1
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Luo Z, Su Y, Wu J, Mahmood S, Chen Y, Yao S. One stone several birds-Sustainable valorization of pork processing wastes via versatile green solvent-prompted processes. Food Chem 2025; 487:144720. [PMID: 40381558 DOI: 10.1016/j.foodchem.2025.144720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/29/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
The utilization of food waste as a valuable source for bioactive extraction is vital for sustainable development. This study developed an environmentally friendly solvent-involved enzymatic system, which served a novel and multifunctional platform for the preparation of pork processing waste-derived dressing films. The α-chymotrypsin (α-Chy) exhibited enhanced activity (121.11 %) and stability in the newly developed system. The hemin and enzymolysis products were obtained from pork waste using the green solvents and their mixture with α-Chy, respectively. The composite dressing film prepared by pork waste exhibited excellent multiple properties, particularly in terms of ultraviolet shielding and antibacterial activity. The green solvents play multifunctional roles (extractant, enzymolysis-enhanced medium, plasticizer, osmotic agent, and antibacterial agent) in whole process, acting as a means of "one stone several birds". This newly developed system was successfully applied to recover bioactive components from pork waste and convert them into value-added biomaterials.
Collapse
Affiliation(s)
- Zidan Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yadi Su
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jieyu Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Subhan Mahmood
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Dong M, Shu Y, Gao R, Sun T, Wu M, Wu W, Ma R, Tang D, Lin S, Ji S. Application of magnetic aldehyde-functionalized ionic liquids for immobilization of acetylcholinesterase. Int J Biol Macromol 2025; 309:143101. [PMID: 40222539 DOI: 10.1016/j.ijbiomac.2025.143101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
This study presents a simple and efficient approach for enzyme immobilization using magnetic aldehyde-functionalized ionic liquids, with acetylcholinesterase (AChE) as a model enzyme. We synthesized a new magnetic particle, Fe3O4@SiO2@[ImBa][Cl], by modifying silica-coated Fe3O4 with the ionic liquid 4-(imidazol-1-yl)benzaldehyde hydrochloride ([ImBa][Cl]), whose structure was characterized by SEM, TEM, FT-IR, EDS, TGA and VSM. Immobilization of AChE occurred through both physical adsorption and covalent bonding, driven by electrostatic interaction between cations of the ionic liquid and AChE, as well as Schiff base reaction between the aldehyde groups and protein amines. We identified the optimal immobilization conditions including solution pH (7), AChE concentration (0.8 mg/mL) and incubation time (90 min), under which the immobilization yield reached 16.38 μg/mg. Compared to free AChE, the immobilized AChE exhibited superior substrate affinity and catalytic activity based on kinetic study, also outperforming traditional covalent immobilization methods that utilized glutaraldehyde as cross-linker. Furthermore, the immobilized AChE demonstrated excellent reusability, as well as enhanced storage and thermal stability compared to free AChE. Additionally, it was employed for evaluation of drug inhibitory activity, which could be used for relevant drug discovery. This method indicates that magnetic aldehyde-functionalized ionic liquids are simple and efficient carriers for immobilization of enzymes.
