1
|
Du Y, Zhang L, Yang F, Zhou W, He X. Effects of algal organic matters on microporous ceramic emitters clogging in agricultural water distribution systems: Experiment and molecular simulation investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175709. [PMID: 39179047 DOI: 10.1016/j.scitotenv.2024.175709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The mechanism by which algal organic matter (AOM) affects the clogging of ceramic emitters remains unclear, which partially reduces the operational life of agricultural water distribution systems. This paper systematically investigated the clogging phenomenon of ceramic emitters under three different AOM concentrations. The results of irrigation tests revealed that the AOM significantly affects the degree of clogging of ceramic emitters, with higher AOM concentrations leading to faster flow reduction. By analyzing the original irrigation water and effluent and characterizing the clogged emitter surface, it was demonstrated that AOM was intercepted by the ceramic emitter, forming a dense biofilm. Infrared spectroscopy analysis revealed that polysaccharides and humic substances were the main clogging components. The clogging kinetics showed that as the AOM concentration increased, the clogging of the filter cake layer gradually become dominant. Further, the mechanism of interaction between AOM and silica ceramic emitters was explored from a microscopic perspective using molecular dynamics (MD) simulation with bovine serum albumin (BSA), sodium alginate (SA), and humic acid (HA) as model clogging substances in AOM. The simulation results indicated a strong interaction between AOM molecules and silica molecules dominated by electrostatic attraction, with the strength of the interaction as SA > HA > BSA. It was hypothesized that early clogging was mainly formed by polysaccharides and humic substances combining with silica molecules, while BSA was retained later by combining with organics on the clogging layer or through size exclusion. This study provides insights into bio-clogging in microporous ceramic emitters and may offer a theoretical basis for developing measures to control emitter clogging.
Collapse
Affiliation(s)
- Yaqing Du
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Fuhui Yang
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wei Zhou
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuefei He
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
2
|
Xin C, Khu ST, Wang T, Zuo X, Zhang Y. Effect of flow fluctuation on water pollution in drinking water distribution systems. ENVIRONMENTAL RESEARCH 2024; 246:118142. [PMID: 38218524 DOI: 10.1016/j.envres.2024.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The detachment of biofilm caused by changes in hydraulic conditions is an essential reason for the pollution of water in the drinking water distribution system (DWDS). In this research, the effect of flow fluctuation on bulk water quality was studied. The turbidity, iron concentration, manganese concentration, the total number of bacteria, biodegradable dissolved organic carbon (BDOC), bacterial community structure, and pathogenic genes in bacteria of bulk water were analyzed. The results indicate that the detachment of biofilm caused by fluctuant flow and reverse flow (especially instant reverse flow) can lead to the pollution of water. Throughout the entire experimental period, the turbidity under fluctuant flow velocity is 4.92%∼49.44% higher than that under other flow velocities. BDOC concentration is 5.68%∼53.99% higher than that under low and high flow velocities. The flow fluctuation increases bacterial regrowth potential (BRP) and reduces the biological stability of the bulk water. Low flow velocity is more conducive to the expression of pathogenic functional genes. In the short term, the water quality under low flow velocity is the best. Nevertheless, in a long-term operation (about seven days later), the water quality under high flow velocity is better than that under other flow velocities. This research brings new knowledge about the fluctuant hydraulic conditions on the bulk water quality within the DWDS and provides data support for stable drinking water distribution.
