despite this, studies on microplastic contamination using spiderwebs as samplers are scarce. Thus, this study uses spider webs as passive indicators to investigate air quality regarding microplastic contamination in an urbanized area. Therefore, 30 sampling points were selected, and webs of Nephilingis cruentata were collected. The spider webs were dipped in KOH 10 %. After digestion, the solution was washed and sieved through a 90 µm geological sieve. The remaining material was transferred to a Petri dish with filter paper, quantified, and identified by type and color. The chemical composition of the polymers was determined using Raman spectroscopy. 3138 microplastics were identified (2973 filaments and 165 fragments). The most frequent colors were blue and black. Raman spectroscopy revealed five types of polymers: Isotactic Polypropylene, Polyethylene Terephthalate, Polyurethane, Polyamide, and Direct Polyethylene.
Collapse
Affiliation(s)
- Mercia Barcellos da Costa
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil.
| | - João Marcos Schuab
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Cristina Maria Dos Santos Sad
- Laboratory of Research and Methodologies Development for Petroleum Analysis (LABPETRO), Chemistry Department, Federal University of Espírito Santo, Brazil
| | | | - Mariana Beatriz Paz Otegui
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil; Institute of Biodiversity and Applied Experimental Biology (CONICET-UBA), Buenos Aires University, Argentina
| | - Daniel Gosser Motta
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Karina Machado Menezes
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Felipe Barcellos Caniçali
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil; Post Graduation Program in Environmental Oceanography, Federal University of Espírito Santo, Brazil
| | - Antônio Augusto Lopes Marins
- Department of Chemistry, Multiusual Laboratory of Instrumentation (LabMIinst - LabPetro), Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo 29075-910, Brazil; Department of Chemistry, Corrosion, and Materials Laboratory (LabCorrMAT - LabPetro), Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo 29075-910, Brazil
| | - Gustavo Zambon Dalbó
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Mateus Marçal
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Bruno Fioresi Paqueli
- Laboratory of Research and Methodologies Development for Petroleum Analysis (LABPETRO), Chemistry Department, Federal University of Espírito Santo, Brazil
| | - Gabriela Carvalho Zamprogno
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| |
Collapse
|
7
|
Pomata D, La Nasa J, Biale G, Barlucchi L, Ceccarini A, Di Filippo P, Riccardi C, Buiarelli F, Modugno F, Simonetti G. Plastic breath: Quantification of microplastics and polymer additives in airborne particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173031. [PMID: 38723961 DOI: 10.1016/j.scitotenv.2024.173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The widespread extensive use of synthetic polymers has led to a substantial environmental crisis caused by plastic pollution, with microplastics detected in various environments and posing risks to both human health and ecosystems. The possibility of plastic fragments to be dispersed in the air as particles and inhaled by humans may cause damage to the respiratory and other body systems. Therefore, there is a particular need to study microplastics as air pollutants. In this study, we tested a combination of analytical pyrolysis, gas chromatography-mass spectrometry, and gas and liquid chromatography-mass spectrometry to identify and quantify both microplastics and their additives in airborne particulate matter and settled dust within a workplace environment: a WEEE treatment plant. Using this combined approach, we were able to accurately quantify ten synthetic polymers and eight classes of polymer additives. The identified additives include phthalates, adipates, citrates, sebacates, trimellitates, benzoates, organophosphates, and newly developed brominated flame retardants.
Collapse
Affiliation(s)
- Donatella Pomata
- DIT, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, Pisa, Italy; CISUP Centre for Instrument Sharing, University of Pisa, Pisa, Italy.