Collapse
Affiliation(s)
- Mingxin Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510640, China
| | - Yikang Shu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ran Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ting Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Mingyue Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Weiguo Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ruili Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Shaoqiang Lin
- Central Laborotary, The Affiliated Shunde Hospital of Jinan University, Foshan 528305, China; School of The First Clinical Medical Science, Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
4
|
Zhao S, Zhang S. Long-term phosphorus addition alters soil enzyme kinetics with limited impact on their temperature sensitivity in an alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177569. [PMID: 39566634 DOI: 10.1016/j.scitotenv.2024.177569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The soil enzymes excreted by soil microorganisms and plant roots are essential for decomposing organic matter and regulating ecosystem function. However, phosphorus (P) deposition effects on the kinetics and thermodynamics of soil enzymes remain poorly understood. Here, an 11-year, multi-level P addition experiment was conducted in the alpine meadows of the Qinghai-Tibet Plateau, a region known as one of the most sensitive to global changes. We measured Vmax, Km and their temperature sensitivities (Q10) for six hydrolytic enzymes, along with soil properties and microbial community composition. P addition significantly reduced total soil organic C (SOC) and soil available N (NH4+-N and NO3--N), but increased dissolved organic N (DON), soil total P (TP) and available P (AP). Furthermore, P addition markedly decreased the abundance of Ascomycota, while increased that of Basidiomycota. However, the abundance of bacterial phyla remained unaffected by P addition. We found that P addition significantly increased the Vmax of β-glucosidase (BG), β-xylosidase (BX), cellobiohydrolase (CBH) and N-acetyl-glucosaminidase (NAG), but decreased that of acid phosphatase (APA) and L-leucine-aminopeptidase (LAP). P addition had no effect on Km of BX and CBH, but significantly lowered it for other enzymes. Specifically, P addition significantly reduced the Vmax-Q10 of BG and BX, but did not affect that of other enzymes. Conversely, P addition significantly increased the Km-Q10 of BG, while decreased the Km-Q10 of NAG, with no change in other enzymes. Variation partitioning analysis confirmed that microbial biomass and fungal community composition are crucial in influencing Vmax, Km, as well as their temperature sensitivities. This study highlights the critical influence of P addition on soil enzyme kinetics and temperature sensitivity and their relationships with microbial community, enhancing predictions of how microbial community and substrate availability interact to regulate the soil nutrient cycle under global environmental changes.
Collapse
Affiliation(s)
- Siyi Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shiting Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
5
|
Duan Y, Wang C, Li L, Han R, Shen X, Han G, Wang J, Nie M, Zhou X, Du H, Yuan X, Dong S. Effect of Compound Fertilizer on Foxtail Millet Productivity and Soil Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:3167. [PMID: 39599375 PMCID: PMC11597965 DOI: 10.3390/plants13223167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The effects of balanced fertilization with nitrogen, phosphorus, and potassium (NPK) on foxtail millet productivity and the soil environment under the same conditions of total nutrients have received limited research attention. Therefore, in this study, three balanced fertilization patterns of 27-14-10 (T1), 27-17-7 (T2), and 30-10-11 (T3), and one no fertilization treatment (CK), a total of four treatments, were set up through a two-year field experiment to study the effects of balanced fertilization patterns on foxtail millet yield and soil environment. Mantel analysis was conducted to reveal the correlation between soil environmental factors and the community and their contribution to productivity. The results showed that: (1) all balanced fertilization treatments significantly increased foxtail millet yield, with the highest yield in the T1 treatment. (2) The contents of EC, available K, available P, and alkaline-hydrolyzable nitrogen in the soil of the two-year TI treatments were higher than those of the other treatments and increased by 7.20-9.36%, 24.87-52.35%, 55.83-56.38%, and 21.05-43.95%, respectively, compared with CK. (3) Soil urease activity in the T1 treatment increased significantly by 26.67% and 9.00% compared with the control over the two years. Sucrase activity increased by 36.27% and 23.88% in the T1 treatment compared to CK, and glutaminase activity increased by 33.33% and 19.23% in the T1 treatment compared to CK. (4) T1 treatment significantly increased the OUT number and diversity index of the soil bacterial community. (5) Mantel analysis and principal component analysis showed that available soil nutrients and soil enzymes were positively correlated, and soil enzymes and soil nutrients contributed more to foxtail millet productivity. In this study, the 27-14-10 balanced fertilization pattern was more effective, providing a theoretical basis for the research and development of special fertilizers for foxtail millet and offering technical guidance for realizing the light simplified cultivation of foxtail millet and sustainable development of cost-saving and increased efficiency.
