1
|
He Y, Wang Z, Zhu J, Lin X, Qi J. Soil Carbon Sequestration: Role of Fe Oxides and Polyphenol Oxidase Across Temperature and Cultivation Systems. PLANTS (BASEL, SWITZERLAND) 2025; 14:927. [PMID: 40265840 PMCID: PMC11945063 DOI: 10.3390/plants14060927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
The "enzyme latch" and "Fe gate" mechanisms are crucial factors influencing soil carbon sequestration capacity, playing a key role in understanding the dynamic changes in soil organic carbon (SOC). However, there is a lack of research regarding polyphenol oxidase (PPO) activity and the concentration of iron oxides in paddy soils under varying incubating temperatures and cultivation practices. This study was conducted over three years in a double-cropping rice area in southern China, incorporating systematic soil sampling to measure PPO activity, Fe oxide concentration, and basic physicochemical properties. The results showed that temperature did not significantly affect either PPO activity or the concentration of Fe oxides. Additionally, compared to conventional management (CK), organic management led to a decrease in Fe oxides (Fe bound to organic matter, reactive Fe, and total free Fe) by 19.1%, 16.2%, and 13.7%, respectively (p < 0.05). At the same time, PPO activity did not show any significant changes. Our results indicated that short-term (5 weeks) incubation temperature did not affect PPO activity or Fe oxides, while organic farming decreased Fe oxides without influencing PPO activity. PPO activity increased with the length of the incubation period.
Collapse
Affiliation(s)
| | | | | | | | - Jianying Qi
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Z.W.); (J.Z.); (X.L.)
| |
Collapse
|
2
|
Gao W, Duan X, Chen X, Wei L, Wang S, Wu J, Zhu Z. Iron‑carbon complex types and bonding forms jointly control organic carbon mineralization in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176117. [PMID: 39245374 DOI: 10.1016/j.scitotenv.2024.176117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The crucial role of iron (Fe) oxides in stabilizing soil organic carbon (SOC) is well recognized, but their effects on SOC mineralization remain poorly understood. To address this knowledge gap, we evaluated the effects of four typical Fe-bound OC (Fe-OC) complexes including adsorbed ferrihydrite (Fh)- and goethite (Goe)- 13C, coprecipitated Fh/Goe-13C and 13C-glucose as the control, on OC mineralization during an 80-day anaerobic incubation in a paddy soil. 13C-tracing indicated that Fe-13C complexes significantly stimulated CO2 emissions from both the input 13C and SOC compared with glucose alone. In contrast, the addition of Fh- and Goe-C complexes consistently inhibited CH4 emissions by 72-91 % and 21-61 % compared with glucose addition, respectively. Fe-OC complexes reduced the CO2 equivalent by 62-71 % and 17-41 % in soils with Fh-C and Goe-C complexes, respectively. We concluded that Fe crystallinity and its bonding forms with organic carbon jointly control SOC mineralization. The coprecipitated Goe-C complexes had the lowest OC mineralization rate and highest OC residence time among four Fe-OC complexes. These findings highlighted that promoting the formation of coprecipitated well-ordered minerals would increase SOC sequestration by reducing OC mineralization and mitigating the global warming effect in paddy management.
Collapse
Affiliation(s)
- Wei Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Xun Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Xiangbi Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China.