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, Pisa, Italy
| | | | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, Pisa, Italy; CISUP Centre for Instrument Sharing, University of Pisa, Pisa, Italy
| | | | - Carmela Riccardi
- DIT, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | | | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, Pisa, Italy; CISUP Centre for Instrument Sharing, University of Pisa, Pisa, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
9
|
Emecheta EE, Pfohl PM, Wohlleben W, Haase A, Roloff A. Desorption of Polycyclic Aromatic Hydrocarbons from Microplastics in Human Gastrointestinal Fluid Simulants-Implications for Exposure Assessment. ACS OMEGA 2024; 9:24281-24290. [PMID: 38882100 PMCID: PMC11170755 DOI: 10.1021/acsomega.3c09380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Microplastics have been detected in various food types, suggesting inevitable human exposure. A major fraction may originate from aerial deposition and could be contaminated by ubiquitous pollutants such as polycyclic aromatic hydrocarbons (PAHs). While data on the sorption of pollutants to microplastics are abundant, the subsequent desorption in the gastrointestinal tract (GIT) is less understood. This prompted us to systematically investigate the release of microplastics-sorbed PAHs at realistic loadings (44-95 ng/mg) utilizing a physiology-based in vitro model comprising digestion in simulated saliva, gastric, and small and large intestinal fluids. Using benzo[a]pyrene as a representative PAH, desorption from different microplastics based on low density polyethylene (LDPE), thermoplastic polyurethanes (TPUs), and polyamides (PAs) was investigated consecutively in all four GIT fluid simulants. The cumulative relative desorption (CRD) of benzo[a]pyrene was negligible in saliva simulant but increased from gastric (4 ± 1% - 15 ± 4%) to large intestinal fluid simulant (21 ± 1% - 29 ± 6%), depending on the polymer type. CRDs were comparable for ten different microplastics in the small intestinal fluid simulant, except for a polydisperse PA-6 variant (1-10 μm), which showed an exceptionally high release (51 ± 8%). Nevertheless, the estimated contribution of microplastics-sorbed PAHs to total human PAH dietary intake was very low (≤0.1%). Our study provides a systematic data set on the desorption of PAHs from microplastics in GIT fluid simulants.
Collapse
Affiliation(s)
- Emeka Ephraim Emecheta
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
- Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Dr. Hans-Frisch-Str.1-3, 95448 Bayreuth, Germany
| | | | | | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Alexander Roloff
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
10
|
Mayer PM, Moran KD, Miller EL, Brander SM, Harper S, Garcia-Jaramillo M, Carrasco-Navarro V, Ho KT, Burgess RM, Thornton Hampton LM, Granek EF, McCauley M, McIntyre JK, Kolodziej EP, Hu X, Williams AJ, Beckingham BA, Jackson ME, Sanders-Smith RD, Fender CL, King GA, Bollman M, Kaushal SS, Cunningham BE, Hutton SJ, Lang J, Goss HV, Siddiqui S, Sutton R, Lin D, Mendez M. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171153. [PMID: 38460683 PMCID: PMC11214769 DOI: 10.1016/j.scitotenv.2024.171153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.
Collapse
Affiliation(s)
- Paul M Mayer
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Kelly D Moran
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Ezra L Miller
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211 Kuopio, Finland.
| | - Kay T Ho
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Robert M Burgess
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Leah M Thornton Hampton
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America.
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR 97201, United States of America.
| | - Margaret McCauley
- US Environmental Protection Agency, Region 10, Seattle, WA 98101, United States of America.
| | - Jenifer K McIntyre
- School of the Environment, Washington State University, Puyallup Research & Extension Center, Washington Stormwater Center, 2606 W Pioneer Ave, Puyallup, WA 98371, United States of America.
| | - Edward P Kolodziej
- Interdisciplinary Arts and Sciences (UW Tacoma), Civil and Environmental Engineering (UW Seattle), Center for Urban Waters, University of Washington, Tacoma, WA 98402, United States of America.
| | - Ximin Hu
- Civil and Environmental Engineering (UW Seattle), University of Washington, Seattle, WA 98195, United States of America.
| | - Antony J Williams
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Computational Chemistry & Cheminformatics Branch, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States of America.
| | - Barbara A Beckingham
- Department of Geology & Environmental Geosciences, College of Charleston, Charleston, SC, 66 George Street Charleston, SC 29424, United States of America.
| | - Miranda E Jackson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rhea D Sanders-Smith
- Washington State Department of Ecology, 300 Desmond Drive SE, Lacey, WA 98503, United States of America.
| | - Chloe L Fender
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - George A King
- CSS, Inc., 200 SW 35th St, Corvallis, OR 97333, United States of America.
| | - Michael Bollman
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Sujay S Kaushal
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, United States of America.
| | - Brittany E Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Sara J Hutton
- GSI Environmental, Inc., Olympia, Washington 98502, USA.