Collapse
Affiliation(s)
- Changchun Xin
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; Engineering Research Center of City Intelligence and Digital Governance, Ministry of Education of the People's Republic of China, Tianjin 300350, China
| | - Tianzhi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Zuo
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Muhammad T, Jiang C, Liu Z, Manan I, Xiao Y, Li Y. Using organic fertilizer to mitigate organic-inorganic fouling in agricultural saline wastewater irrigation systems. CHEMOSPHERE 2024; 352:141373. [PMID: 38340996 DOI: 10.1016/j.chemosphere.2024.141373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Recycling saline wastewater for agricultural irrigation offer a promising solution to address both water scarcity and anthropogenic pollution. However, organic-inorganic fouling in saline wastewater irrigation systems (SWIS) poses significant technical and economic challenges. Traditional chemical biocides are currently insufficient for controlling composite organic-inorganic fouling and may pose environmental hazards. This study proposed a greener approach using organic acid (OA) fertilizers to alleviate organic-inorganic fouling in agricultural SWIS. The treatment performances were assessed employing four types of OA fertilizers (i.e., humic acid, alginic acid, nucleotide, and ammonia acid) and a negative control. Results showed that three types of OA, i.e., alginic acid, nucleotide, and ammonia acid, effectively reduced the total SWIS fouling content by 11.2%-57.4%, whereas humic acid exacerbated fouling by 11.2%-57.4%. Specifically, all types of OA significantly mitigated the content of inorganic fouling (precipitates and silicates) by 10.7%-42.3% by forming loosed and sparser structures. However, OA exhibited minimum effects on controlling silica fouling. Meanwhile, except the humic acid, other types of OA decreased the total content of organic fouling by 17.2%-39.5% by reducing the content of humic substances and building block fractions. In addition, the significant binary interactions of organic-inorganic fouling indicated the active role of calcium silica and biomineralization fouling. These findings provide insight into the development of appropriate and eco-friendly antifouling strategies for SWIS, with implications for recycling and reusing saline wastewater.
Collapse
Affiliation(s)
- Tahir Muhammad
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Cuiling Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Zeyuan Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Irum Manan
- Department of Botany, Sardar Bahadur Khan Women's University, Quetta, 87300, Pakistan
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing, 100083, China.
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing, 100083, China
| |
Collapse
|
4
|
Khu ST, Changchun X, Wang T. Effects of flow velocity on biofilm composition and microbial molecular ecological network in reclaimed water distribution systems. CHEMOSPHERE 2023; 341:140010. [PMID: 37652246 DOI: 10.1016/j.chemosphere.2023.140010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
The existence of biofilm on the reclaimed water pipeline seriously affects the safety of water distribution. And the flow regimes in the pipeline play a crucial role in the growth of biofilms. In this study, the biofilm composition, surface topography and bacterial community were detected under eight levels of flow velocity in the range of 0.10-1.40 m s-1. The results showed that the dry weight, the concentration of extracellular protein and extracellular polysaccharide in the biofilm reached a dynamic stable period after 640 h. The biofilm composition and surface topography of biofilm were significantly different under the different flow regimes (laminar flow belongs to [0.10, 0.19] m s-1, and turbulent flow belongs to [0.29, 1.40] m s-1). As the flow velocity range increases, the concentration of each component in the biofilm and the parameters of biofilm surface topography increased and then decreased. The flow velocity could be a strong environmental stimulus resulting in the succession of bacterial community in biofilm. As the flow velocity increased from 0.10 m s-1 to 1.40 m s-1, at the phylum level, the average relative abundance of Firmicutes mainly showed a trend of first increasing and then decreasing with the highest abundance value of 71.57% at 0.49 m s-1. The flow velocity increased from 0.10 m s-1 to 0.49 m s-1, a significant increase in microbial diversity could be detected. The increase in flow velocity promoted the proliferation of microorganisms, and the interaction between different microbial components was enhanced. At 0.49 m s-1, the function of the biofilm is complex, and the ability to resist environmental stress is the strongest. This study can effectively improve the cognition depth of biofilms under the influence of flow velocity in the reclaimed water distribution systems, and provide an important theoretical support for the safe distribution of reclaimed water.
Collapse
Affiliation(s)
- Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China; Engineering Research Center of City intelligence and Digital Governance, Ministry of Education of the People's Republic of China, Tianjin, 300350, China
| | - Xin Changchun
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Tianzhi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|