| | - Liang Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
3
|
Ren S, Wang C, Zhou Z. Global Distributions of Reactive Iron and Aluminum Influence the Spatial Variation of Soil Organic Carbon. GLOBAL CHANGE BIOLOGY 2024; 30:e17576. [PMID: 39545275 DOI: 10.1111/gcb.17576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Organic carbon persistence in soils is predominantly controlled by physical accessibility rather than by its biochemical recalcitrance. Understanding the regulation of soil iron (Fe) and aluminum (Al) (hydr)oxides, playing a dominant role in mineral protection, on soil organic carbon (SOC) would increase the reliable projections of the feedback of terrestrial ecosystems to global warming. Here, we conducted a continental-scale survey in China (341 sites) and a global synthesis (6786 observations) to reveal the global distributions of Fe/Al (hydr)oxides and their effects on SOC storage in terrestrial ecosystems. We generated the first global maps of soil Fe/Al (hydr)oxides with high accuracy (with R2 more than 0.74). The variance decomposition analysis showed that Fe/Al (hydr)oxides explained the most proportion of variance for topsoil (0-30 cm) and subsoil (30-100 cm) SOC. Therefore, soil Fe/Al (hydr)oxides play a stronger role in explaining the spatial variation of SOC than well-studied climate, edaphic, vegetated, and soil depth factors in both topsoil and subsoil. Collectively, the planetary-scale significance of soil Fe/Al (hydr)oxides for SOC highlights that soil Fe/Al (hydr)oxides should be incorporated into Earth System Models to reduce the uncertainty in predicting SOC dynamics.
Collapse
Affiliation(s)
- Siyu Ren
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chuankuan Wang
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhenghu Zhou
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Chen W, Zhang W, Qiu Y, Shu Z, Liu JE, Zhang X, Waqas K, Song G. How does exotic Spartina alterniflora affect the contribution of iron-bound organic carbon to soil organic carbon in salt marshes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171605. [PMID: 38461991 DOI: 10.1016/j.scitotenv.2024.171605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Iron-bound organic carbon (OC-FeR) is important for the stability of soil organic carbon (SOC) in salt marshes, and the Spartina alterniflora invasion reshaped local salt marshes and changed the SOC pool. To evaluate the effects of S. alterniflora invasion on the contribution of OC-FeR to SOC, we determined the OC-FeR content and soil characteristics in the 0-50 cm soil profile along the vegetation sequence, including mudflats (MF), S. alterniflora marshes established in 2003 (SA03) and 1989 (SA89), the ecotone of S. alterniflora and Phragmites australis (SE), S. salsa marsh (SS), and P. australis marsh (PA). The SOC content was 6.55-17.5 mg g-1 in the S. alterniflora marshes. Reactive iron oxides (Fed, Feo, Fep) accumulated significantly in the S. alterniflora and P. australis salt marshes. PA and S. alterniflora marshes had higher DOC contents of 0.28-0.77 mg g-1. The OC-FeR content in the 0-50 cm soil profile in these ecosystems ranged from 0.3 to 3.29 mg g-1, with a contribution to the SOC content (fOC-FeR) of approximately 11 %, which was highest in SA03 (16.3 % ~ 18.8 %), followed by SA89, SE, and PA. In addition, the molar ratios of OC-FeR to Fed were <1, indicating that the iron oxides were associated with SOC through sorption more than coprecipitation. According to the structural equation model, SOC, DOC and iron oxides were the direct driving factors of OC-FeR formation, while the vegetation zone indirectly functioned by regulating organic C inputs, iron oxide formation, and pH. This study suggested that S. alterniflora invasion promotes iron-bound organic carbon accumulation by increasing organic C inputs and regulating iron oxide formation in salt marshes, but such promotion will degenerate with development duration.
Collapse
Affiliation(s)
- Weixiang Chen
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, 210023, PR China
| | - Weiting Zhang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, 210023, PR China
| | - Ying Qiu
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, 210023, PR China
| | - Zihao Shu
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, 210023, PR China
| | - Jin-E Liu
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, 210023, PR China.
| | - Xinhou Zhang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, 210023, PR China.