| | - Jackelyn Lang
- Department of Anatomy, Physiology, and Cell Biology, Department of Medicine and Epidemiology and the Karen C. Drayer Wildlife Health Center, University of California, Davis School of Veterinary Medicine, Davis, CA 95616, United States of America.
| | - Heather V Goss
- US Environmental Protection Agency, Office of Water, Office of Wastewater Management, Washington, DC 20004, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Diana Lin
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Miguel Mendez
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| |
Collapse
|
11
|
Iordachescu L, Rullander G, Lykkemark J, Dalahmeh S, Vollertsen J. An integrative analysis of microplastics in spider webs and road dust in an urban environment-webbed routes and asphalt Trails. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121064. [PMID: 38703647 DOI: 10.1016/j.jenvman.2024.121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Affiliation(s)
- Lucian Iordachescu
- Aalborg University, Section of Civil and Environmental Engineering, Department of the Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark.
| | - Gabriella Rullander
- Uppsala University, Department of Earth Sciences, Villavägen 16, 752 36, Uppsala, Sweden
| | - Jeanette Lykkemark
- Aalborg University, Section of Civil and Environmental Engineering, Department of the Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark
| | - Sahar Dalahmeh
- Uppsala University, Department of Earth Sciences, Villavägen 16, 752 36, Uppsala, Sweden
| | - Jes Vollertsen
- Aalborg University, Section of Civil and Environmental Engineering, Department of the Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark
| |
Collapse
|
12
|
Luo D, Chu X, Wu Y, Wang Z, Liao Z, Ji X, Ju J, Yang B, Chen Z, Dahlgren R, Zhang M, Shang X. Micro- and nano-plastics in the atmosphere: A review of occurrence, properties and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133412. [PMID: 38218034 DOI: 10.1016/j.jhazmat.2023.133412] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
The ubiquitous occurrence of micro/nano plastics (MNPs) poses potential threats to ecosystem and human health that have attracted broad concerns in recent decades. Detection of MNPs in several remote regions has implicated atmospheric transport as an important pathway for global dissemination of MNPs and hence as a global health risk. In this review, the latest research progress on (1) sampling and detection; (2) origin and characteristics; and (3) transport and fate of atmospheric MNPs was summarized. Further, the current status of exposure risks and toxicological effects from inhaled atmospheric MNPs on human health is examined. Due to limitations in sampling and identification methodologies, the study of atmospheric nanoplastics is very limited today. The large spatial variation of atmospheric MNP concentrations reported worldwide makes it difficult to compare the overall indoor and outdoor exposure risks. Several in vitro, in vivo, and epidemiological studies demonstrate adverse effects of immune response, apoptosis and oxidative stress caused by MNP inhalation that may induce cardiovascular diseases and reproductive and developmental abnormalities. Given the emerging importance of atmospheric MNPs, the establishment of standardized sampling-pretreatment-detection protocols and comprehensive toxicological studies are critical to advance environmental and health risk assessments of atmospheric MNPs.
Collapse
Affiliation(s)
- Dehua Luo
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyun Chu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yue Wu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenfeng Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhonglu Liao
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjuan Ju
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Bin Yang
- Pingyang County Health Inspection Center, Wenzhou 325405, China.
| | - Zheng Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Xu Shang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
13
|
Goßmann I, Mattsson K, Hassellöv M, Crazzolara C, Held A, Robinson TB, Wurl O, Scholz-Böttcher BM. Unraveling the Marine Microplastic Cycle: The First Simultaneous Data Set for Air, Sea Surface Microlayer, and Underlying Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16541-16551. [PMID: 37853526 PMCID: PMC10620994 DOI: 10.1021/acs.est.3c05002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Microplastics (MP) including tire wear particles (TWP) are ubiquitous. However, their mass loads, transport, and vertical behavior in water bodies and overlying air are never studied simultaneously before. Particularly, the sea surface microlayer (SML), a ubiquitous, predominantly organic, and gelatinous film (<1 mm), is interesting since it may favor MP enrichment. In this study, a remote-controlled research catamaran simultaneously sampled air, SML, and underlying water (ULW) in Swedish fjords of variable anthropogenic impacts (urban, industrial, and rural) to fill these knowledge gaps in the marine-atmospheric MP cycle. Polymer clusters and TWP were identified and quantified with pyrolysis-gas chromatography-mass spectrometry. Air samples contained clusters of polyethylene terephthalate, polycarbonate, and polystyrene (max 50 ng MP m-3). In water samples (max. 10.8 μg MP L-1), mainly TWP and clusters of poly(methyl methacrylate) and polyethylene terephthalate occurred. Here, TWP prevailed in the SML, while the poly(methyl methacrylate) cluster dominated the ULW. However, no general MP enrichment was observed in the SML. Elevated anthropogenic influences in urban and industrial compared to the rural fjord areas were reflected by enhanced MP levels in these areas. Vertical MP movement behavior and distribution were not only linked to polymer characteristics but also to polymer sources and environmental conditions.