Collapse
Affiliation(s)
- Yanyan Duan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Chenyang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Lizhi Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Ruihua Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Xiao Shen
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Genlan Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Jiang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Mengen Nie
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Xinlei Zhou
- Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Huiling Du
- Shanxi Institute of Functional Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.D.); (C.W.); (L.L.); (R.H.); (X.S.); (G.H.); (J.W.); (M.N.); (S.D.)
| |
Collapse
|
6
|
Guo Y, Gu S, Wu K, Tanentzap AJ, Yu J, Liu X, Li Q, He P, Qiu D, Deng Y, Wang P, Wu Z, Zhou Q. Temperature-mediated microbial carbon utilization in China's lakes. GLOBAL CHANGE BIOLOGY 2023; 29:5044-5061. [PMID: 37427534 DOI: 10.1111/gcb.16840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Microbes play an important role in aquatic carbon cycling but we have a limited understanding of their functional responses to changes in temperature across large geographic areas. Here, we explored how microbial communities utilized different carbon substrates and the underlying ecological mechanisms along a space-for-time substitution temperature gradient of future climate change. The gradient included 47 lakes from five major lake regions in China spanning a difference of nearly 15°C in mean annual temperatures (MAT). Our results indicated that lakes from warmer regions generally had lower values of variables related to carbon concentrations and greater carbon utilization than those from colder regions. The greater utilization of carbon substrates under higher temperatures could be attributed to changes in bacterial community composition, with a greater abundance of Cyanobacteria and Actinobacteriota and less Proteobacteria in warmer lake regions. We also found that the core species in microbial networks changed with increasing temperature, from Hydrogenophaga and Rhodobacteraceae, which inhibited the utilization of amino acids and carbohydrates, to the CL500-29-marine-group, which promoted the utilization of all almost carbon substrates. Overall, our findings suggest that temperature can mediate aquatic carbon utilization by changing the interactions between bacteria and individual carbon substrates, and the discovery of core species that affect carbon utilization provides insight into potential carbon sequestration within inland water bodies under future climate warming.
Collapse
Affiliation(s)
- Yao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Songsong Gu
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Kaixuan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario, Canada
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Junqi Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Xiangfen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Qianzheng Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Peng He
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Pei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| |
Collapse
|
7
|
Huang X, Wang K, Wen X, Liu J, Zhang Y, Rong J, Nie M, Fu C, Zheng B, Yuan Z, Gong L, Zhan H, Shen R. Flooding duration affects the temperature sensitivity of soil extracellular enzyme activities in a lakeshore wetland in Poyang Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162397. [PMID: 36848996 DOI: 10.1016/j.scitotenv.2023.162397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Extracellular enzymes play central roles in the biogeochemical cycles in wetland ecosystems. Their activities are strongly impacted by hydrothermal conditions. Under the ongoing global change, many studies reported the individual effects of flooding and warming on extracellular enzyme activities, however, few researches investigated their interactive effects. Therefore, the current study aims to determine the responses of extracellular enzyme activities to warming in wetland soils under divergent flooding regimes. We investigated the temperature sensitivity of seven extracellular enzymes related to carbon (α-glucosidase, AG; β-glucosidase, BG; cellobiohydrolase, CBH; β-xylosidase, XYL), nitrogen (β-N-acetyl -glucosaminidase, NAG; leucine aminopeptidase, LAP), and phosphorus (Phosphatase, PHOS) cycling along the flooding duration gradient in a lakeshore wetland of Poyang Lake, China. The Q10 value, calculated using a temperature gradient (10, 15, 20, 25, and 30 °C), was adopted to represent the temperature sensitivity. The average Q10 values of AG, BG, CBH, XYL, NAG, LAP, and PHOS in the lakeshore wetland were 2.75 ± 0.76, 2.91 ± 0.69, 3.34 ± 0.75, 3.01 ± 0.69, 3.02 ± 1.11, 2.21 ± 0.39, and 3.33 ± 0.72, respectively. The Q10 values of all the seven soil extracellular enzymes significantly and positively correlated with flooding duration. The Q10 values of NAG, AG and BG were more sensitive to the changes in flooding duration than other enzymes. The Q10 values of the carbon, nitrogen, and phosphorus-related enzymes were mainly determined by flooding duration, pH, clay, and substrate quality. Flooding duration was the most dominant driver for the Q10 of BG, XYL, NAG, LAP, and PHOS. In contrast, the Q10 values of AG and CBH were primarily affected by pH and clay content, respectively. This study indicated that flooding regime was a key factor regulating soil biogeochemical processes of wetland ecosystems under global warming.