| | - Khan Waqas
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, 210023, PR China
| | - Ge Song
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, 210023, PR China
| |
Collapse
|
5
|
Ren J, Zheng C, Yong Y, Lin Z, Zhu A, He C, Pan H. Effect and mechanism of kaolinite loading amorphous zero-valent iron to stabilize cadmium in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166319. [PMID: 37586509 DOI: 10.1016/j.scitotenv.2023.166319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Amorphousness effectively improves the electron transfer rate of zero-valent iron. In this study, a novel kaolinite loading amorphous zero-valent iron composite (K-AZVI) was prepared and applied to the remediation of soils with cadmium (Cd) pollution concentrations of 20, 50, and 100 mg/kg respectively. The results showed that the application of K-AZVI increased the pH and cation exchange capacity (CEC) of soil, and decreased the dissolved organic carbon (DOC) and organic matter (OM) of soil, thus indirectly promoting the adsorption of Cd in the soil. After 28 days of stabilization, the stabilizing efficiency of K-AZVI on the water-soluble Cd content in soil reached 98.72 %. Under the amendment of 0.25 %-1.0 % (w/w), the available Cd content in 20-100 mg/kg contaminated soil decreased by 46.47 %-62.23 %, 24.10 %-41.52 %, and 16.09 %-30.51 % respectively compared with CK. More importantly, the addition of K-AZVI promoted the transformation of 33.18 %-48.42 % exchangeable fraction (EXC) to 10.09 %-20.14 % residual fraction (RES), which increased the abundance and diversity of soil bacterial communities. Comprehensive risk assessment showed that adding 1.0 % K-AZVI provided the best remediation on contaminated soil. In addition, the results of scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) of K-AZVI before and after the reaction showed that the stabilization mechanism of K-AZVI to Cd in soil is mainly the stable metal species (Cd(OH)2, CdO and CdFe2O4) formed by the direct complexation and coprecipitation of a large number of iron oxides formed by the rapid corrosion of amorphous zero-valent iron (AZVI). Overall, this work provides a promising approach to the remediation of Cd-contaminated soil using K-AZVI composites.
Collapse
Affiliation(s)
- Jieling Ren
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Shaanxi Qingling Chunchuang Environmental Protection Industry Technology Co., Ltd., Xi'an 710049, PR China.
| | - Yingying Yong
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chi He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hua Pan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
6
|
Li H, Yu GH, Hao L, Qiu Y, Hu S. Mycorrhizae enhance reactive minerals but reduce mineral-associated carbon. GLOBAL CHANGE BIOLOGY 2023; 29:5941-5954. [PMID: 37489250 DOI: 10.1111/gcb.16886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Soil organic carbon (C) is the largest active C pool of Earth's surface and is thus vital in sustaining terrestrial productivity and climate stability. Arbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and critically modulate soil C dynamics. Yet, it remains unclear whether and how AMF-root associations (i.e., mycorrhizae) interact with soil minerals to affect soil C cycling. Here we showed that the presence of both roots and AMF increased soil dissolved organic C and reactive Fe minerals, as well as litter decomposition and soil CO2 emissions. However, it reduced mineral-associated C. Also, high-resolution nanoscale secondary ion mass spectrometry images showed the existence of a thin coating (0.5-1.0 μm thick) of 56 Fe16 O- (Fe minerals) on the surface of 12 C14 N- (fungal biomass), illustrating the close physical association between fungal hyphae and soil Fe minerals. In addition, AMF genera were divergently related to reactive Fe minerals, with Glomus being positively but Paraglomus and Acaulospora negatively correlated with reactive Fe minerals. Moreover, the presence of roots and AMF, particularly when combined with litter addition, enhanced the abundances of several critical soil bacterial genera that are associated with the formation of reactive minerals in soils. A conceptual framework was further proposed to illustrate how AMF-root associations impact soil C cycling in the rhizosphere. Briefly, root exudates and the inoculated AMF not only stimulated the decomposition of litter and SOC and promoted the production of CO2 emission, but also drove soil C persistence by unlocking mineral elements and promoting the formation of reactive minerals. Together, these findings provide new insights into the mechanisms that underlie the formation of reactive minerals and have significant implications for understanding and managing soil C persistence.
Collapse
Affiliation(s)
- Huan Li
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guang-Hui Yu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Liping Hao
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Yunpeng Qiu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|