Collapse
Affiliation(s)
- Isabel Goßmann
- Institute
for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, Oldenburg 26111, Germany
- Center
for Marine Sensors, Institute for Chemistry and Biology of the Marine
Environment (ICBM), Carl von Ossietzky University
of Oldenburg, Wilhelmshaven 26382, Germany
| | - Karin Mattsson
- Department
of Marine Sciences, University
of Gothenburg, Kristineberg 566, Fiskebäckskil 45178, Sweden
| | - Martin Hassellöv
- Department
of Marine Sciences, University
of Gothenburg, Kristineberg 566, Fiskebäckskil 45178, Sweden
| | - Claudio Crazzolara
- Chair
of Environmental Chemistry and Air Research, Technische Universität Berlin, Berlin 10623, Germany
| | - Andreas Held
- Chair
of Environmental Chemistry and Air Research, Technische Universität Berlin, Berlin 10623, Germany
| | - Tiera-Brandy Robinson
- GEOMAR
Helmholtz Center for Ocean Research Kiel, Wischhofstraße 1-3, Kiel 24148, Germany
| | - Oliver Wurl
- Center
for Marine Sensors, Institute for Chemistry and Biology of the Marine
Environment (ICBM), Carl von Ossietzky University
of Oldenburg, Wilhelmshaven 26382, Germany
| | - Barbara M. Scholz-Böttcher
- Institute
for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, Oldenburg 26111, Germany
| |
Collapse
|
14
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
15
|
Liu F, Rasmussen LA, Klemmensen NDR, Zhao G, Nielsen R, Vianello A, Rist S, Vollertsen J. Shapes of Hyperspectral Imaged Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12431-12441. [PMID: 37561646 PMCID: PMC10448723 DOI: 10.1021/acs.est.3c03517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Shape matters for microplastics, but its definition, particularly for hyperspectral imaged microplastics, remains ambiguous and inexplicit, leading to incomparability across data. Hyperspectral imaging is a common approach for quantification, yet no unambiguous microplastic shape classification exists. We conducted an expert-based survey and proposed a set of clear and concise shapes (fiber, rod, ellipse, oval, sphere, quadrilateral, triangle, free-form, and unidentifiable). The categories were validated on images of 11,042 microplastics from four environmental compartments (seven matrices: indoor air; wastewater influent, effluent, and sludge; marine water; stormwater; and stormwater pond sediments), by inviting five experts to score each shape. We found that the proposed shapes were well defined, representative, and distinguishable to the human eye, especially for fiber and sphere. Ellipse, oval, and rod were though less distinguishable but dominated in all water and solid matrices. Indoor air held more unidentifiable, an abstract shape that appeared mostly for particles below 30 μm. This study highlights the need for assessing the recognizability of chosen shape categories prior to reporting data. Shapes with a clear and stringent definition would increase comparability and reproducibility across data and promote harmonization in microplastic research.