Collapse
Affiliation(s)
- Xingyun Huang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China; Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Kexin Wang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China
| | - Xiuting Wen
- Jiangxi Institute of Ecological Civilization, School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Jie Liu
- Jiangxi Institute of Ecological Civilization, School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Yan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Chun Fu
- School of Public Policy and Administration, School of Infrastructure Engineering, Jiangxi Regional Economic Research Institute, Nanchang University, Nanchang 330031, PR China
| | - Bofu Zheng
- Jiangxi Institute of Ecological Civilization, School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Zhifen Yuan
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China
| | - Leiqiang Gong
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake National Nature Reserve Authority, Nanchang 330038, PR China
| | - Huiying Zhan
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake National Nature Reserve Authority, Nanchang 330038, PR China
| | - Ruichang Shen
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
8
|
Zhao Z, Wu Y, Chen W, Sun W, Wang Z, Liu G, Xue S. Soil enzyme kinetics and thermodynamics in response to long-term vegetation succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163542. [PMID: 37076007 DOI: 10.1016/j.scitotenv.2023.163542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Our current knowledge regarding soil organic matter (SOM) turnover during vegetation succession is often limited to conventional C decomposition models. However, microbial enzyme-mediated SOM degradation and nutrient cycling are mainly reflected in the kinetic parameters of these enzymes. Changes in the composition and structure of plant communities are typically accompanied by alterations in soil ecological functions. Therefore, it is important to clarify the kinetic parameters of soil enzymes and their temperature sensitivity in response to vegetation succession, especially under the current trend of climate change-related global warming; however, these are still understudied. Here, we examined the kinetic parameters of soil enzymes, their temperature sensitivity, and their associations with environmental variables over long-term (approximately 160 years) vegetation succession on the Loess Plateau using a space-for-time substitution method. We found that the kinetic parameters of soil enzymes changed significantly during vegetation succession. Specific response characteristics varied depending on the enzyme. Overall, the temperature sensitivity (Q10, 0.79-1.87) and activation energy (Ea, 8.69-41.49 kJ·mol-1) remained stable during long-term succession. Compared with N-acetyl-glucosaminidase and alkaline phosphatase, β-glucosidase was more sensitive to extreme temperatures. In particular, two kinetic parameters (i.e., maximum reaction rate, Vmax; half-saturation constant, Km) of β-glucosidase were decoupled at low (5 °C) and high (35 °C) temperatures. Overall, Vmax was the primary determinant of variations of enzyme catalytic efficiency (Kcat) during succession, and soil total nutrients had a greater impact on Kcat than available nutrients. Our results suggested that soil ecosystems played an increasingly important role as a C source during long-term vegetation succession, as indicated by the positive responses of the C cycling enzyme Kcat, while the factors related to soil N and P cycling remained relatively stable.
Collapse
Affiliation(s)
- ZiWen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; College of Forestry, Northwest A&F University, Yangling 712100, China
| | - WenJing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Wei Sun
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; College of Forestry, Northwest A&F University, Yangling 712100, China
| | - ZhanHui Wang
- Hebei Drinking Water Safety Monitoring Technology Innovation Center, Chengde 067000, China
| | - GuoBin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China.
| |
Collapse
|