Collapse
Affiliation(s)
- Fan Liu
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Lasse A. Rasmussen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | | | - Guohan Zhao
- Research
Centre for Built Environment, Energy, Water and Climate, VIA University College, 8700 Horsens, Denmark
| | - Rasmus Nielsen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Alvise Vianello
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Sinja Rist
- National
Institute of Aquatic Resources, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jes Vollertsen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| |
Collapse
|
16
|
Goßmann I, Herzke D, Held A, Schulz J, Nikiforov V, Georgi C, Evangeliou N, Eckhardt S, Gerdts G, Wurl O, Scholz-Böttcher BM. Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air. Nat Commun 2023; 14:3707. [PMID: 37349297 DOI: 10.1038/s41467-023-39340-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Few studies report the occurrence of microplastics (MP), including tire wear particles (TWP) in the marine atmosphere, and little data is available regarding their size or sources. Here we present active air sampling devices (low- and high-volume samplers) for the evaluation of composition and MP mass loads in the marine atmosphere. Air was sampled during a research cruise along the Norwegian coast up to Bear Island. Samples were analyzed with pyrolysis-gas chromatography-mass spectrometry, generating a mass-based data set for MP in the marine atmosphere. Here we show the ubiquity of MP, even in remote Arctic areas with concentrations up to 37.5 ng m-3. Cluster of polyethylene terephthalate (max. 1.5 ng m-3) were universally present. TWP (max. 35 ng m-3) and cluster of polystyrene, polypropylene, and polyurethane (max. 1.1 ng m-3) were also detected. Atmospheric transport and dispersion models, suggested the introduction of MP into the marine atmosphere equally from sea- and land-based emissions, transforming the ocean from a sink into a source for MP.
Collapse
Affiliation(s)
- Isabel Goßmann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111, Oldenburg, Germany
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382, Wilhelmshaven, Germany
| | - Dorte Herzke
- NILU - Norwegian Institute for Air Research, The FRAM Centre, P.O. Box 6606, Langnes, 9296, Tromsø, Norway
- NIPH - Norwegian Institute for Public Health, P.O.Box 222 Skøyen,, 0213, Oslo, Norway
| | - Andreas Held
- Chair of Environmental Chemistry and Air Research, Technische Universität Berlin, 10623, Berlin, Germany
| | - Janina Schulz
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111, Oldenburg, Germany
| | - Vladimir Nikiforov
- NILU - Norwegian Institute for Air Research, The FRAM Centre, P.O. Box 6606, Langnes, 9296, Tromsø, Norway
| | - Christoph Georgi
- Chair of Environmental Chemistry and Air Research, Technische Universität Berlin, 10623, Berlin, Germany
| | - Nikolaos Evangeliou
- NILU - Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Sabine Eckhardt
- NILU - Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Gunnar Gerdts
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 27483, Heligoland, Germany
| | - Oliver Wurl
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111, Oldenburg, Germany
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382, Wilhelmshaven, Germany
| | - Barbara M Scholz-Böttcher
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, 26111, Oldenburg, Germany.
| |
Collapse
|
17
|
O'Brien S, Rauert C, Ribeiro F, Okoffo ED, Burrows SD, O'Brien JW, Wang X, Wright SL, Thomas KV. There's something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162193. [PMID: 36828069 DOI: 10.1016/j.scitotenv.2023.162193] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Literature regarding microplastics in the atmosphere has advanced in recent years. However, studies have been undertaken in isolation with minimal collaboration and exploration of the relationships between air, deposition and dust. This review collates concentrations (particle count and mass-based), shape, size and polymetric characteristics for microplastics in ambient air (m3), deposition (m2/day), dust (microplastics/g) and snow (microplastics/L) from 124 peer-reviewed articles to provide a holistic overview and analysis of our current knowledge. In summary, ambient air featured concentrations between <1 to >1000 microplastics/m3 (outdoor) and <1 microplastic/m3 to 1583 ± 1181 (mean) microplastics/m3 (indoor), consisting of polyethylene terephthalate, polyethylene, polypropylene. No difference (p > 0.05) was observed between indoor and outdoor concentrations or the minimum size of microplastics (p > 0.5). Maximum microplastic sizes were larger indoors (p < 0.05). Deposition concentrations ranged between 0.5 and 1357 microplastics/m2/day (outdoor) and 475 to 19,600 microplastics/m2/day (indoor), including polyethylene, polystyrene, polypropylene, polyethylene terephthalate. Concentrations varied between indoor and outdoor deposition (p < 0.05), being more abundant indoors, potentially closer to sources/sinks. No difference was observed between the minimum or maximum reported microplastic sizes within indoor and outdoor deposition (p > 0.05). Road dust concentrations varied between 2 ± 2 and 477 microplastics/g (mean), consisting of polyvinyl chloride, polyethylene, polypropylene. Mean outdoor dust concentrations ranged from <1 microplastic/g (remote desert) to between 18 and 225 microplastics/g, comprised of polyethylene terephthalate, polyamide, polypropylene. Snow concentrations varied between 0.1 and 30,000 microplastics/L, containing polyethylene, polyamide, polypropylene. Concentrations within indoor dust varied between 10 and 67,000 microplastics/g, including polyethylene terephthalate, polyethylene, polypropylene. No difference was observed between indoor and outdoor concentrations (microplastics/g) or maximum size (p > 0.05). The minimum size of microplastics were smaller within outdoor dust (p > 0.05). Although comparability is hindered by differing sampling methods, analytical techniques, polymers investigated, spectral libraries and inconsistent terminology, this review provides a synopsis of knowledge to date regarding atmospheric microplastics.
Collapse
Affiliation(s)
- Stacey O'Brien
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Cassandra Rauert
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Francisca Ribeiro
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, EX4 4QD, Stocker Road, Exeter, UK
| | - Elvis D Okoffo
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Stephen D Burrows
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, EX4 4QD, Stocker Road, Exeter, UK
| | - Jake W O'Brien
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Xianyu Wang
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Stephanie L Wright
- MRC Centre for Environment and Health, Imperial College London, London SE1 9NH, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health, Imperial College London, London SW7 2AZ, UK
| | - Kevin V Thomas
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
18
|
Rasmussen LA, Lykkemark J, Andersen TR, Vollertsen J. Permeable pavements: A possible sink for tyre wear particles and other microplastics? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161770. [PMID: 36708844 DOI: 10.1016/j.scitotenv.2023.161770] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, seven roads and parking lots were sampled by a road surface cleaning truck and approximately 100 kg of particulate material was collected per site. Thereafter, the samples were analysed for microplastics, including tyre wear particles. The analyses revealed that tyre wear constituted 0.09 % of the dry mass of the samples on average. Other plastic types were also identified in the samples, but at on average 49 times lower concentrations compared to tyre wear particles. Although the roads and parking lots were used for residential, industrial, and commercial purposes, no correlation between land use and the total concentrations of microplastics was identified. Of microplastics other than tyre wear particles, polypropylene constituted an important fraction in all samples, whereas other polymers were present at various degrees. The contents of heavy metals, sulphur, and total organic carbon were also measured in the samples, but no correlation between them and microplastics was determined. A back-of-the-envelope estimation indicated that the tyre wear material retained by permeable pavements constituted a non-negligible fraction of the total mass of microplastics released on roads and parking lots. Therefore, permeable pavements can serve as a tool for the management of this pollutant.
Collapse
Affiliation(s)
| | - Jeanette Lykkemark
- Department of the Built Environment, Aalborg University, 9220 Aalborg Øst, Denmark
| | - Theis Raaschou Andersen
- VIA University College, Research Centre for Built Environment, Energy, Water and Climate, Banegårdsgade 2, 8700 Horsens, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, 9220 Aalborg Øst, Denmark
| |
Collapse
|
19
|
Azari A, Vanoirbeek JAJ, Van Belleghem F, Vleeschouwers B, Hoet PHM, Ghosh M. Sampling strategies and analytical techniques for assessment of airborne micro and nano plastics. ENVIRONMENT INTERNATIONAL 2023; 174:107885. [PMID: 37001214 DOI: 10.1016/j.envint.2023.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The atmosphere is pervasively polluted by microplastics and nano plastics (M/NPs) released into indoor and outdoor areas. However, various methodologies and their limitations along with non-standardization make the comparison of information concerning their prevalence difficult. Such diversity in techniques greatly limits the interpretation of results. Herein, We extracted data from publications on PubMed and Embase database up to the year 2022 regarding sampling strategies, identification methods, and reporting data for M/NPs quantification. In this review, 5 major areas for measuring airborne M/NPs have been identified including pre-sampling/ sampling/ post-sampling/ analysis/ and contamination avoidance. There are many challenges specific to each of those sections that need to be resolved through further method development and harmonization. This review mainly focuses on the different methods for collecting atmospheric M/NPs and also the analytical tools which have been used for their identification. While passive sampling is the most user-friendly method, the most precise and reproducible approach for collecting plastic particles is an active method which is directly followed by visual counting as the most common physical analysis technique. Polymers collected using visual sorting are most frequently identified by spectroscopy (FTIR; Raman). However, destructive analytical techniques (thermal degradation) also provide precise chemical information. In all cases, the methods were screened for advantages, limitations, and fieldwork abilities. This review outlines and critiques knowledge gaps, and recommendations to support standardized and comparable future research.
Collapse
Affiliation(s)
- Aala Azari
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frank Van Belleghem
- Centre for Environmental Sciences, Department of Biology, Hasselt University Hasselt, Belgium
| | - Brent Vleeschouwers
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Peter H M Hoet
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Manosij Ghosh
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Kamp J, Dierkes G, Schweyen PN, Wick A, Ternes TA. Quantification of Poly(vinyl chloride) Microplastics via Pressurized Liquid Extraction and Combustion Ion Chromatography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4806-4812. [PMID: 36917996 PMCID: PMC10061920 DOI: 10.1021/acs.est.2c06555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
A reliable analytical method has been developed to quantify poly(vinyl chloride) (PVC) in environmental samples. Quantification was conducted via combustion ion chromatography (C-IC). Hydrogen chloride (HCl) was quantitatively released from PVC during thermal decomposition and trapped in an absorption solution. Selectivity of the marker HCl in complex environmental samples was ensured using cleanup via pressurized liquid extraction (PLE) with methanol at 100 °C (discarded) and tetrahydrofuran at 185 °C (collected). Using this method, recoveries of 85.5 ± 11.5% and a limit of quantification down to 8.3 μg/g were achieved. A variety of hard and soft PVC products could be successfully analyzed via C-IC with recoveries exceeding >95%. Furthermore, no measurable overdetermination was found for various organic and inorganic matrix ingredients, such as sodium chloride, sucralose, hydroxychloroquine, diclofenac, chloramphenicol, triclosan, or polychlorinated biphenyls. In addition, sediments and suspended particular matter showed PVC concentrations ranging up to 16.0 and 220 μg/g, respectively. However, the gap between determined polymer mass and particle masses could be significant since soft PVC products contain plasticizers up to 50 wt %. Hence, the results of the described method represent a sum of all chlorine-containing polymers, which are extractable under the chosen conditions.
Collapse
|
21
|
Coralli I, Goßmann I, Fabbri D, Scholz-Böttcher BM. Determination of polyurethanes within microplastics in complex environmental samples by analytical pyrolysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04580-3. [PMID: 36849616 DOI: 10.1007/s00216-023-04580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
Polyurethanes (PUR) are a group of polymers synthesized from different diisocyanate and polyol monomers resulting in a countless number of possible structures. However, the large market demand, and the variety of application fields justify the inclusion of PUR in microplastic (MP) investigation. This study aimed at providing comprehensive information on PUR within MP analysis by pyrolysis-gas chromatography-mass spectrometry to clarify whether (i) it is possible to make a reliable statement on the PUR content of environmental samples based on a few pyrolysis products and (ii) which restrictions are required in this context. PUR were managed as subclasses defined by the diisocyanates employed for polymer synthesis. Methylene diphenyl diisocyanate (MDI)- and toluene diisocyanate (TDI)-based PUR were selected as subclasses of greatest relevance. Different PUR were pyrolyzed directly and under thermochemolytic conditions with tetramethylammonium hydroxide (TMAH). Distinct pyrolytic indicators were identified. The study supported that the use of TMAH greatly reduced the interactions of pyrolytic MP analytes with the remaining organic matrix of environmental samples and the associated negative effects on analytical results. Improvements of chromatographic behavior of PUR was evidenced. Regressions (1-20 µg) showed good correlations and parallelism tests underlined that quantitation behavior of different MDI-PUR could be represented by the calibration of just one representative with sufficient accuracy, entailing a good estimation of the entire subclass if thermochemolysis were used. The method was exemplary applied to road dusts and spider webs sampled around a plastic processing plant to evaluate the environmental spread of PUR in an urban context. The environmental occurrence of MDI-PUR as MP was highly influenced by the proximity to a potential source, while TDI markers were not observed.
Collapse
Affiliation(s)
- Irene Coralli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Tecnopolo Di Rimini, Rimini, Italy
| | - Isabel Goßmann
- Institute of Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Daniele Fabbri
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Tecnopolo Di Rimini, Rimini, Italy.
| | - Barbara M Scholz-Böttcher
- Institute of Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|